Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55695Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃筱鈞(Hsiao-Chun Huang) | |
| dc.contributor.author | Ching-Fen Yang | en |
| dc.contributor.author | 楊晴棻 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:17:52Z | - |
| dc.date.available | 2019-09-05 | |
| dc.date.copyright | 2014-09-05 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | 1. Kastan, M.B. and J. Bartek, Cell-cycle checkpoints and cancer. Nature, 2004. 432(7015): p. 316-23.
2. Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003. 36(3): p. 131-49. 3. Barr, F.A. and U. Gruneberg, Cytokinesis: placing and making the final cut. Cell, 2007. 131(5): p. 847-60. 4. Carmena, M., et al., The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol, 2012. 13(12): p. 789-803. 5. Musacchio, A. and E.D. Salmon, The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol, 2007. 8(5): p. 379-93. 6. Weaver, B.A.A. and D.W. Cleveland, Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 2005. 8(1): p. 7-12. 7. Huang, H.C., et al., Evidence that Mitotic Exit Is a Better Cancer Therapeutic Target Than Spindle Assembly. Cancer Cell, 2009. 16(4): p. 347-358. 8. Wood, S., et al., Cell migration regulates the kinetics of cytokinesis. Cell Cycle, 2011. 10(4): p. 648-654. 9. Skoufias, D.A., et al., S-trityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. J Biol Chem, 2006. 281(26): p. 17559-69. 10. Villerbu, N., et al., Cellular effects of purvalanol A: a specific inhibitor of cyclin-dependent kinase activities. Int J Cancer, 2002. 97(6): p. 761-9. 11. Harrington, E.A., et al., VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med, 2004. 10(3): p. 262-7. 12. Sakaue-Sawano, A., et al., Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell, 2008. 132(3): p. 487-98. 13. Caillat, C. and A. Perrakis, Cdt1 and geminin in DNA replication initiation. Subcell Biochem, 2012. 62: p. 71-87. 14. Hu, C.K., et al., Cell polarization during monopolar cytokinesis. J Cell Biol, 2008. 181(2): p. 195-202. 15. Yang, P.C., et al., Characterization of the mucin differentiation in human lung adenocarcinoma cell lines. Am J Respir Cell Mol Biol, 1992. 7(2): p. 161-71. 16. Chu, Y.W., et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 1997. 17(3): p. 353-60. 17. Chen, J.J., et al., Global analysis of gene expression in invasion by a lung cancer model. Cancer Res, 2001. 61(13): p. 5223-30. 18. Seldin, L., et al., NuMA localization, stability, and function in spindle orientation involve 4.1 and Cdk1 interactions. Mol Biol Cell, 2013. 24(23): p. 3651-62. 19. Tirnauer, J.S. and B.E. Bierer, EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J Cell Biol, 2000. 149(4): p. 761-6. 20. Walczak, C.E., S. Gayek, and R. Ohi, Microtubule-depolymerizing kinesins. Annu Rev Cell Dev Biol, 2013. 29: p. 417-41. 21. Zhang, D., et al., Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration. Nat Cell Biol, 2011. 13(4): p. 361-70. 22. Varga, V., et al., Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell, 2009. 138(6): p. 1174-83. 23. Hunter, A.W., et al., The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol Cell, 2003. 11(2): p. 445-57. 24. Roy, P., et al., Microscope-based techniques to study cell adhesion and migration. Nat Cell Biol, 2002. 4(4): p. E91-6. 25. Trepat, X., et al., Physical forces during collective cell migration. Nature Physics, 2009. 5: p. 426-430 26. Burton, K. and D.L. Taylor, Traction forces of cytokinesis measured with optically modified elastic substrata. Nature, 1997. 385(6615): p. 450-4. 27. Reffay, M., et al., Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat Cell Biol, 2014. 16(3): p. 217-23. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55695 | - |
| dc.description.abstract | 細胞週期(cell cycle)和細胞遷移(cell migration)都是細胞中重要的事件,也都和癌症有相當的關係。當細胞週期受到某些機制影響,如錯誤的紡錘絲排列,就可能造成細胞週期的停滯。當細胞被困在有絲分裂期(mitotic phase)時,週期素(cyclin)的降解也會被抑制,直到所有的機制修復,細胞得以進行正常分裂時,才會再度開始降解週期素,釋放出週期蛋白依賴性激酶(CDK)。在癌症的治療當中,經常使用如長春花生物鹼(vinca alkaloids)、驅動蛋白抑制物(kinesin 5 inhibitors)等小分子藥物造成不正常的紡錘絲排列,將細胞困在有絲分裂期,使得細胞無法分裂,進而殺死細胞。然而過去的研究指出,在這樣的細胞週期停滯下,仍有少量的週期素降解產生,一旦降解的量足夠釋放出週期蛋白依賴性激酶,細胞便得以不需經過正常機制而自行離開有絲分裂期,稱為「脫逃(slippage)」行為。這些逃離有絲分裂期而存活的細胞,就有可能造成癌症治療失敗。在我們的研究中發現,當正常細胞分裂離開有絲分裂期時,也就是剛經過細胞質分裂(cytokinesis)時,會具有較高的遷移能力。這些結果指出細胞進行細胞質分裂與否可能就是影響遷移能力的關鍵。以此推論,這樣的遷移能力一旦經由前述的脫逃行為時,便應當不復存在。因此這些逃離藥物影響而存活的細胞,或許會使這類藥物無法完全的將癌細胞消滅;但另一方面,這些細胞卻因藥物處理失去了遷移能力,得以抑制癌症轉移。 | zh_TW |
| dc.description.abstract | Cell cycle and cell migration are both important events in a cell. Also, they are both important events involved in cancer. When a cell faces some bad situations such as abnormal spindle formation, the cell cycle will be arrested. During mitosis, the arrest is due to the inhibition of cyclin B degradation, and the degradation will restart only when all cellular mechanisms are going well and the cell can undergo normal division, thus release the cyclin-dependent kinase (CDK). In cancer therapies, small molecular drugs like vinca alkaloids and kinesin 5 inhibitors are used to induce the formation of abnormal spindles. This can arrest cells in mitotic phase, and in some cases, eventually kill the cells. Recently, it has been reported that cells under the mitotic arrest can still gradually degrade cyclin B. Once cyclin B level is not enough to maintain high CDK activity, cells will leave the mitotic phase, which is the so-called 'slippage' behavior. These survived cells may result in failed cancer therapies. In our research, we found that unperturbed cells seemed to migrate faster in G1 phase. Moreover, the velocity was greatest right after cytokinesis, then slowed down over the course of the cell cycle. Based on the observation, we hypothesize that cytokinesis may promote the cell migration. When normal cytokinesis was blocked, cells lost this acceleration of migration. Thus, we propose that even though the anti-mitotic drug treatments may not be effective enough in killing some of the cells, these therapies may still have the benefit of suppression cell migration, thus prevent cancer metastasis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:17:52Z (GMT). No. of bitstreams: 1 ntu-103-R01b43019-1.pdf: 941509 bytes, checksum: cee8133f8aa4a7a5d83a99cd59cc95aa (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書
致謝 i 摘要 ii Abstract iii Contents v List of Figures viii I. Introduction 1 1. Cell cycle, cell cycle checkpoints and cyclin-CDK complex 1 2. Mitotic phase, cytokinesis and spindle assembly checkpoint 2 3. Cancer therapies 3 4. The 'slippage' behavior 4 5. Cytokinesis and cell migration 4 II. Materials and Methods 6 1. Cells and cell culture 6 2. Small molecular inhibitors 7 3. Time-lapse live imaging 7 4. Drug treatments for observation and DNA labeling for cell tracking 8 5. Data analysis and statistics 9 III. Results 11 1. Single cell observation with FUCCI cell cycle reporter 11 2. Migration pattern of CL1-5 cell line without perturbation of cell cycle 12 3. Migration pattern of MDA-MB-231 cell line without perturbation of cell cycle 13 4. Drug treating test by A549 and HeLa (titration) 13 5. Migration pattern of CL1-5 cells mimicking slippage behavior 14 6. Migration pattern of MDA-MB-231 cells mimicking slippage behavior 15 7. The cell migration caused by cytokinesis may be inhibited under slippage behavior 15 IV. Discussion 17 1. Migration pattern with control of cell mass 17 2. Possible candidates 17 3. Measure the axis and angle of migration 20 4. Detection of force generate by cell division 21 V. References 23 | |
| dc.language.iso | en | |
| dc.subject | 細胞週期 | zh_TW |
| dc.subject | 週期蛋白依賴性激? | zh_TW |
| dc.subject | 週期素 | zh_TW |
| dc.subject | 細胞質分裂 | zh_TW |
| dc.subject | 有絲分裂 | zh_TW |
| dc.subject | 細胞遷移 | zh_TW |
| dc.subject | cytokinesis | en |
| dc.subject | cell migration | en |
| dc.subject | cyclin | en |
| dc.subject | Cell cycle | en |
| dc.subject | mitosis | en |
| dc.subject | CDK | en |
| dc.title | 細胞週期與細胞遷移的互話 | zh_TW |
| dc.title | Crosstalk of Cell Cycle and Cell Migration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱家瑩(Chia-Ying Chu),廖憶純(Yi-Chun Liao) | |
| dc.subject.keyword | 細胞週期,細胞遷移,有絲分裂,細胞質分裂,週期素,週期蛋白依賴性激?, | zh_TW |
| dc.subject.keyword | Cell cycle,cell migration,mitosis,cytokinesis,cyclin,CDK, | en |
| dc.relation.page | 35 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| Appears in Collections: | 分子與細胞生物學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 919.44 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
