Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55675
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林彥蓉
dc.contributor.authorWei-Hsun Hsiehen
dc.contributor.author謝葦勳zh_TW
dc.date.accessioned2021-06-16T04:16:35Z-
dc.date.available2019-08-25
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-20
dc.identifier.citation林祐生、李文乾。(2009)。生質酒精。科學發展第 433 期。
張素凰。(2011)。臺灣地方種與栽培種水稻之遺傳歧異度分析。國立臺灣大學碩
士論文。
張心怡。(2009)。開發適用於鑑別不同地理來源水稻品種之SSR DNA 分子標誌。
國立臺灣大學碩士論文。
張隆仁。(1997)。臺灣農家要覽。高粱。
陳昱齊。(2009)。以抽穗期基因之序列多型性及表現變異進行臺灣原住民山地旱
稻馴化之研究。國立臺灣大學碩士論文。
謝兆樞。(1994)。雜糧作物各論 - 高粱。
行政院農業委員會農糧署網站。臺灣。(http://www.afa.gov.tw/)
徐剛標。(2011)。植物群體遺傳學。科學出版社。北京。
Alam M. M., Hammer G. L., Oosterom E. J., Cruickshank A. W., Hunt C. H., Jordan
D. R. (2014) A physiological framework to explain genetic and environmental
regulation of tillering in sorghum. New Phytologist 203: 155 - 167.
Adugna A. (2014) Analysis of in situ diversity and population structure in Ethiopian
cultivated Sorghum bicolor (L.) landraces using phenotypic traits and SSR
markers. SpringerPlus 3: 212.
Arriola P. E., Ellstrand N. C. (1996) Crop-to-weed gene flow in the genus Sorghum
(Poaceae): Spontaneous interspecific hybridization between johnsongrass,
Sorghum halepense and crop sorghum, S. bicolor. Am J Bot 83: 1153-1160.
Barrett B. A., Kidwell K. K., Fox P. N. (1998) Comparison of AFLP and
pedigree-based genetic diversity assessment methods using wheat cultivars from
the Pacific Northwest. Crop Sci. 38: 1271-1278.
80
Bhosale S. U., Stich B., Rattunde H. F. W., Weltzien E., Haussmann B. I. G., Hash C.
T., Melchinger A. E., Parzies H. K. (2011) Population structure in sorghum
accessions from West Africa differing in race and maturity class. Genetica 139:
453-463.
Billot C., Ramu P., Bouchet S., Chantereau J., Deu M., Gardes L. Noyer J. L., Rami F.
J., Rivallan R., Li Y., Lu P., Wang T., Folkertsma R. T., Arnaud E., Upadhyaya H.
D., Glaszmann J. C., Hash C. T. (2013) Massive sorghum collection genotyped
with SSR markers to enhance use of global genetic resources. PLoS ONE 8:
e59714
Billot C., Rivallan R. , Sall M. N., Fonceka D., Deu M., Glaszmann J. C., Noyer J. L.,
Rami J. F. (2012) A reference microsatellite kit to assess for genetic diversity of
Sorghum bicolor (Poaceae). Am J Bot e245 – e250.
Buffo R. A., Weller C. L., Parkhurst A. M. (1998) Relationships among grain sorghum
quality factors. Cereal Chern 75:100-104.
Burnside O. C. (1965) Seed and phenological studies with shattercane. University of
Nebraska Agricultural Experiment Station Bulletin, no. 220.
Burow G., Franks C. D., Xin Z., Burke J. J. (2012) Genetic diversity in a collection of
Chinese sorghum landraces assessed by microsatellites. Am J Plant Sci 3:
1722-1729.
Calvino M., Messing J. (2012) Sweet sorghum as a model system for bioenergy
crops.Curr Opin Biotechnol 23:323-329.
Cagampang G. B., Kirleis A. W. (1984) Relationship of sorghum grain hardness to
selected physical and chemical measurements of grain quality. Cereal Chern. 61:
100-105.
Childs K. L., Miller F. R., Cordonnier-Pratt M. M., Pratt L. H., Morgan P. W., Mullet J.
E. (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a
81
phytochome B1. Plant Physiol 113: 611-619.
Clark R. M., Linton E., Messing J., Doebley J. F. (2004) Pattern of diversity in the
genomic region near the maize domestication gene tb1. Proc Natl Acad Sci U S
A. Vol. 101: 700-707.
Crasta O. R., Xu W. W., Rosenow D. T., Mullet J., Nguyen H. T. (1999) Mapping of
post-flowering drought resistance traits in grain sorghum: association between
QTLs influencing premature senescence and maturity. Mol Gen Genet
262:579-588.
Deu M.,Sagnard F.,Chantereau J.,Calatayud C.,Vigouroux C. Y., Pham J. L., Mariac
C., Kapran I., Mamadou A., Ge’rard B., Ndjeunga J., Bezancon G. (2010)
Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger.
Theor Appl Genet 120: 1301-1313.
de Wet, J. M. J. (1978) Systematics and evolution of Sorghum sect. Sorghum
(Gramineae). Am J Bot 65: 477-484.
de Wet, J. M. J., Huckabay, J. P. (1967) The origin of Sorghum bicolor. II.
Distribution and domestication. Evolution 21: 787-802.
Dillon S., Shapter F., Henry R., Cordeiro G., Izquierdo L., Lee S. (2007)
Domestication to crop improvement: genetic resources for sorghum and
saccharum (Andropogoneae) Ann Bot 100: 975–989.
Doggett H. (1965). The development of the cultivated sorghums. In: Hutchinson, J. B.
(ed.) Essays on crop plant evolution. Cambridge Univ. Press, pp. 50.
Doggett H. (1976) In Evolution of Crop Plants, ed. Simmonds, N. W. Longman,
Essex, U.K. pp. 112-117.
Doggett H. 1988. Sorghum. 2nd edn. London: Longman; published by Wiley, New
York.
Duvall M.R. and Doebley J.F. (1990) Restriction site variation in the chloroplast
82
genome of sorghum (Poaceae). Systematic Botany 15: 472-480
Epperson B. K. (1993) Recent advances in correlation analysis of spatial patterns of
genetic variation. Evol Biol 27: 95-155.
Epperson B. K. (2004) Multilocus estimation of genetic structure within populations.
Theor Popul Biol 65:227-237.
Eberhart S.A., Bramel-Cox P.J., Prasada Rao K.E. (1997) Preserving genetic
resources. In Proceedings of an International Conference on the Genetic
Improvement of Sorghum and Pearl Millet, held at Lubbock, Texas, 22–27
September 1996. International Sorghum and Millet Research (INTSORMIL) –
International Crops Research Institute for the Semi-arid Tropics (ICRISAT). pp.
504–516.
FAO. Food and Agriculture Organization of the United Nations.
(http://www.fao.org/countryprofiles/en/)
Fellows G. M., Roeth F. W. (1992) Factors influencing shattercane (Sorghum bicolor)
seed survival. Weed Sci 40 : 434 – 440.
Garber E. D. (1950) Cytotaxonomy studies in the genus Sorghum. Univ Calif Publ
Bot 23: 323-362.
Ganapathy K.N., Gomashe S.S., Rakshit S., Prabhakar B., Ambekar S.S., Ghorade
R.B., Biradar B.D., Saxena U., Patil J.V. (2012) Genetic diversity revealed utility
of SSR markers in classifying parental lines and elite genotypes of sorghum
(Sorghum bicolor L. Moench). AJCS 6: 1486 - 1493.
Guo J. H., Skinner D. Z., Liang G. H. (1996) Phylogenetic relationship of sorghum
taxa inferred from mitochondrial DNA restriction fragment analysis. Genome 39:
1027-1034.
Hammer G. L. (2006) Pathways to prosperity: breaking the yield barrier in sorghum.
Agric Sci 19: 16-22.
83
Harlan J. R., de Wet J. M. J. (1992) A simplified classification of cultivated sorghum.
Crop Sci 12: 172-176
Harris K., Subudhi P. K., Borrell A., Jordan D., Rosenow D., Nguyen H., Klein P.,
Klein R., Mullet J. (2007) Sorghum stay-green QTL individually reduce
post-flowering drought-induced leaf senescence. J Exp Bot 58:327-338.
Hayden M. J., Nguyen T. M., Chalmers K. J. (2008) Multiplex-ready markers: A
technique for high-throughput, low-cost genotyping on an automated DNA
fragment analyser. BMC Genomics 9: 80.
Holleley C. E., Geerts P. G. (2009) Multiplex Manager 1.0: a cross-platform computer
program that plans and optimizes multiplex PCR. BioTech 46:511-517.
Holm L. G., Plucknett D. L., Pancho J. V., Herberger J. P. (1977) The world's worst
weeds: distribution and biology (University Press of Hawaii, Honolulu) pp.
54-61.
International Crops Research Institute for Semi-Arid Tropics (ICRISAT)
(http://www.icrisat.org/crop-sorghum-genebank.htm)
Ingheland D. V., Melchinger A. E., Lebreton C., Stich B. (2010) Population structure
and genetic diversity in a commercial maize breeding program assessed with
SSR and SNP markers. Theor Appl Genet 120:1289-1299.
Kamala V., Singh S. D., Bramel P. J., Rao D. M. (2002) Sources of resistance to
downy mildew in wild and weedy sorghums. Crop Sci 42 :1357-1360.
Kamala V., Sharma H. C., Manohar R. D., Varaprasad K. S., Bramel P. J. (2009) Wild
relatives of sorghum as sources of resistance to sorghum shoot fly, Atherigona
soccata. Plant Breed 128: 137-142.
Kebede H., Subudhi P. K., Rosenow D. T., Nguyen H. T. (2001) Quantitative trait loci
influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench).
Theor Appl Genet 103:266-276.
84
Klein R. R., Rodriguez-Herrera R., Schlueter J. A., Klein P. E., Yu Z. H., Rooney W. L.
(2001) Identification of genomic regions that affect grain-mould incidence and
other traits of agronomic importance in sorghum. Theor Appl Genet 102:
307-319.
Kondombo C. B., Sagnard F., Chantereau J., Deu M., Brocke K., Durand P., Goze E.,
Zongo J. D. (2010) Genetic structure among sorghum landraces as revealed by
morphological variation and microsatellite markers in three agroclimatic regions
of Burkina Faso. Theor Appl Genet 120: 151-1523.
Levin D. A., Kerster H. W. (1974) Gene flow in seeds plants. Evol Biol 7: 139-220.
Li M., Yuyama N., Luo L., Hirata M., Cai H. (2009) In silico mapping of 1758 new
SSR markers developed from public genomic sequences for sorghum. Mol
Breeding 24: 41-47.
Li X., Qian Q., Fu Z., Wang Y., Xiong G., Zeng D., Wang X., Liu X., Teng S., Hiroshi
F., Yuan M., Luok D., Han B., Li J. (2003) Control of tillering in rice. Nature 422:
618 - 621.
Li Z., Pinson S. R. M., Stansel J. W., Park W. D. (1995) Identification of quantitative
trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza
sativa L.). Theor Appl Genet 91:374-381.
Lin Y. R., Schertz K. F., Paterson A. H. (1995) Comparative analysis of QTLs
affecting plant height and maturity across the Poaceae, in reference to an
interspecific sorghum population. Genetics 141: 391–411.
Lin Z., Li X., Shannon L. M., Yeh C. T., Wang M. L., Bai G., Peng Z., Li J., Trick H.
N., Clemente T. E., Doebley J., Schnable P. S., Tuinstra M. R., Tesso T. T., White
F., Yu J. (2012) Parallel domestication of the Shattering1 genes in cereals. Nat
Genet 44:720 – 725.
Lu X. P., Yun J. F., Gao C. P., Surya A. (2011) Quantitative trait loci analysis of
85
economically important traits in Sorghum bicolor x sudanense hybrid. Can J
Plant Sci 91: 81-90.
Mannai Y. E., Shehzad T., Okuno K. (2012) Mapping of QTLs underlying flowering
time in sorghum [Sorghum bicolor (L.) Moench]. Breeding Sci 62: 151-159.
Maxson E. D., Fryar W. B., Rooney L. W., Krishnaprasad M. N. (1971) Milling
properties of sorghum grain with different proportions of corneous to floury
endosperm. Cereal Chern 48:478-490.
Mohammadi S. A. and Prasanna B. M. (2003) Analysis of genetic diversity in crop
plants - salient statistical tools and considerations. Crop Sci 43: 1235-1248.
Morris G. P., Ramu P., Deshpande S. P., Hash C. T., Shah T., Upadhyaya H. D., et al.
(2013) Population genomic and genome-wide association studies of agroclimatic
traits in sorghum. Proc Natl Acad Sci U S A 110: 453 - 458.
Multani D. S., Briggs S. P., Chamberlin M. A., Blakeslee J. J., Murphy A. S., Johal G.
S. (2003) Loss of an MDR transporter in compact stalks of maize br2 and
sorghum dw3 mutants. Sci 302: 81 - 84.
Muraya M. M., Villiers S., Parzies H. K., Mutegi E., Sagnard F., Kanyenji B. M.,
Kiambi D., Geiger H. H. (2011) Genetic structure and diversity of wild sorghum
populations (Sorghum spp.) from different eco-geographical regions of Kenya.
Theor Appl Genet 123:571-583.
Murphy R. L., Klein R. R., Morishigea D. T., Brady J. A., Rooney W. L., Miller F. R.,
Dugas D. V., Klein P. E., Mullet J. E. (2011) Coincident light and clock
regulation of pseudoresponse regulator protein 37 (PRR37) controls
photoperiodic flowering in sorghum. Proc Natl Acad Sci U S A 108:
16469-16474.
Murray S. C., Rooney W. L., Mitchell S. E., Sharma A., Klein P. E., Mullet J. E.,
Kresovich S. (2008) Genetic improvement of Sorghum as a biofuel feedstock: II.
86
QTL for stem and leaf structural carbohydrates. Crop Sci 48: 2180-2193.
Mutegi E., Sagnard F., Semagn K., Deu M., Muraya M., Kanyenji B., Villiers S.,
Kiambi D., Herselman L., Labuschagne M. (2011) Genetic structure and
relationships within and between cultivated and wild sorghum (Sorghum bicolor
(L.) Moench) in Kenya as revealed by microsatellite markers. Theor Appl Genet
122: 989-1004.
Ngugi K., Onyango C. M. (2012) Analysis of the molecular diversity of Kenyan
sorghum germplasm using microsatellites. J. Crop Sci Biotech 15:189 -194.
Paterson A. H., Bowers J. E., Bruggmann R., Dubchak I., Grimwood J., et al. (2009)
The Sorghum bicolor genome and the diversification of grasses. Nature 457:
551-556.
Paterson A. H., Schertz K. F., Lin Y. R., Liu S. C., Chang Y. L. (1995) The weediness
of wild plants: Molecular analysis of genes influencing dispersal and persistence
of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci U S A 92:
6127-6131.
Paterson A. H. (2013) Genomics of the Saccharinae. Plant genetics and genomics:
crops and models. Vol. 11
Pedersen J. F., Toy J. J., Johnson B. (1998) Natural outcrossing of sorghum and
sudangrass in the Central Great Plains. Crop Sci 38: 937-939.
Pritchard J. K., Stephens M., Donnelly P. (2000) Inference of population structure
using multilocus genotype data. Genetics 155: 945 - 959.
Quinby J. R. (1967) The maturity genes of sorghum. In: Norman, A.G. (ed.) Advance
in Agronomy 19, Academic Press, New York, pp. 267-305.
Quinby J. R., Karper R. E. (1954) Inheritance of height in sorghum. Agron J 46: 211 –
216.
Reed J. D., Ramundo B. A., Claflin L. F., Tuinstra M. R. (2002) Analysis of resistance
87
to ergot in sorghum and potential alternate hosts. Crop Sci 42:1135-1138.
Reif J. C., Melchinger A. E., Frisch M. (2005) Genetical and mathematical properties
of similarity and dissimilarity coefficients applied in plant breeding and seed
bank management. Crop Sci 45:1-7.
Ritter K. B., Jordan D. R., Chapman S. C., Godwin I. D., Mace E. S., McIntyre C. L.
(2008) Identification of QTL for sugar-related traits in a sweet × grain sorghum
(Sorghum bicolor L. Moench) recombinant inbred population. Mol Breeding
22:367-384.
Rosenow D. T., Clark L. E. (1995) Drought and lodging research for a quality
sorghum crop. In: Proc 5th Ann Corn and Sorghum Industry Res Conf, Illinois,
American Seed Trade Association, pp 82-97.
Sahoo L., Schmidt J. J., Pedersen J. F., Lee D. J., Lindquist J. L. (2010) Growth and
fitness components of wild × cultivated sorghum bicolor (Poaceae) hybrids in
Nebraska. Am J Bot 97: 1610-1617.
Sanchez A. C., Subudhi P. K., Rosenow D. T., Nguyen H. T. (2002) Mapping QTLs
associated with drought resistance in sorghum (Sorghum bicolor L. Moench).
Plant Mol Biol 48:713-726.
Sakhi S., Rehman S., Okuno K., Shahzad A., Jamil M. (2014) Evaluation of sorghum
(Sorghum bicolor) core collection for drought tolerance: pollen fertility and
mean performance of yield traits and its components at reproductive stage. Int J
Agric Biol 16: 251-260.
Saitou N., Nei M (1987) The neighbor-joining method: a new method for
reconstructing phylogenetic tree. Mol Biol Evol 4: 406-425.
Semagn K., Bjornstad A., Ndjiondjop M. N. (2006) An overview of molecular marker
methods for plants. Afr J Biotechnol 5: 2540-2568.
Sharma H. C., Franzmann B. A. (2001) Host plant preference and oviposition
88
responses of the sorghum midge Stenodiplosis sorghicola (Coquillett) (Dipt.,
Cecidomyiidae) towards wild relatives of Sorghum. J Appl Ent 125:109–114.
Shiringani A. L., Frisch M., Friedt W. (2010) Genetic mapping of QTLs for
sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor
Appl Genet 121:323-336.
Srinivas G., Satish K., Madhusudhana R., Nagaraja R. R., Murali M. S., Seetharama
N. (2009) Identification of quantitative trait loci for agronomically important
traits and their association with genic-microsatellite markers in sorghum. Theor
Appl Genet 118:1439-1454.
Subudhi P. K., Rosenow D.T., Nguyen H.T. (2000) Quantitative trait loci for the stay
green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic
backgrounds and environments. Theor Appl Genet 101:733-741.
Tautz D., Trick M., Dover G.A. (1986) Cryptic simplicity in DNA is a major source of
genetic variation. Nature 322:652-656.
Tesso T., Tirfessa A., Mohammed H. (2011) Association between morphological traits
and yield components in the durra sorghums of Ethiopia. Hereditas 148: 98-109.
Wang M. L., Zhu C., Barkley N. A., Chen Z., Erpelding J. E., Murray S. C., Tuinstra
M. R., Tesso T., Pederson G. A., Yu J. (2009) Genetic diversity and population
structure analysis of accessions in the US historic sweet sorghum collection.
Theor Appl Genet 120: 13-23.
Weir B.S. (1996) Genetic Data Analysis II. Sinauer & Associates, Sunderland,
Massachusetts.
Xu W., Subudhi P. K., Crasta O. R., Rosenow D. T., Mullet J. E., Nguyen H. T. (2000)
Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum
bicolor L. Moench). Genome 43:461-469.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55675-
dc.description.abstract高粱 (Sorghum bicolor (L.) Moench) 為全球第五大禾穀類作物,起源於非洲
熱帶地區。由於高粱具有高度的耐旱性與適應環境的能力,對半乾旱地區是重要
的糧食作物,除此之外,也用於飼料、掃帚、釀酒與生質酒精,用途相當廣泛。
評估高粱種原的遺傳歧異度對於高粱的遺傳育種有其必要性,是以,我們從外表
型性狀和DNA 分子標幟基因型著手進行探討。本研究高粱材料包括來自農委會
農業試驗所作物種原中心、臺灣大學農藝學系和由臺灣各地田野採集之高粱種原,
共計93 個品系。其中,以48 個高粱品系於民國102 年第二期作種植臺灣大學農
業試驗場,田區設計採完全隨機設計,每品系5 個重複,並進行株高、分蘗數、
穗長、抽穗日數和穗數等五個性狀之調查。試驗結果發現株高表現介於25 - 204
公分;分蘗數目為0 - 8 個;抽穗時間則介於59 - 195 天;穗數介於1 - 23 個;穗
長介於6 - 44 公分,由上述調查結果可明顯看出這些高粱品系之遺傳歧異度相當
大。進一步以外表型資料進行分群分析,結果發現所蒐集之高粱品系呈現高度之
遺傳歧異,臺灣蒐集與飼料釀酒用的高粱則大致歸為同一類群。其次,另以53
個簡單重複性序列 (simple sequence repeat, SSR) 分析93 個高粱種原的基因型,
平均每個分子標幟可偵測到14.4 個對偶基因數目,其中多態訊息含量
(polymorphic information content, PIC) 介於0.206 – 0.922,平均PIC 值為0.709。
進一步分析93 個高粱品系親緣關係,兩兩之間的Nei’s 遺傳距離(genetic
distance) 介於0.055 – 0.983,顯示品系間的相似度差異很大。而由親緣樹圖分群
結果可分為三大群,臺灣各地收集來的種原大致落在第二大群之一個小群,而飼
料用之高粱品系大多分在第三大群,此外,屬於野生型的擬高粱與強生草皆分在
第一大群中。主座標分析 (principal coordinate analysis, PCoA),亦有相似之歸群
結果,擬高粱與強生草位於第三範圍,而第六範圍之高粱品系皆為臺灣蒐集系。
最後,本研究以STRUCTURE 軟體分析93 個高粱種原之族群結構,模擬結果將供試高粱種原分為八個次族群,臺灣收集之高粱大致分在兩個次族群內,表示其
遺傳背景相似程度高,而大多高粱屬 (Sorghum) 之種原也分在同一次族群內,
然仍含有混合型之個體。總而言之,本研究結果顯示SSR 分子標幟之多型性程
度很高,對於探勘具有發展潛力之高粱種原相當有幫助,而參試之高粱種原間的
遺傳歧異度不論透過外表型性狀或分子標幟分析,均顯示有相當大的差異存在。
因此,期望經由本研究之分析結果,能提供未來進行高粱育種改良工作中,選擇
雜交親本之參考應用,奠定高粱的遺傳研究以及育種改良等研究之基礎。
zh_TW
dc.description.abstractSorghum (Sorghum bicolor (L.) Moench) is the fifth most important cereal crop
in the world. Sorghum is an important staple food for people who live in semi-arid
regions because of its drought tolerance and high ability of environmental adaptation
In addition, it can be used as forage, feed crop, broom, and bio-ethanol production. As
a result, sorghum is a multipurpose crop. Assessing the genetic diversity of sorghum
germplasm is essential to breeding programs. We investigated the collected sorghum
accessions by evaluating phenotypes in the field and genotypes of DNA marker,
simple sequence repeat (SSR). The sorghum germplasm were obtained from 1)
National Plant Genetic Resources Center; 2) Department of Agronomy, National
Taiwan University (NTU); and 3) fields in all parts of Taiwan. We planted 48 sorghum
accessions according to complete random design (CRD), five replicates for each
sorghum accessions, in the experimental farm at NTU in fall 2013. Then we measured
five important traits, including plant height, tiller number, panicle length, heading date,
and panicle number. The results showed that plant height was ranged from 25 to 204
cm; tiller number was ranged from 0 to 8; heading date was ranged from 59 to 195
days; panicle number was ranged from 1 to 23; and panicle length was ranged from 6
to 44 cm. These results implied that sorghum accessions highly diversified at the
morphological level. The sorghum accessions demonstrated high level of genetic
diversity based on the cluster analysis by phenotype data. The Taiwan collected
accessions were clustered together, and so as the forage and waxy sorghum.
Furthermore, a total of 53 SSRs were used to evaluate genetic diversity of 93 sorghum
germplasm. Averagely, 14.4 alleles were detected per locus, and the polymorphic
information content (PIC) value ranged from 0.206 to 0.922 with a mean of 0.709,indicating high discriminating ability of SSR markers used. The Nei’s genetic distance
ranged was from 0.055 to 0.983, implying that the substantial difference among the
sorghum accessions. The sorghum germplasm were divided into three clusters based
on the phylogeny tree using neighbor-joining. The Taiwan collected accessions were
in a subgroup of the second cluster; the forage sorghum accessions were in the third
cluster. Moreover, S. propinquum and S. halepense were all in the first cluster. The
result of Principle Coordinate analysis was largely identical to phylogeny analysis for
which S. propinquum and S. halepense were belonged to the third range and the
Taiwan collected accessions belonged to the sixth range. According to STRUCTURE
analysis, sorghum germplasm were divided into eight subpopulations. Taiwan
collected accessions were separated into two different subpopulations, indicating that
the genetic background among Taiwan collections were similar to each other; on the
other hand, the germplasm of Sorghum genus were grouped in one subpopulation,
though admixtures were observed. In summary, the levels of polymorphism of SSR
markers used in this study were very high, and it might help explore some sorghum
germplasm with potential. Either through agronomic trait or marker analysis, the
genetic diversity among the collected sorghum germplasm was highly diverse. This
study established the fundamental of sorghum genetic reseach and provided useful
information to sorghum breeding programs.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:16:35Z (GMT). No. of bitstreams: 1
ntu-103-R01621107-1.pdf: 5236387 bytes, checksum: b2123f5acca725dd9105eb25b94c797f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要......................................................................................................................... i
Abstract ........................................................................................................................ iii
內容目錄........................................................................................................................ v
表目錄.......................................................................................................................... vii
圖目錄........................................................................................................................ viii
壹、前言........................................................................................................................ 1
一、引言................................................................................................................ 1
二、高粱屬與遺傳歧異度.................................................................................... 3
高粱屬 (Sorghum) ......................................................................................... 3
高粱 (Sorghum bicolor) 的分類 .................................................................. 4
高粱種原與野生種高粱................................................................................ 5
高粱之遺傳歧異度研究................................................................................ 6
三、高粱之用途.................................................................................................... 7
四、高粱重要性狀研究...................................................................................... 10
五、高粱SSR 分子標幟 .................................................................................... 13
六、高粱在臺灣之發展...................................................................................... 13
七、研究目的...................................................................................................... 15
貳、材料與方法.......................................................................................................... 16
一、試驗材料...................................................................................................... 16
二、種原繁殖與外表型評估.............................................................................. 22
高粱之留種與田間栽培管理...................................................................... 22
重要農藝性狀評估...................................................................................... 22
三、高粱種原基因型鑑定.................................................................................. 25
基因體DNA 萃取 ....................................................................................... 25
SSR 分子標幟來源 ..................................................................................... 25
篩選SSR 多型性分子標幟 ........................................................................ 27
SSR 基因型分析 ......................................................................................... 27
四、資料分析...................................................................................................... 28
外表型資料分析.......................................................................................... 28
遺傳歧異度分析.......................................................................................... 29
群集分析(cluster analysis) ........................................................................ 30
主座標分析 (principal coordinate analysis, PCoA) ................................... 31
族群結構分析.............................................................................................. 31
參、結果...................................................................................................................... 34
一、重要性狀外表型調查與評估...................................................................... 34
vi
性狀外表型觀察.......................................................................................... 34
田間性狀調查.............................................................................................. 37
重要農藝性狀之差異評估.......................................................................... 40
外表型分群.................................................................................................. 49
二、SSR 分子標幟之遺傳歧異度參數 ............................................................. 51
三、親緣分析...................................................................................................... 56
主座標分析.................................................................................................. 56
遺傳距離...................................................................................................... 56
親緣樹圖...................................................................................................... 57
四、族群結構分析.............................................................................................. 62
肆、討論...................................................................................................................... 67
一、外表型性狀調查.......................................................................................... 67
二、外表形態變異分析...................................................................................... 70
三、SSR 分子標幟之鑑定力 ............................................................................. 71
四、SSR 分子標幟親緣分析 ............................................................................. 72
五、族群結構分析.............................................................................................. 74
六、外表型與基因型之分群分析...................................................................... 76
伍、總結與未來展望.................................................................................................. 77
陸、參考文獻.............................................................................................................. 79
柒、附錄...................................................................................................................... 89
dc.language.isozh-TW
dc.subject高粱zh_TW
dc.subject遺傳歧異度zh_TW
dc.subject農藝性狀zh_TW
dc.subject農藝性狀zh_TW
dc.subject高粱zh_TW
dc.subject遺傳歧異度zh_TW
dc.subjectsorghumen
dc.subjectagronomic trait.en
dc.subjectagronomic trait.en
dc.subjectgenetic diversityen
dc.subjectgenetic diversityen
dc.subjectsorghumen
dc.title以農藝性狀與簡單重複性序列評估高粱種原之遺傳歧異度zh_TW
dc.titleThe Genetic Diversity Analysis of Collected Sorghum Based on
Agronomic Traits and SSR Markers
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡凱康,侯藹玲,陳志輝,張敏郎
dc.subject.keyword遺傳歧異度,高粱,農藝性狀,zh_TW
dc.subject.keywordgenetic diversity,sorghum,agronomic trait.,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2014-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved