請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55644完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏宇(Hongey Chen) | |
| dc.contributor.author | Kuan-Hua Chen | en |
| dc.contributor.author | 陳冠樺 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:14:36Z | - |
| dc.date.available | 2016-08-25 | |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-20 | |
| dc.identifier.citation | 中文部分:
內政部戶政司 (2014) 內政部戶政司全球資訊網 - 人口資料庫 (GIS)。內政部戶政司。取自http://www.ris.gov.tw/348 台灣糖業公司台南區處 (2005) 台灣地區地下水觀測網水質常態監測與調查分析(2/2)。經濟部水利署出版。120頁。 江崇榮與汪中和 (2002) 以氫氧同位素組成探討屏東平原之地下水補助源。經濟部中央地質調查所彙刊,第15號,49-67。 交通部公路總局 (2011)。台26線安朔至港口段公路整體改善計畫環境影響評估報告書環境影響差異分析報告附錄一 - 台26線安朔至旭海段新拓建道路0K+000~6K+930地質調查報告資料。行政院環境保護署出版。22頁。 何春蓀 (1975) 台灣地質概論¬¬¬-台灣地質圖說明書。經濟部中央地質調查所出版。118頁。 何春蓀(1986)台灣地質概論-台灣地質圖說明書,增訂二版。經濟部中央地質調查所出版。164頁。 宋國城(1991)五萬分之一台灣地質圖及說明書,圖幅第69、70、72號,恆春半島。經濟部中央地質調查所出版。69頁。 宋國城與林偉雄(1993)五萬分之一台灣地質圖及說明書,圖幅第67號,枋寮。經濟部中央地質調查所出版。25頁。 林冠瑋 (2010) 台灣地區之河流輸砂量與岩性、逕流量及地震之相關性。國立台灣大學地質科學系博士論文。234頁。 林榮潤 (2011) 臺灣的岩石風化與土壤形成之特性。地質,第30卷,78-83。 國立台灣大學氣候天氣災害研究中心 (2012) 氣候變遷下台灣地區地下水資源補注之影響評估。經濟部水利署出版。163頁。 黃志昭、江崇榮與賴慈華 (1998) 屏東平原水文地質架構及地下水系統概念模型。載於屏東平原地下水及水文地質研討會論文集(139-152頁)。經濟部水資源局出版。 經濟部水利署 (1982-2013) 台灣水文年報。經濟部水利署出版。 經濟部水利署與台糖公司農場經營中心 (2004) 台灣地區地下水觀測網水質常態監測與調查分析(1/2)。經濟部水利署出版。500頁。 謝永旭、蘇苗彬、黃獻欽、方天志、田巧玲、張炎銘與廖秋華 (1998) 屏東平原地下水之基本水質試驗分析。載於屏東平原地下水及水文地質研討會論文集(283-296頁)。經濟部水資源局出版。 蕭泓泯、林登秋、黃正良、黃志堅與林能暉 (2007) 蓮華池試驗林雨水化學特性之探討。台灣林業科學,第22卷,1-13。 英文部分: Aleotti P. (2004) A warning system for rainfall-induced shallow failures. Engineering Geology, 73, 247-265. Anderson S. P., Dietrich W. E., Montgomery D. R., Torres R., Conrad M. E. and Loague K. (1997) Subsurface flow paths in a steep, unchanneled catchment. Water Resources Research, 33, 2637-2653. Berner E. K. and Berner R. A. (1996) Global Environment: Water, Air, and Geochemical Cycles. Prentice Hall, New Jersey. Berner R. A. (1992) Weathering, plants, and the long-term carbon cycle. Geochimica et Cosmochimica Acta, 56, 3225-3231. Bishop K., Seibert J., Köhler S. and Laudon H. (2004) Resolving the double paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrological Processes, 18, 185-189. Blum J. D., Gazis C. A., Jacobson A. D. and Chamberlain C. P. (1998) Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series. Geology, 26, 411-414. Bourg A. C. M. and Bertin C. (1996) Diurnal variations in the water chemistry of a river contaminated by heavy metals: natural biological cycling and anthropic influence. Water, Air, and Soil Pollution, 86, 101-116. Carey A. E., Kao S. J., Hicks D. M., Nezat C. A. and W. B. Lyons (2006) The geochemistry of rivers in tectonically active areas of Taiwan and New Zealand. Geological Society of America Special Papers, 398, 339-351. Chang K. T., Chiang S. H. and Lei F. (2008) Analysing the relationship between typhoon‐triggered landslides and critical rainfall conditions. Earth Surface Processes and Landforms, 33, 1261-1271. Chen H. and Lee C. F. (2003) A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology, 51, 269-288. Chen J., Wang F., Xia X. and Zhang L. (2002) Major element chemistry of the Changjiang (Yangtze River). Chemical Geology, 187, 231-255. Chigira M. (2002) Geologic factors contributing to landslide generation in a pyroclastic area: August 1998 Nishigo Village, Japan. Geomorphology, 46, 117-128. Chu H. Y. and You C. F. (2007) Dissolved constituents and Sr isotopes in river waters from a mountainous island – the Danshuei drainage system in northern Taiwan. Applied Geochemistry, 22, 1701-1714. Chung C. H., You C. F. and Chu H. Y. (2009) Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems, 76, 433-443. Cohn, T. A. (1995) Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers. Reviews of Geophysics, 33, 1117–1123. Coradin T., Eglin D. and Livage J. (2004) The silicomolybdic acid spectrophotometric method and its application to silicate/biopolymer interaction studies. Journal of Spectroscopy ,18, 567-576. Corominas J. and Moya J. (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology, 30, 79-93. Dadson S. J. (2004) Erosion of an active mountain belt. Ph. D. Thesis, University of Cambridge, Cambridge. Dadson S. J., Hovius N., Chen H., Dade W. B., Hsieh M. L., Willett S. D., Hu J. C., Horng M. J., Chen M. C., Stark C. P., Lague D. and Lin J. C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648-651. Dadson S. J., Hovius N., Chen H., Dade W. B., Lin J. C., Hsu M. L, Lin C. W., Horng M. J., Chen T. C., Milliman J. and Stark C. P. (2004) Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 32, 733-736. Dahal R. K., Hasegawa S., Nonomura A., Yamanaka M., Masuda T. and Nishino K. (2008) GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54, 311-324. Dessert C., Dupré B., François L. M., Schott J., Gaillardet J., Chakrapani G. and Bajpai S. (2001) Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth and Planetary Science Letters, 188, 459-474. Dessert C., Dupré B., Gaillardet J., François L. M. and Allègre C. J. (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 202, 257-273. Domenico P. A. and Schwartz F. W. (1998) Physical and Chemical Hydrogeology. Wiley, New Jersey. Drever J. I. (1988) The Geochemistry of Natural Water. Pearson Education Canada, Toronto. Duan N. (1983) Smearing estimate: a nonparametric retransformation method. Journal of the American Statistical Association, 78, 605-610. Flintrop C., Hohlmann B., Jasper T., Korte C., Podlaha O. G., Scheele S. and Veizer J. (1996) Anatomy of pollution: rivers of North Rhine-Westphalia, Germany. American Journal of Science, 296, 58-98. Freeze R. A. and Cherry J. A. (1979) Groundwater. Printice-Hall, New Jersey . Fuller C. W., Willett S. D., Hovius N. and Slingerland R. (2003) Erosion rates for Taiwan mountain basins: new determinations from suspended sediment records and a stochastic model of their temporal variation. The Journal of Geology, 111, 71-87. Gaillardet J., Dupré B., Louvat P. and Allègre C. J. (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3-30. Galy A. and France-Lanord C. (1999) Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159, 31-60. Galy A. and France-Lanord C. (2001) Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology, 29, 23-26. Garrels R. M. and Mackenzie F. T. (1971) Evolution of Sedimentary Rocks. Norton, New York Goldsmith S. T., Carey A. E., Johnson B. M., Welch S. A., Lyons W. B., McDowell W. H. and Pigott J. S. (2010) Stream geochemistry, chemical weathering and CO2 consumption potential of andesitic terrains, Dominica, Lesser Antilles. Geochimica et Cosmochimica Acta, 74, 85-103. Gupta H., Chakrapania G. J., Selvaraj K. and Kao S. J. (2011) The fluvial geochemistry, contributions of silicate, carbonate and saline–alkaline components to chemical weathering flux and controlling parameters: Narmada River (Deccan Traps), India. Geochimica et Cosmochimica Acta, 75, 800-824. Gurumurthy G. P., Balakrishna K., Riotte J., Braun J. J., Audry S., Shankar H. N. U. and Manjunatha B. R. (2012) Controls on intense silicate weathering in a tropical river, southwestern India. Chemical Geology 300, 61-69. Guzzetti F., Cardinali M., Reichenbach P., Cipolla F., Sebastiani C., Galli M. and Salvati P. (2004) Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Engineering Geology, 73, 229-245. Guzzetti F., Peruccacci S., Rossi M. and Stark C. P. (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98, 239-267. Hovius N., Stark C. P. and Allen P. A. (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology, 25, 231-234. Hovius N., Stark C. P., Chu H. T. and Lin J. C. (2000) Supply and removal of sediment in a landslide‐dominated mountain belt: Central Range, Taiwan. The Journal of Geology, 108, 73-89. Jacobson A. D. and Blum J. D. (2003) Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica et Cosmochimica Acta, 67, 29-46. Jacobson A. D., Blum J. D. and Walter L. M. (2002) Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters. Geochimica et Cosmochimica Acta, 66, 3417-3429. Kao S. J., Chan S. C., Kuo C. H. and Liu K. K. (2005) Transport‐dominated sediment loading in Taiwanese rivers: a case study from the Ma‐an Stream. The Journal of Geology, 113, 217-225. Kao S. J. and Liu K. K. (2001) Estimating the suspended sediment load by using the historical hydrometric record from the Lanyang-Hsi watershed. Terrestrial, Atmospheric and Oceanic Sciences, 12, 401-414. Kao S. J. and Milliman J. D. (2008) Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. The Journal of Geology, 116, 431-448. Keene W. C., Pszenny A. A. P., Galloway J. N. and Hawley M. E. (1986) Sea‐salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research: Atmospheres, 91, 6647-6658. Krause S., Bronstert A. and Zehe E. (2007) Groundwater–surface water interactions in a North German lowland floodplain – implications for the river discharge dynamics and riparian water balance. Journal of Hydrology, 347, 404-417. Lin G. W., Chen H., Hovius N., Horng M. J., Dadson S., Meunier P. and Lines M. (2008) Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surface Processes and Landforms, 33, 1354-1373. Li Y. H. (1976) Denudation of Taiwan Island since the Pliocene Epoch. Geology, 4, 105-107. Li Y. H., Chen C. T. and Hung J. J. (1997) Aquatic chemistry of lakes and reservoirs in Taiwan. TAO, 8, 405-426. Louvat P. and Allègre C. J. (1997) Present denudation rates on the island of Reunion determined by river geochemistry: basalt weathering and mass budget between chemical and mechanical erosions. Geochimica et Cosmochimica Acta, 61, 3645-3669. Louvat P. and Allègre C. J. (1998) Riverine erosion rates on Sao Miguel volcanic island, Azores archipelago. Chemical Geology, 148, 177-200. Lyons W. B., Carey A. E., Hicks D. M. and Nezat C. A. (2005) Chemical weathering in high‐sediment‐yielding watersheds, New Zealand. Journal of Geophysical Research: Earth Surface, 110, F01008. Meybeck M. (1998) Man and river interface: multiple impacts on water and particulates chemistry illustrated in the Seine river basin. Hydrobiologia, 373, 1-20. Meybeck M. (2003) Global occurrence of major elements in rivers. In Treatise on Geochemistry (pp. 207-223). Elsevier, Amsterdam. Milliman J. D. and Meade R. H. (1983) World-wide delivery of river sediment to the oceans. The Journal of Geology, 91, 1-21. Millot R., Gaillardet J., Dupré B. and Allègre C. J. (2002) The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth and Planetary Science Letters, 196, 83-98. Moon S., Huh Y., Qin J. and Pho N. (2007) Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors. Geochimica et Cosmochimica Acta, 71, 1411-1430. Mortatti J. and Probst J. L. (2003) Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chemical Geology, 197, 177-196. Nanson G. C. (1974) Bedload and suspended-load transport in a small, steep, mountain stream. American Journal of Science, 274, 471-486. Négrel P. and Roy S. (1998) Chemistry of rainwater in the Massif Central (France): a strontium isotope and major element study. Applied Geochemistry, 13, 941-952. Noh H., Huh Y., Qin J. and Ellis A. (2009) Chemical weathering in the Three Rivers region of Eastern Tibet. Geochimica et Cosmochimica Acta, 73, 1857-1877. O’Dell J. W., Pfaff J. D., Gales M. E. and McKee G. D. (1984) The determination of inorganic anions in water by ion chromatography—Method 300.0. U.S. Environmental Protection Agency, Cincinnati. Ohrui K. and Mitchell M. J. (1999) Hydrological flow paths controlling stream chemistry in Japanese forested watersheds. Hydrological Processes, 13, 877-888. Ovalle A. R. C., Silva C. F., Rezende C. E., Gatts C. E. N., Suzuki M. S. and Figueiredo R. O. (2013) Long-term trends in hydrochemistry in the Paraíba do Sul River, southeastern Brazil. Journal of Hydrology, 481, 191-203. Pánek T., Brázdil R., Klimeš J., Smolková V., Hradecký J. and Zahradníček P. (2011) Rainfall-induced landslide event of May 2010 in the eastern part of the Czech Republic. Landslides, 8, 507-516. Rademacher L. K., Clark J. F., Hudson G. B., Erman D. C. and Erman N. A. (2001) Chemical evolution of shallow groundwater as recorded by springs, Sagehen basin; Nevada County, California. Chemical Geology, 179, 37-51. Roy S., Gaillardet J. and Allègre C. J. (1999) Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering. Geochimica et Cosmochimica Acta, 63, 1277-1292. Salmon C. D., Walter M. T., Hedin L. O. and Brown M. G. (2001) Hydrological controls on chemical export from an undisturbed old-growth Chilean forest. Journal of Hydrology, 253, 69-80. Schopka H. H., Derry L. A. and Arcilla C. A. (2011) Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines. Geochimica et Cosmochimica Acta, 75, 978-1002. Selvaraj K. and Chen C. T. A. (2006) Moderate chemical weathering of subtropical Taiwan: constraints from solid‐phase geochemistry of sediments and sedimentary rocks. The Journal of Geology, 114, 101-116. Stallard R. F. (1995) Tectonic, environmental, and human aspects of weathering and erosion: a global review from a steady-state perspective. Annual Review of Earth and Planetary Sciences, 23, 11-40. Stallard R. F. and Edmond J. M. (1981) Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research: Oceans, 86, 9844-9858. Stallard R. F. and Edmond J. M. (1983) Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research: Oceans, 88, 9671-9688. Strahler A. H. and Strahler A. (1988) Introducing Physical Geography, 2nd edition. Wiley, New Jersey. Tipper E. T., Bickle M. J., Galy A., West A. J., Pomiès C. and Chapman H. J. (2006) The short term climatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variations in river chemistry. Geochimica et Cosmochimica Acta, 70, 2737-2754. Tsai Y. I., Hsieh L. Y., Kuo S. C., Chen C. L. and Wu P. L. (2011) Seasonal and rainfall-type variations in inorganic ions and dicarboxylic acids and acidity of wet deposition samples collected from subtropical East Asia. Atmospheric Environment, 45, 3535-3547. Walling D. E. (1974) Suspended sediment and solute yields from a small catchment prior to urbanization. In Fluvial processes in instrumented watersheds, Institute of British geographers special publication, 6, pp. 169–192 Walsh, A. (1956) The application of atomic absorption spectra to chemical analysis. Spectrochimica Acta ,7, 108-117. Wang G. and Sassa K. (2003) Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Engineering Geology, 69, 109-125. West A. J., Galy A. and Bickle M. (2005) Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235, 211-228. White A. F., Bullen T. D., Vivit D. V., Schulz M. S. and Clow D. W. (1999) The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochimica et Cosmochimica Acta, 63, 1939-1953. Wu W., Zheng H., Yang J., Luo C. and Zhou B. (2013) Chemical weathering, atmospheric CO2 consumption, and the controlling factors in a subtropical metamorphic-hosted watershed. Chemical Geology, 356, 141-150. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55644 | - |
| dc.description.abstract | 地質材料的風化可以分為物理風化及化學風化。河水中的溶解載與輸砂量,可以視為集水區內的物理風化以及化學風化產物。因此研究河水中的溶解載與輸砂量特性,有助於我們了解集水區內的風化侵蝕作用。颱風會在台灣山區造成大量的山崩,為輸砂量的重要來源。本研究以屏東縣林邊溪為例,利用1982年至2013年的31年間之輸砂量、2005至2012年的5個颱風事件以及2013年3月至2014年4月的河水化學性質,來探討河川化學性質、輸砂量與山崩之間的關係。
從輸砂量的研究中發現,這個區域的年輸砂量為介於0.06至8.08 Mt,平均為1.40 Mt。5月至10月的濕季期間,輸砂量佔全年輸砂量97.47 %。另外,颱風事件的研究中發現,颱風事件的輸砂量平均占全年輸砂量的39.02 %,崩塌率平均為4.69 %。此意義顯示,在濕季或颱風暴雨帶來的高降水因素,主導了林邊溪的輸砂特性。 颱風事件造成之崩塌地分布的分析結果顯示,輸砂量較高之2009年莫拉克颱風、2008卡玫基颱風與2005年的海棠颱風的新生率較高,顯示新發生的山崩會供應河川豐富的地質材料而提高事件輸砂量。 2013年3月至2014年4月的河水化學分析結果顯示,林邊溪河水中陽離子的組成以Ca (52.1 %)為主、;陰離子與溶解態矽酸鹽的組成成分以HCO3(66.6 %)為主。中上游的河水化學性質陽離子來自碳酸鹽的比例最大(82.33 %),其次為矽酸鹽(13.82 %),最少的則是大氣輸入(3.85 %)。顯示變質岩內少量分布的碳酸鹽可提供河水大量來自碳酸鹽的化學成分。河水中的高SO4來源為變質岩當中的黃鐵礦風化,而非外部因素。下游新埤測站樣品的陽離子中,來自碳酸鹽的比例最大(62.12 %);其次為雨水(14.90 %);再者為矽酸鹽(14.74 %);最少的為外部因素(8.23 %)。外部因素的比例雖少,但對河水化學的影響不可忽視。 2013年3月至2014年4月林邊溪的月化學風化通量為125 ton至14,844 ton,平均為2,944 ton,而濕季期間的化學風化通量佔全年化學風化通量的88.38 %。林邊溪的化學風化速率為110 t km-2 yr-1,矽酸鹽化學風化速率為29 t km-2 yr-1,約為世界平均的5倍。研究期間林邊溪的物理風化速率為4,062 t km-2 yr-1,約為化學風化速率的40倍,顯示林邊溪流域的風化以物理風化為主。對林邊溪而言,每年濕季颱風事件所造成的高輸砂量與大量山崩,會持續搬運風化作用的產物,使母岩的新鮮面不斷暴露至地表接受化學風化,造成高化學風化速率,顯示物理風化對化學風化有重大影響。 | zh_TW |
| dc.description.abstract | The weathering of geomaterial can be classified into physical and chemical weathering. The dissolved load and sediment discharge can be considered chemical and physical weathering product in a drainage basin. Therefore, we can understand the weathering in the drainage basin by studying the characteristics of dissolved load and sediment discharge in river water. The typhoon events would cause massive landslides in mountains, which are important sources of sediment discharge in Taiwan. This research utilizes sediment discharge during 1982 to 2013, 5 typhoon events during 2005 to 2012, and river chemistry during March 2013 to April 2014 of Linpien River to study the relationship between river chemistry, sediment discharge and landslide.
The annual sediment discharges ranged from 0.06 Mt to 8.08 Mt, with an average of 1.40 Mt. The sediment discharge yielded during wet seasons (May to October) contributes 97.47 % to the annual sediment discharge. In addition, the average sediment discharge during typhoon events contributed 39.02 % to the annual sediment discharge and the average landslide ratio for five typhoon events during 2005 to 2012 was 4.69 %. It implies that the factor of high rainfall during wet seasons or typhoons controls the variations of sediment discharges in the Linpien River. The analyses of distributions of landslides caused by typhoon events revealed that the higher sediment discharge of Morakot in 2009, Kalmeigi in 2008 and Haitang in 2005 with higher newborn ratio, which implies that the newborn landslides would contribute abundant sediments to the river, and resulted in the increase of sediment discharge of the typhoon events. The analyses of major elements in water samples collected in the basin during March 2013 to April 2014 showed the major cation was Ca (52.1 %) and the major anion is HCO3 (66.6 %). The contribution of river chemistry from carbonate was highest (82.33 %), next was silicate (13.82 %), and the last was atmospheric input (3.85 %) in upstream samples. This implies that the trace carbonates in metamorphic rock could influence river chemistry significantly. The high SO4 in river water is contributed from chemical weathering of pyrite, not from anthropogenic pollution. The river chemistry of the downstream samples collected at Hsinpi Station was contributed most from carbonate (62.12 %), next was atmospheric input (14.90 %), then was silicate (14.74 %), and the last was external factor (8.23 %). Although the proportion of external factor is insignificant, the impact on river chemistry is innegligible. The monthly chemical weathering flux ranged from 125 ton to14,844 ton, with an average of 2,944 ton during March 2013 to April 2014. The chemical weathering flux during wet seasons contributed 88.38 % to annual chemical weathering flux. The chemical weathering rate of Linpien River was 110 t km-2 yr-1, and the silicate chemical weathering rate was 29 t km-2 yr-1. Both were 5 times higher than the world average. During the study period, the physical weathering rate was 4,062 t km-2 yr-1, which was about 40 times higher than the chemical weathering rate. It indicates that the weathering in the drainage of Linpien River is mainly physical weathering. For Linpien River, the high sediment discharge and the massive landslides caused by typhoon events during wet season would transport weathering products continuously. It makes the fresh surfaces of bedrock be exposed to earth surface, and results in the intense chemical weathering. In the conclusion, the physical weathering has significant influence on chemical weathering. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:14:36Z (GMT). No. of bitstreams: 1 ntu-103-R01224113-1.pdf: 21598233 bytes, checksum: fb9042180394534d0b96d131331913f6 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2地理位置及交通狀況 2 第二章 文獻回顧 3 2.1河川化學性質相關研究 4 2.2降雨和山崩關係之研究 8 2.3輸砂量估算相關研究 10 第三章 研究區域概況 12 3.1地形概況 12 3.2地質概況 15 3.3土壤概況 18 3.4氣候與水文概況 20 3.5颱風事件 21 第四章 研究方法 24 4.1野外調查工作 24 4.1.1施密特錘試驗 24 4.2資料分析與處理 24 4.2.1輸砂量估算 24 4.2.2崩塌地判釋與資料分析 27 4.3河川化學性質分析 28 4.3.1樣品採集與前處理 28 4.3.2陰離子分析方法 30 4.3.3陽離子分析方法 30 4.3.4鹼度分析方法 30 4.3.5溶解態矽酸鹽分析方法 31 4.4河川化學性質之來源 31 4.4.1大氣輸入 31 4.4.2岩石化學風化 33 4.4.3外部因素 34 4.4.4化學風化速率與物理風化速率 35 第五章 研究結果 37 5.1輸砂量估計結果 37 5.1.1歷年輸砂量統計 37 5.1.2乾濕季輸砂量之差異 41 5.2崩塌地判釋與分析 45 5.2.1崩塌地統計 45 5.2.2崩塌地與地形及地質因子之關係 47 5.3河川化學性質分析結果 51 5.3.1主要元素濃度分析結果 51 5.3.2林邊溪中上游河水樣品之分析 56 5.3.3林邊溪下游河水樣品之分析 67 第六章 化學風化速率與物理風化速率 76 6.1化學風化通量與輸砂量的變化 76 6.2化學風化速率與物理風化速率之關係 79 第七章 討論 83 第八章 結論 88 參考文獻 90 附錄一 水樣採集方法與水樣前處理 102 附錄二 陰離子分析方法 103 附錄三 陰離子分析方法 104 附錄四 鹼度分析方法 105 附錄五 溶解態矽酸鹽分析方法 106 | |
| dc.language.iso | zh-TW | |
| dc.subject | 林邊溪 | zh_TW |
| dc.subject | 崩塌地 | zh_TW |
| dc.subject | 輸砂量 | zh_TW |
| dc.subject | 化學風化 | zh_TW |
| dc.subject | chemical weathering | en |
| dc.subject | Linpien River | en |
| dc.subject | landslides | en |
| dc.subject | sediment discharge | en |
| dc.title | 林邊溪流域河川化學性質、輸砂量與山崩之關係 | zh_TW |
| dc.title | The relationship between sediment discharge, river chemistry, and landslide of Linpien River, Pingtung | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉聰桂(Tsung-Kwei Liu),譚義績(Yih-Chi Tan),張志新(Chih-Hsin Chang) | |
| dc.subject.keyword | 林邊溪,崩塌地,輸砂量,化學風化, | zh_TW |
| dc.subject.keyword | Linpien River,landslides,sediment discharge,chemical weathering, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 21.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
