請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55615
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪傳揚(Chwan-Yang Hong) | |
dc.contributor.author | Nien-Chun Hsieh | en |
dc.contributor.author | 謝念純 | zh_TW |
dc.date.accessioned | 2021-06-16T04:12:48Z | - |
dc.date.available | 2019-09-03 | |
dc.date.copyright | 2014-09-03 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-20 | |
dc.identifier.citation | 張惠如 (2005) 以病毒誘導基因沉寂策略進行菸草脯胺酸庫之代謝工程. 國立中興大學農藝學系碩士論文
蘇彥碩 (2005) 逆境下菸草 (Nicotiana benthamiana) 脯胺酸代謝基因之調控. 國立台灣大學農業化學系碩士論文 Arora S, Saradhi PP (1995) Light-Induced Enhancement in Proline Levels in Vigna-Radiata Exposed to Environmental Stresses. Australian Journal of Plant Physiology 22: 383-386 Bates LS, Waldren RP, Teare ID (1973) Rapid Determination of Free Proline for Water-Stress Studies. Plant and Soil 39: 205-207 Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Reports 27: 411-424 Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB (2012) A Draft Genome Sequence of Nicotiana benthamiana to Enhance Molecular Plant-Microbe Biology Research. Molecular Plant-Microbe Interactions 25: 1523-1530 Boyer JS (1982) Plant productivity and environment. Science 218: 443-448 Cecchini NM, Monteoliva MI, Alvarez ME (2011) Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol 155: 1947-1959 Chiang HH, Dandekar AM (1995) Regulation of Proline Accumulation in Arabidopsis-Thaliana (L) Heynh during Development and in Response to Desiccation. Plant Cell and Environment 18: 1280-1290 Delauney AJ, Hu CA, Kishor PB, Verma DP (1993) Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem 268: 18673-18678 Delauney AJ, Verma DPS (1993) Proline Biosynthesis and Osmoregulation in Plants. Plant Journal 4: 215-223 Duncan DR, Widholm JM (1987) Proline accumulation and its implication in cold tolerance of regenerable maize callus. Plant Physiol 83: 703-708 Eberhardt HJ, Wegmann K (1989) Effects of Abscisic-Acid and Proline on Adaptation of Tobacco Callus-Cultures to Salinity and Osmotic Shock. Physiologia Plantarum 76: 283-288 Elthon TE, Stewart CR (1981) Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation. Plant Physiol 67: 780-784 Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55: 307-319 Flowers TJ, Garcia A, Koyama M, Yeo AR (1997) Breeding for salt tolerance in crop plants - the role of molecular biology. Acta Physiologiae Plantarum 19: 427-433 Funck D, Eckard S, Muller G (2010) Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis. BMC Plant Biol 10: 70 Girousse C, Bournoville R, Bonnemain JL (1996) Water Deficit-Induced Changes in Concentrations in Proline and Some Other Amino Acids in the Phloem Sap of Alfalfa. Plant Physiol 111: 109-113 Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation 21: 79-102 Heuer B (2003) Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science 165: 693-699 Jan FJ, Fagoaga C, Pang SZ, Gonsalves D (2000) A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. Journal of General Virology 81: 235-242 Kemble AR, Macpherson HT (1954) Liberation of Amino Acids in Perennial Rye Grass during Wilting. Biochemical Journal 58: 46-49 Mattioli R, Costantino P, Trovato M (2009) Proline accumulation in plants: not only stress. Plant Signal Behav 4: 1016-1018 Mccue KF, Hanson AD (1990) Drought and Salt Tolerance - Towards Understanding and Application. Trends in Biotechnology 8: 358-362 Measures JC (1975) Role of Amino-Acids in Osmoregulation of Non-Halophilic Bacteria. Nature 257: 398-400 Monteoliva MI, Rizzi YS, Cecchini NM, Hajirezaei MR, Alvarez ME (2014) Context of action of proline dehydrogenase (ProDH) in the Hypersensitive Response of Arabidopsis. BMC Plant Biol 14: 21 Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681 Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol 118: 1233-1241 Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in Trans. Plant Cell 2: 279-289 Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2: 128-134 Peng SB, Huang JL, Sheehy JE, Laza RC, Visperas RM, Zhong XH, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101: 9971-9975 Rhodes D, Handa S, Bressan RA (1986) Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol 82: 890-903 Ribarits A, Abdullaev A, Tashpulatov A, Richter A, Heberle-Bors E, Touraev A (2007) Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta 225: 1313-1324 Saradhi PP, Alia, Arora S, Prasad KV (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209: 1-5 Singh TN, Aspinall, D., Paled, L.G. (1977) Proline accumulation and varietal adaptability to drought in barley: potential metabolic measure of drought resistance. Songstad DD, De Luca V, Brisson N, Kurz WG, Nessler CL (1990) High levels of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase. Plant Physiol 94: 1410-1413 Verbruggen N, Hua XJ, May M, Van Montagu M (1996) Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc Natl Acad Sci U S A 93: 8787-8791 Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2: 73-83 Almodares A, Hadi MR, Ahmadpour H (2008) Sorghum stem yield and soluble carbohydrates under different salinity levels. African Journal of Biotechnology 7: 4051-4055 Almodares A, Taheri R, Chung MI, Fathi M (2008) The effect of nitrogen and potassium fertilizers on growth parameters and carbohydrate contents of sweet sorghum cultivars. Journal of Environmental Biology 29: 849-852 Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373-399 Apostol I, Heinstein PF, Low PS (1989) Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant-Cells - Role in Defense and Signal Transduction. Plant Physiology 90: 109-116 Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50: 601-639 Bashir K, Nagasaka S, Itai RN, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Molecular Biology 65: 277-284 Boyer JS (1982) Plant Productivity and Environment. Science 218: 443-448 Burke JJ, Hatfield JL (1987) Plant Morphological and Biochemical Responses to Field Water Deficits .3. Effect of Foliage Temperature on the Potential Activity of Glutathione-Reductase. Plant Physiology 85: 100-103 Chen Y, Jungsuwadee P, Vore M, Butterfield DA, Clair DKS (2007) Collateral damage in cancer chemotherapy - Oxidative stress in nontargeted tissues. Molecular Interventions 7: 147-156 Chen ZX, Silva H, Klessig DF (1993) Active Oxygen Species in the Induction of Plant Systemic Acquired-Resistance by Salicylic-Acid. Science 262: 1883-1886 Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. Journal of Biological Chemistry 278: 46869-46877 Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defence system in soybean root nodules. Australian Journal of Plant Physiology 25: 665-671 Connell JP, Mullet JE (1986) Pea chloroplast glutathione reductase: purification and characterization. Plant Physiol 82: 351-356 Contour-Ansel D, Torres-Franklin ML, De Carvalho MHC, D'Arcy-Lameta A (2006) Glutathione reductase in leaves of cowpea: Cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Annals of Botany 98: 1279-1287 Creissen G, Reynolds H, Xue YB, Mullineaux P (1995) Simultaneous Targeting of Pea Glutathione-Reductase and of a Bacterial Fusion Protein to Chloroplasts and Mitochondria in Transgenic Tobacco. Plant Journal 8: 167-175 Creissen GP, Mullineaux PM (1995) Cloning and characterisation of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta 197: 422-425 Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57: 779-795 Dinakar C, Abhaypratap V, Yearla SR, Raghavendra AS, Padmasree K (2010) Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Planta 231: 461-474 Dixon RA, Lamb CJ (1990) Molecular Communication in Interactions between Plants and Microbial Pathogens. Annual Review of Plant Physiology and Plant Molecular Biology 41: 339-367 Djanaguiraman M, Prasad P, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry 48: 999-1007 Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180: 278-284 Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155: 93-100 Gurer H, Ozgunes H, Oztezcan S, Ercal N (1999) Antioxidant role of alpha-lipoic acid in lead toxicity. Free Radical Biology and Medicine 27: 75-81 Guy CL, Carter JV (1984) Characterization of Partially Purified Glutathione-Reductase from Cold-Hardened and Nonhardened Spinach Leaf Tissue. Cryobiology 21: 454-464 Halliwell B (1978) Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in degradation of hyaluronic acid by a superoxide-generating system. FEBS Lett 96: 238-242 Hernandez P, Martin-Parras L, Martinez-Robles ML, Schvartzman JB (1993) Conserved features in the mode of replication of eukaryotic ribosomal RNA genes. EMBO J 12: 1475-1485 Hirt H (2000) Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proceedings of the National Academy of Sciences of the United States of America 97: 2405-2407 Hong CY, Chao YY, Yang MY, Cheng SY, Cho SC, Kao CH (2009) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant and Soil 320: 103-115 Hong CY, Chao YY, Yang MY, Cho SC, Huei Kao C (2009) Na(+) but not Cl(-) or osmotic stress is involved in NaCl-induced expression of Glutathione reductase in roots of rice seedlings. J Plant Physiol 166: 1598-1606 Huang CH, He WL, Guo JK, Chang XX, Su PX, Zhang LX (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. Journal of Experimental Botany 56: 3041-3049 Hung KT, Kao CH (2004) Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J Plant Physiol 161: 1347-1357 Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42: 1265-1273 Jimenez A, Hernandez JA, Del Rio LA, Sevilla F (1997) Evidence for the Presence of the Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes of Pea Leaves. Plant Physiol 114: 275-284 Jordan W, Miller F (1980) Genetic variability in sorghum root systems: implications for drought tolerance. Adaptation of Plants to Water and High Temperature Stress (NC Turner and PJ Kramer, Editors). . 383-399 Kafi M, Nabati J, Masoumi A, Mehrgerdi MZ (2011) Effect of Salinity and Silicon Application on Oxidative Damage of Sorghum [Sorghum Bicolor (L.) Moench.]. Pakistan Journal of Botany 43: 2457-2462 Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant and Cell Physiology 39: 1269-1280 Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. The Plant Cell Online 18: 2733-2748 Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiologia Plantarum 113: 158-164 Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America 97: 2940-2945 Kubo A, Sano T, Saji H, Tanaka K, Kondo N, Tanaka K (1993) Primary Structure and Properties of Glutathione-Reductase from Arabidopsis-Thaliana. Plant and Cell Physiology 34: 1259-1266 Kumar Swami A, Alam SI, Sengupta N, Sarin R (2011) Differential proteomic analysis of salt stress response in< i> Sorghum bicolor</i> leaves. Environmental and experimental botany 71: 321-328 Legwaila G, Balole T, Karikari S (2004) Review of sweet sorghum: a potential cash and forage crop in Botswana. UNISWA Journal of Agriculture 12: 5-14 Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2o2 from the Oxidative Burst Orchestrates the Plant Hypersensitive Disease Resistance Response. Cell 79: 583-593 Ludlow M, Santamaria J, Fukai S (1990) Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. II. Water stress after anthesis. Crop and Pasture Science 41: 67-78 Mayaki W, Stone L, Teare I (1976) Irrigated and nonirrigated soybean, corn, and grain sorghum root systems. Agronomy Journal 68: 532-534 Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany 49: 69-76 Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405-410 Mittova V, Theodoulou FL, Kiddle G, Gomez L, Volokita M, Tal M, Foyer CH, Guy M (2003) Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. Febs Letters 554: 417-421 Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Current Opinion in Plant Biology 5: 43-48 Noctor G, Foyer CH (1998) ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annu Rev Plant Physiol Plant Mol Biol 49: 249-279 Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of 'redox' and abscisic acid-mediated controls. Plant Physiology 129: 460-468 Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551-556 Promkhambut A, Younger A, Polthanee A, Akkasaeng C (2010) Morphological and physiological responses of sorghum (Sorghum bicolor L. Moench) to waterlogging. Asian Journal of Plant Sciences 9: 183 Rouhier N, Couturier J, Jacquot JP (2006) Genome-wide analysis of plant glutaredoxin systems. J Exp Bot 57: 1685-1696 Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum 49: 85-91 Steduto P, Katerji N, PuertosMolina H, Unlu M, Mastrorilli M, Rana G (1997) Water-use efficiency of sweet sorghum under water stress conditions gas-exchange investigations at leaf and canopy scales. Field Crops Research 54: 221-234 Stevens RG, Creissen GP, Mullineaux PM (1997) Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress. Plant Molecular Biology 35: 641-654 Sun H, Li L, Su M (2010) Simultaneous determination of proline and pipemidic acid in human urine by capillary electrophoresis with electrochemiluminescence detection. J Clin Lab Anal 24: 327-333 Tanaka K, Saji H, Kondo N (1988) Immunological Properties of Spinach Glutathione-Reductase and Inductive Biosynthesis of the Enzyme with Ozone. Plant and Cell Physiology 29: 637-642 Tari I, Laskay G, Takacs Z, Poor P (2013) Response of Sorghum to abiotic stresses: a review. Journal of Agronomy and Crop Science 199: 264-274 Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi AT (2008) Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. J Plant Physiol 165: 514-521 Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. Journal of Plant Physiology 162: 291-299 von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336: 1671-1672 Wu T-M, Lin W-R, Kao Y-T, Hsu Y-T, Yeh C-H, Hong C-Y, Kao CH (2013) Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. Plant molecular biology 83: 379-390 Xu PL, Guo YK, Bai JG, Shang L, Wang XJ (2008) Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiologia Plantarum 132: 467-478 Xue YF, Liu ZP (2008) Antioxidant Enzymes and Physiological Characteristics in Two Jerusalem Artichoke Cultivars under Salt Stress. Russian Journal of Plant Physiology 55: 776-781 Yannarelli GG, Fernandez-Alvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68: 505-512 Zhang JX, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist 132: 361-373 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55615 | - |
dc.description.abstract | 植物無法移動,因此必須有良好的防禦系統以避免遭受環境逆境的傷害。抗氧化系統以及脯胺酸在植物抵抗逆境均扮演重要的角色。穀胱甘肽還原酶 (Glutathione reductase, GR) 為植物重要的抗氧化酵素之一,負責將氧化態的穀胱甘肽 ( GSSG) 還原成還原態 GSH,避免細胞內氧化還原系統失衡;脯胺酸在植物中扮演滲透調節者的角色,會受到 Proline deydrogenase (ProDH) 代謝。為了了解 C4 型模式植物高粱 GR 基因以及圓葉菸草 ProDH 基因之特性,試驗中選殖並分析高粱的 3 個 GR 基因和圓葉菸草 ProDH 基因。結果顯示SbGR1 與 SbGR2 和水稻 OsGR1 及 OsGR2 胺基酸序列相似度分別達 93 % 與 95 %,SbGR3 與 OsGR3 則只有 49 %。與基因體組序列比對結果發現 SbGR3 基因中一段 Intron 未被移除,導致一個 stop codon 出現,讓此基因無法轉譯出正常的蛋白質。以大腸桿菌異源表現 SbGR,結果顯示 SbGR1 及 SbGR2 可表現出具有GR活性的蛋白質,而 SbGR3 蛋白質則不具 GR 活性;次細胞定位分析顯示 SbGR1 位於葉綠體的澱粉體,SbGR2 則位於細胞質。鹽逆境會誘導 SbGR1 及 SbGR2 表現,高溫 (45℃) 誘導 SbGR1 表現,但抑制 SbGR2 表現。這些結果顯示,水稻及高粱 GR 同源基因對高溫逆境的反應及蛋白質位置具有不同結果,此差異對抗氧化系統之影響仍有待研究。在 ProDH 基因部分,試驗中選殖出圓葉菸草的 ProDH 基因,稱為 NbProDH,基因全長為 1895 bp,ORF (Open reading frame) 為 1497bp,蛋白質分子量為 55 kDa。ProDH 表現量以葉片最高,其次是葉柄跟莖;ProDH 表現會受缺水抑制、受復水誘導,而脯胺酸會在缺水 12 小時後開始累積,試驗中亦建立大量表現 NbProDH 轉殖植株,以進行基因功能分析。 | zh_TW |
dc.description.abstract | Plants couldn’t move, so they have developed a good defense system to avoid suffering from the damage of environmental stresse. An antioxidant defense system and proline play an important role in the resistance to stress in plants. Glutathione reductase (GR), one of the antioxidant defense systemic enzymes, mediates the reduction of oxidized glutathione (GSSG) to GSH to maintain cellular redox homeostasis. Proline is suggested to act as a compatible osmolyte and be degraded by proline dehydrogenase (ProDH). To understand thecharacteristics of GR gene in C4 model plant – sorghum and the ProDH gene in N. benthamiana, our study cloned and analized three sorghum GR genes and the N. benthamiana ProDH gene. The result showed that the amino acid sequence similarities of SbGR1 and rice OsGR1 were 93%, SbGR2 and OsGR2 were 95%, but only 49% for SbGR3 and OsGR3. Compared with the sequence of genomic DNA, we found that one fragment of intron wasn’t removed from the SbGR3 cDNA which resulted in a premature stop codon and let this gene can’t translate a normal protein. The expression of SbGR1 and SbGR2 in E. coli validated that it can be translated as a protein with GR activity. However, overexpression of SbGR3 in E. coli produced no GR activity. Subcellular localization of SbGR-GFP revealed that SbGR1 was localized to the chloroplast and SbGR2 to the cytosol. SbGR1 and SbGR2 were induced by salinity. A high temperature (45℃) induced the expression of SbGR1, but repressed the expression of SbGR2. These results show that the expression of homologous GR genes in rice and sorghum were different in response to the heat stress, and also different in the expressed protein location. Therefore, the differences of antioxidant defense systems between sorghum and rice have yet to be studied. In the other part, we isolated the proline dehydrogenase gene from Nicotiana benthamiana which called NbProDH. The full-length NbProDH gene is 1895 bp. The cloned cDNA contains open reading frames of 1497 bp and encodes protein of 499 amino acids with a molecular mass of 55 kDa. Under normal condition, the expression of NtProDH is higher in leaves than in petiole and stem. The expression of NbProDH was repressed by dehydration and induced by rehydration. And proline began to accumulate after dehydration for 12 hours. This studied also established the overexpression NbProDH transgenic plants for gene functional analysis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T04:12:48Z (GMT). No. of bitstreams: 1 ntu-103-R01623005-1.pdf: 2757963 bytes, checksum: e78b81f9090cc56e42a01a1f4aec72ac (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝 ……………………………………………………………......……………….…i
摘要 ……………………………………………………………………………..……ii ABSTRACT ………………………………………………………………..…..…….iii 目錄 …………………………………………………………………………..……...vi 圖目錄 .………………………………………………………………………..…....viii 表目錄 ………………………………………………………………………….……ix 附表目錄 ……………………………………………………………………….……ix 縮寫字對照表 ………………………………………………………………………..x 前言 …………………………………………………………………………………..1 第一章、圓葉菸草脯胺酸去氫酶基因選殖及特性分析 …………………………..3 一、前人研究 ………………………………………………………………………3 (一) 脯胺酸與非生物逆境之關係 ……………………………………………..3 (二) 植物脯胺酸之累積機制 …………………………………………………..4 (三) 脯胺酸去氫酶 (Proline dehydrogenase, ProDH) 功能及研究 …………..4 二、研究目的 …………………………………………………………………........6 三、材料與方法 ……………………………………………………………………7 (一) 試驗材料 ..…………………………………………………………………7 (二) 總量 RNA 萃取 …………………………………………………………..7 (三) 基因組 DNA 萃取 ………………………………………………………. 7 (四) 反轉錄聚合酶鏈鎖反應 (Reverse transcription polymerase chain reaction,RT-PCR) ..……………………………………………………………….….8 (五) 圓葉菸草 ProDH 基因選殖 …………………………………………….. 9 (六) 基因序列比對及親緣演化樹分析………………………………………... 9 (七) 質體 DNA 之萃取 ………………………………………………………. 9 (八) 載體構築 …………………………………………………………………10 (九) 大腸桿菌的轉型作用 (transformation) ………………………………….10 (十) 農桿菌轉型作用 …………………………………………………………11 (十一) 圓葉菸草轉殖 ………………………………………………………...11 (十二) 圓葉菸草乾旱及復水試驗 …………………………………………...12 (十三) 脯胺酸之測定 ………………………………………………………...12 (十四) 南方點墨分析 (Southern blot) ………………………………………..13 四、結果與討論 …………………………………………………………………..14 (一) 圓葉菸草脯胺酸 NbProDH 基因序列比對分析 ………………………14 (二) NbProDH 基因套數之確認 ……………………………………………..14 (三) NbProDH 於圓葉菸草不同組織之表現 ………………………………..15 (四) 圓葉菸草 NbProDH 受缺水及復水之影響 ………...………………….16 (五) 大量表現 NbProDH 之 N. benthamiana 轉殖株分析 ……………… ..17 五、參考文獻 ……………………………………………………………………..18 第二章、高粱榖胱甘肽還原酶基因選殖及特性分析……...……………………… 30 一、前人研究 ……………………………………………………………………..30 (一) 植物抗氧化機制 …………………………………………………………30 (二) 抗氧化防禦系統之恆定 …………………………………………………30 (三) 榖胱甘肽還原酶 (Glutathione reductase, GR) 功能及研究 …………...31 (四) Sorghum bicolor 特性及研究 …………………………………………...33 二、研究目的 ……………………………………………………………………..35 三、材料與方法 …………………………………………………………………..36 (一) 試驗材料 …………………………………………………………………36 (二) 總量 RNA 萃取 …………………………………………………………36 (三) 反轉錄聚合酶鏈鎖反應 (Reverse transcriptase polymerase chain reaction,RT-PCR) ……………………………………………………………….…...36 (四) 高粱 GR 家族基因選殖 ……………………………………………….. 36 (五) 質體 DNA 之萃取 ……………………………………………………... 36 (六) 載體構築 …………………………………………………………………36 (七) 大腸桿菌的轉型作用 (transformation) ………………………………….37 (八) 原生質體抽取、PEG 轉殖及刺細胞定位分析………………………… 37 (九) 高粱、水稻非生物性逆境處理 ………………………………………….38 (十) 蛋白質萃取與分析..……………………………………………………... 38 (十一) 西方點墨分析 Western blot …………………………………………..39 (十二) GR 酵素活性測定 …………………………………………………...40 (十三) GR 同功酵素染色分析 (Zymography assay) ……………………….40 (十四) 數據分析 ……………………………………………………………...40 四、結果 …………………………………………………………………………..41 (一) 高粱三個 GR 胺基酸序列比對分析 ………………………………….. 41 (二) 異源表現 SbGR 於大腸桿菌 …………………………………………...41 (三) SbGR1、SbGR2次細胞定位分析 ………………………………………41 (四) OsGR1、OsGR2 專一性抗體辨識高粱 SbGR1、SbGR2 蛋白 ………41 (五) 不同逆境處理之 GR 蛋白質表現分析 ……………………………….. 42 (六) 高粱 SbGR1、SbGR2 啟動子之 cis-acting element 預測分析 ……….42 五、討論 …………………………………………………………………………..43 (一) SbGR3 為不具功能性的 GR ………………………………………..…..43 (二) SbGR1 位於澱粉體表現、SbGR2 則位於細胞質表現..………………43 (三) 高粱與水稻之特性比較 …………………………………………………44 (四) SbGR 與 OsGR 於不同逆境下表現之比較 …………………………...45 (五) SbGR1、SbGR2 啟動子之特性分析…………………………………….46 六、參考文獻 ……………………………………………………………………..47 附錄 ………………………………………………………………………………..65 圖目錄 圖一、圓葉菸草 ProDH 基因及胺基酸序列。 ……………………………….....23 圖二、N. benthamiana 與其他物種 ProDH 之演化樹親緣分析圖。 ……….....24 圖三、NbProDH 與 NtProDH1、NtProDH2 胺基酸序列比對。 ………….…..25 圖四、南方點墨分析結果與圓葉菸草 ProDH 基因結構圖。 …………….........26 圖五、NbProDH 於不同組織之基因表現結果。………………………………....27 圖六、不同時間點缺水及回水處理之圓葉菸草 NbProDH 基因表現結果。…….………………………………………………..……………….…...28 圖七、N. benthamiana 轉殖系之分子鑑定。………………………………………29 圖八、高粱三個 GR 胺基酸序列比對分析。 ……………………………………56 圖九、(A) SbGR3 序列比對 (B) 高粱 GR 基因結構圖。 …………………….57 圖十、SbGR 酵素活性異源表現於大腸桿菌。 ………………………………....58 圖十一、SbGR1、SbGR2 次細胞定位。 …………………………………....……59 圖十二、利用水稻 OsGR1、OsGR2 專一性抗體辨識高粱 SbGR1、SbGR2 異源表現蛋白。 .…………………………………………………………….….. 60 圖十三、不同逆境之高粱及水稻地上部 GR1 與 GR2 蛋白質表現分析。…… 61 圖十四、PLACE 資料庫及氧化逆境相關保守調控序列預測結果。…………....62 表目錄 表一、不同物種之 ProDH 基因序列比對相同度百分比。…………………….22 表二、高粱與水稻 GR 胺基酸相同度及相似度百分比。……………..……….55 附表目錄 附表一、本論文中構築大量表現及基因表現分析所使用之引子列表……..…..63 附表二、論文所用之溶液配方…………………………………………...…….....64 | |
dc.language.iso | zh-TW | |
dc.title | 圓葉菸草脯胺酸去氫酶及高粱穀胱甘肽還原酶基因的選殖及特性分析 | zh_TW |
dc.title | Cloning and characterization of tobacco (Nicotiana benthamiana) proline dehydrogenase and Sorghum (Sorghum bicolor) glutathione reductase genes | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳建德(Chien-Teh Chen) | |
dc.contributor.oralexamcommittee | 古新梅(Hsin-Mei Ku),吳蕙芬(Whei-Fen Wu) | |
dc.subject.keyword | 脯胺酸,轉基因植物,抗氧化酵素,氧化逆境,高粱,圓葉菸草, | zh_TW |
dc.subject.keyword | proline dehydrogenase,Nicotiana benthamiana,transgenic plant,antioxidative enzymes,glutathione reductase,sorghum,oxidative stress, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。