Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55605
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佩貞(Pei-Jen Chen)
dc.contributor.authorYu-Chang HSUen
dc.contributor.author許裕昌zh_TW
dc.date.accessioned2021-06-16T04:12:10Z-
dc.date.available2025-08-10
dc.date.copyright2020-08-11
dc.date.issued2020
dc.date.submitted2020-07-30
dc.identifier.citation盛盛澄淵、吳敏惠。1969。彰 化 縣 土 壤 調 查 報 告。臺灣省立中興大學農學院土壤學系
陳春泉。1976。桃園土壤調查報告。農業試驗所
行政院環保署。2013。全國土壤品質性質特徵管理計畫
王若芸。2006。液相層析結合感應偶和電漿質譜儀於銻、鉈、砷及硒分析之應用化學所: 國立中山大學
陳淑勤。2010。南臺灣給水廠自來水重金屬之流布調查. 環境工程研究所: 國立中山大學
楊嘉凌、鄭佳綺、許志聖。2015。生產優質稻米的栽培管理技術。台中農業技術專刊,193,P.1- P.10。
郭雅紋、曾宥、賴文龍、陳鴻堂。2015。水稻肥料推薦基準及土壤改良管理。台中農業技術專刊,193,P.24- P.40。
陳亮宇。2017。鎵與銦在土壤中之有效性及其對小麥幼苗生長之影響. 生物資源暨農學院農業化學系: 國立台灣大學
黃亮心。2017。不同土壤中鉈對水稻幼苗的生長與吸收的影響. 生物資源暨農學院農業化學系: 國立台灣大學
溫威程。2019。應用化學及生物指標評估不同特性之環境底泥受長期砷污染之生物有效性及毒性. 生物資源暨農學院農業化學系: 國立台灣大學
李佳樺。2019。底泥銅與鉛雙金屬污染之交互作用與對青鱂魚幼魚及胚胎之有效性及毒性評估. 生物資源暨農學院農業化學系: 國立台灣大學
潘冠廷。2019。水中鉀離子干擾一價鉈對青鱂魚之神經毒性效應探討. 生物資源暨農學院農業化學系: 國立台灣大學
Abollino, O., Giacomino, A., Malandrino, M., Mentasti, E., Aceto, M., Barberis, R. (2006). Assessment of metal availability in a contaminated soil by sequential extraction. Water, Air, and Soil Pollution, 173(1-4), 315-338.
Alloway, B. (1990). Soil processes and the behaviour of metals. Heavy metals in soils., 7-28.
Alva, A. (1993). Comparison of Mehlich 3, Mehlich 1, ammonium bicarbonate‐DTPA, 1.0 M ammonium acetate, and 0.2 M ammonium chloride for extraction of calcium, magnesium, phosphorus, and potassium for a wide range of soils. Communications in soil science and plant analysis, 24(7-8), 603-612.
Antić-Mladenović, S., Frohne, T., Kresović, M., Stärk, H.-J., Savić, D., Ličina, V., Rinklebe, J. (2017). Redox-controlled release dynamics of thallium in periodically flooded arable soil. Chemosphere, 178, 268-276.
Antoniadis, V., Robinson, J., Alloway, B. (2008). Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere, 71(4), 759-764.
Bačeva, K., Stafilov, T., Šajn, R., Tănăselia, C., Makreski, P. (2014). Distribution of chemical elements in soils and stream sediments in the area of abandoned Sb–As–Tl Allchar mine, Republic of Macedonia. Environmental research, 133, 77-89.
Chen, J., Wei, F., Zheng, C., Wu, Y., Adriano, D. C. (1991). Background concentrations of elements in soils of China. Water, Air, and Soil Pollution, 57(1), 699-712.
China, M. (2006). Standards for drinking water quality. GB5749-2006.
Dumas, J., Hare, L. (2008). The internal distribution of nickel and thallium in two freshwater invertebrates and its relevance to trophic transfer. Environmental science technology, 42(14), 5144-5149.
Filgueiras, A., Lavilla, I., Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4(6), 823-857.
Fründ, H.-C., Butt, K., Capowiez, Y., Eisenhauer, N., Emmerling, C., Ernst, G., . . . Schrader, S. (2010). Using earthworms as model organisms in the laboratory: recommendations for experimental implementations. Pedobiologia, 53(2), 119-125.
Gee, G. W., Bauder, J. W. (1986). Particle‐size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 383-411.
Graves, A. L., Boyd, W. A., Williams, P. L. (2005). Using transgenic Caenorhabditis elegans in soil toxicity testing. Archives of Environmental Contamination and Toxicology, 48(4), 490-494.
Gulens, J., Champ, D. R., Jackson, R. E. (1979). Influence of redox environments on the mobility of arsenic in ground water. In: ACS Publications.
Hassler, C. S., Chafin, R. D., Klinger, M. B., Twiss, M. R. (2007). Application of the biotic ligand model to explain potassium interaction with thallium uptake and toxicity to plankton. Environmental Toxicology and Chemistry: An International Journal, 26(6), 1139-1145.
Hofer, G. (1990). Thalliumgehalte landwirtschaftlich genutzter Boden Oberosterreiches. Bodenkultur, 41, 187-193.
Hou, A., Chen, G., Wang, Z., Van Cleemput, O., Patrick Jr, W. (2000). Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Science Society of America Journal, 64(6), 2180-2186.
Huang, X., Li, N., Wu, Q., Long, J., Luo, D., Huang, X., . . . Zhao, D. (2018). Fractional distribution of thallium in paddy soil and its bioavailability to rice. Ecotoxicology and Environmental Safety, 148, 311-317.
Jiang, F., Ren, B., Hursthouse, A., Deng, R. (2020). Evaluating health risk indicators for PTE exposure in the food chain: evidence from a thallium mine area. Environmental Science and Pollution Research, 1-9.
Johnsen, S., Liu, Z., Peters, J. A., Song, J.-H., Peter, S. C., Malliakas, C. D., . . . Wessels, B. W. (2011). Thallium chalcogenide-based wide-band-gap semiconductors: TlGaSe2 for radiation detectors. Chemistry of Materials, 23(12), 3120-3128.
Johnson, C., Breward, N., Ander, E., Ault, L. (2005). G-BASE: baseline geochemical mapping of Great Britain and Northern Ireland. Geochemistry: exploration, environment, analysis, 5(4), 347-357.
Kabata-Pendias, A., Pendias, H. (1992). Trace elements in soils and plants CRC Press. Boca Raton, FL.
Kang, D. H. P., Chen, M., Ogunseitan, O. A. (2013). Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environmental science technology, 47(10), 5495-5503.
Karbowska, B., Zembrzuski, W., Jakubowska, M., Wojtkowiak, T., Pasieczna, A., Lukaszewski, Z. (2014). Translocation and mobility of thallium from zinc–lead ores. Journal of Geochemical Exploration, 143, 127-135.
Kashem, M., Singh, B. (2001). Metal availability in contaminated soils: I. Effects of floodingand organic matter on changes in Eh, pH and solubility of Cd, Ni andZn. Nutrient Cycling in Agroecosystems, 61(3), 247-255.
López-Arce, P., Garrido, F., García-Guinea, J., Voegelin, A., Göttlicher, J., Nieto, J. M. (2019). Historical roasting of thallium-and arsenic-bearing pyrite: Current Tl pollution in the Riotinto mine area. Science of the total environment, 648, 1263-1274.
Lapointe, D., Couture, P. (2010). Accumulation and effects of nickel and thallium in early-life stages of fathead minnows (Pimephales promelas). Ecotoxicology and Environmental Safety, 73(4), 572-578.
Li, H., Chen, Y., Long, J., Li, X., Jiang, D., Zhang, P., . . . Xu, R. (2017). Removal of thallium from aqueous solutions using Fe-Mn binary oxides. Journal of Hazardous Materials, 338, 296-305.
Liao, P.-H., Hwang, C.-C., Chen, T.-H., Chen, P.-J. (2015). Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish. Aquatic Toxicology, 165, 84-92.
Liu, J., Luo, X., Wang, J., Xiao, T., Chen, D., Sheng, G., . . . Chen, Y. (2017). Thallium contamination in arable soils and vegetables around a steel plant—a newly-found significant source of Tl pollution in South China. Environmental Pollution, 224, 445-453.
Liu, J., Zhang, X.-H., Tran, H., Wang, D.-Q., Zhu, Y.-N. (2011). Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant. Environmental Science and Pollution Research, 18(9), 1623.
Lukaszewski, Z., Jakubowska, M., Zembrzuski, W. (2018). The mobility of thallium from bottom soil of the Silesian-Cracowian zinc-lead ore deposit region (Poland). Journal of Geochemical Exploration, 184, 11-16.
Luo, Y., Jiang, X., Wu, L., Song, J., Wu, S., Lu, R., Christie, P. (2003). Accumulation and chemical fractionation of Cu in a paddy soil irrigated with Cu-rich wastewater. Geoderma, 115(1-2), 113-120.
Martínez-Sánchez, M., Pérez-Sirvent, C., Garcia-Lorenzo, M., Tudela, M., Molina, J., Bech, J. (2009). Background and baseline values for thallium and antimony in soils from Murcia Region (SE, Spain) and their relationship with mineralogical composition. EGUGA, 3771.
McKeague, J., Day, J. (1966). Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian journal of soil science, 46(1), 13-22.
Mehra, O., Jackson, M. (2013). Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. In Clays and clay minerals (pp. 317-327): Elsevier.
Minamikawa, K., Sakai, N. (2005). The effect of water management based on soil redox potential on methane emission from two kinds of paddy soils in Japan. Agriculture, ecosystems environment, 107(4), 397-407.
Mossop, K. F., Davidson, C. M. (2003). Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Analytica Chimica Acta, 478(1), 111-118.
Nayar, P., Hamilton, W. (1975). Noise-equivalent power and response time of TlSe bolometer at 1.5 K. JOSA, 65(7), 831-833.
Nayar, P., Hamilton, W. (1977). Thallium selenide infrared detector. Applied optics, 16(11), 2942-2944.
Nelson, D., Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter 1. Methods of soil analysis. Part 2. Chemical and microbiological properties(methodsofsoilan2), 539-579.
Nielsen, S. G., Rehkämper, M., Prytulak, J. (2017). Investigation and application of thallium isotope fractionation. Reviews in Mineralogy and Geochemistry, 82(1), 759-798.
Nriagu, J. O., Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169), 134-139.
Ofukany, A. F., Wassenaar, L. I., Bond, A. L., Hobson, K. A. (2014). Defining fish community structure in Lake Winnipeg using stable isotopes (δ13C, δ15N, δ34S): Implications for monitoring ecological responses and trophodynamics of mercury other trace elements. Science of the total environment, 497, 239-249.
Parke, S., Webb, R. (1973). The optical properties of thallium, lead and bismuth in oxide glasses. Journal of Physics and Chemistry of Solids, 34(1), 85-95.
Pavoni, E., Petranich, E., Adami, G., Baracchini, E., Crosera, M., Emili, A., . . . Covelli, S. (2017). Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a decommissioned zinc-lead mine (Northeastern Italian Alps). Journal of environmental management, 186, 214-224.
Pickard, J., Yang, R., Duncan, B., McDevitt, C., Eickhoff, C. (2001). Acute and sublethal toxicity of thallium to aquatic organisms. Bulletin of environmental contamination and toxicology, 66(1), 94-101.
Ping, L., Xingxiang, W., ZHANG, T., Dongmei, Z., Yuanqiu, H. (2008). Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil. Journal of Environmental Sciences, 20(4), 449-455.
Rickwood, C., King, M., Huntsman-Mapila, P. (2015). Assessing the fate and toxicity of thallium I and thallium III to three aquatic organisms. Ecotoxicology and Environmental Safety, 115, 300-308.
Ritz, C. (2010). Toward a unified approach to dose–response modeling in ecotoxicology. Environmental Toxicology and Chemistry, 29(1), 220-229.
Robertson, R., Spyrou, N. M., Kennett, T. J. (1975). Low level. gamma.-ray spectrometry. Thallium-doped sodium iodide vs. lithium-doped germanium. Analytical Chemistry, 47(1), 65-70.
Sasmaz, M., Akgul, B., Yıldırım, D., Sasmaz, A. (2016). Bioaccumulation of thallium by the wild plants grown in soils of mining area. International Journal of Phytoremediation, 18(11), 1164-1170.
Savariar, V. (2014). Environmental health monitoring: a pragmatic approach. Int J Waste Resources, 4, 164.
Seefeldt, S. S., Jensen, J. E., Fuerst, E. P. (1995). Log-logistic analysis of herbicide dose-response relationships. Weed technology, 218-227.
Sumner, M. E., Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 1201-1229.
Tatsi, K., Turner, A., Handy, R. D., Shaw, B. J. (2015). The acute toxicity of thallium to freshwater organisms: implications for risk assessment. Science of the total environment, 536, 382-390.
Taylor, L. T., Rancourt, J., Perry Jr, C. (1995). Alloy substitute for mercury in switch applications. In: Google Patents.
Tessier, A., Campbell, P. G., Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844-851.
Tokalioğlu, Ş., Kartal, Ş., Birol, G. (2003). Application of a three-stage sequential extraction procedure for the determination of extractable metal contents in highway soils. Turkish Journal of Chemistry, 27(3), 333-346.
Turner, A., Furniss, O. (2012). An evaluation of the toxicity and bioaccumulation of thallium in the coastal marine environment using the macroalga, Ulva lactuca. Marine pollution bulletin, 64(12), 2720-2724.
Umweltqualität, F. (1998). Maximum Emission Values–Maximum Thallium Emission Values for Livestock (Richtlinie 2310 Blatt 29 (E)). Kommission Reinhaltung der Luft im VDI und DIN–Normenausschuss KRdL, Düsseldorf.
USEPA. (2000). Atlas of America's Polluted Waters.
Usman, A., Kuzyakov, Y., Stahr, K. (2008). Sorption, desorption, and immobilization of heavy metals by artificial soil. The University of Hohenheim: Stuttgart.
Vaněk, A., Chrastný, V., Komárek, M., Galušková, I., Drahota, P., Grygar, T., . . . Drábek, O. (2010). Thallium dynamics in contrasting light sandy soils—soil vulnerability assessment to anthropogenic contamination. Journal of Hazardous Materials, 173(1-3), 717-723.
Vaněk, A., Grösslová, Z., Mihaljevič, M., Ettler, V., Trubač, J., Chrastný, V., . . . Voegelin, A. (2018). Thallium isotopes in metallurgical wastes/contaminated soils: A novel tool to trace metal source and behavior. Journal of Hazardous Materials, 343, 78-85.
Vaněk, A., Grösslová, Z., Mihaljevič, M., Trubač, J., Ettler, V. c., Teper, L., . . . Penížek, V. t. (2016). Isotopic tracing of thallium contamination in soils affected by emissions from coal-fired power plants. Environmental science technology, 50(18), 9864-9871.
Venkataraman, K., Kumar, A. (2000). A compendium of world wide web sites related to mercury in fish. Environmental Progress Sustainable Energy, 19(1), S11.
Voegelin, A., Pfenninger, N., Petrikis, J., Majzlan, J., Plötze, M., Senn, A.-C., . . . Göttlicher, J. r. (2015). Thallium speciation and extractability in a thallium-and arsenic-rich soil developed from mineralized carbonate rock. Environmental science technology, 49(9), 5390-5398.
Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A., Reeves, R. D. (2006). Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and soil, 281(1-2), 325-337.
Wang, K., Qiao, Y., Zhang, H., Yue, S., Li, H., Ji, X., Liu, L. (2018). Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China. Ecotoxicology and Environmental Safety, 148, 876-883.
Xiao, T., Yang, F., Li, S., Zheng, B., Ning, Z. (2012). Thallium pollution in China: a geo-environmental perspective. Science of the total environment, 421, 51-58.
Xin, Y., Wong, K., Fan, C., Sheng, Z., Chan, F. (1993). Thermoelectric power of the thallium-based superconductor Tl 2 Ba 2 Ca 2 Cu 3 O 10− δ. Physical Review B, 48(1), 557.
Xu, H., Luo, Y., Wang, P., Zhu, J., Yang, Z., Liu, Z. (2019). Removal of thallium in water/wastewater: a review. Water research, 165, 114981.
Yamagishi, T., Noguchi, Y. (1985). Thallium-containing optical glass. In: Google Patents.
Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84-91.
Zhao, Z., Xiong, Y., Cheng, X., Hou, X., Yang, Y., Tian, Y., . . . Xu, L. (2020). Adsorptive removal of trace thallium (I) from wastewater: a review and new perspectives. Journal of Hazardous Materials, 122378.
Zitko, V. (1975). Toxicity and pollution potential of thallium. Science of the total environment, 4(2), 185-192.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55605-
dc.description.abstractTl為美國環保署優先列管的污染物之一,其生物累積性及毒性極高。近年來隨著Tl於高科技產業的廣泛應用,Tl經由人類活動進入生態環境的機會大為增加,研究發現Tl可能隨灌溉進入水田環境,並累積在水稻榖粒中,因此提高人體暴露Tl的風險,但關於Tl在水田中的移動、生物有效性及生態毒性尚未釐清。因此本研究利用青鱂魚(俗稱稻田魚,Oryzias latipes)幼魚作為模式生物,建立間歇流水式水田生物暴露系統,用以評估水田遭受鉈污染後在添加鉀肥及排水處理條件下之Tl移動性、生物有效性及毒性。此研究將一價鉈[Thallium, Tl(I)]添加至酸性(平鎮土系Pc和三坑子土系Sk)及中性 (伸港土系Su)土壤中,經三次乾溼交替後,進行120天(共三階段)高鉈土壤濃度(75-250 mg/kg)生物暴露試驗,以評估鉀(K)肥添加及排水/淹水交替後三種土壤中鉈的釋出及對稻田魚的毒性效應。第一次暴露結果顯示酸性土壤(Sk與Pc)相較於中性土壤(Su) 具較高的Tl釋放潛勢,且覆蓋水中K濃度較低,因此造成較高魚苗死亡率。加入鉀肥處理後之第二階段暴露結果,和第一階段的暴露結果相比,添加K肥對Tl誘導的生物毒性影響並不顯著。第三次暴露結果顯示,三種土壤經過排水/淹水之乾濕交替過程後,Tl的釋放量顯著降低,因此為三次生物暴露試驗中造成之毒性最低。本研究另外以Pc及Su土系進行環境相關濃度鉈污染土(2.5-15 mg/kg)之生物暴露試驗,此低濃度範圍過程皆未造成顯著魚苗死亡,在泳動行為、魚體體長體重及鉈生物累積量指標中,以魚苗生物累積性結果最為顯著,暴露於酸性土Pc之魚體累積量較高,而加鉀處理後發現兩種土暴露魚體鉈累積量皆有下降。本研究顯示土壤中酸可交換型態、覆蓋水及孔隙水(R2 > 0.8)中Tl濃度皆具有較佳預測魚體死亡率的能力。在低鉈污染土中,覆蓋水及孔隙水中(R2 > 0.81) Tl/K比例與魚體中Tl累積性有高相關性。綜上所述,本研究所建立之青鱂魚幼魚暴露系統可有效地模擬Tl於水田土壤的移動,並可用以預測受Tl污染水田生態的生物有效性與毒性。zh_TW
dc.description.abstractThallium (Tl) is a priority pollutant with high toxicity and exposure risk. With rapid development of high-tech industries, technology-critical elements such as Tl could be released into the paddy soils via discharge of manufacturing wastewater. The Tl occurrence in contaminated paddy soils was frequently detected in many studies; however, the transport, bioavailability and environmental toxicity of Tl in contaminated paddy field are less known. In this study, we aim to use medaka larvae as a model to assess the mobility, bioavailability, and toxicity of Tl in different Tl-contaminated paddy soils after treatment of K addition and drainage. Monovalent thallium was added to acidic (Pingzhen and Sankengtzu soil series) and neutral (Sangkang soil series) soils. After three time dry and wet alternations, conducting a 120-day (three stages) biological exposure test of high Tl concentration (75 - 250 mg/kg) in soils to assess the toxic effects on medaka according to soil properties, addition of potassium fertilizer, and drainage. The results of first fish exposure showed that acidic soils (Sk and Pc) have higher Tl release potential than neutral soils (Su). When the concentration of K in the overlying water was lower, it leaded to higher mortality of medaka. Compared with the first fish exposure results, the effect of adding K fertilizer on Tl-induced toxicity was not significant. The third fish exposure result showed that after short term drainage and re-irrigation, the release of Tl was significantly reduced, so it was the least toxic in the three fish exposure experiments. Otherwise, Pc and Su soils were used to conduct biological exposure experiments of environmentally relevant concentrations of Tl-contaminated soil (2.5、15mg/kg). This low Tl concentration range did not cause death of rice fish. Among the indicators of swimming behavior, body weight, body length, and thallium bioaccumulation of medaka, the bioaccumulation results of medaka were the most significant. The cumulative amount of Tl in medaka is higher when exposed to acid soil. The accumulation of Tl after K addition treatment is reduced. This study showed content of Tl in exchangeable fraction of soils, Tl concentration in overlying water and pore water (R2 > 0.8) have good ability to predict rice fish mortality. In low Tl-polluted soils, the ratio of Tl/K in overlying water and pore water were highly correlated (R2 > 0.81) with the accumulation of Tl in medaka. Based on our results, the established ecotoxicity exposure system of paddy fields with medaka fish can effectively simulate the release, bioavailability, and toxicity of Tl in different soils.en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:12:10Z (GMT). No. of bitstreams: 1
U0001-2907202016191400.pdf: 7655736 bytes, checksum: 2631a38a51174ef8db0cd475baf5ce48 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 I
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 IX
第一章、 前言與研究動機 1
第二章、 文獻回顧 2
2.1 鉈金屬基本特性介紹與應用 2
2.2 鉈金屬進入環境中的途徑 3
2.3 鉈在環境中流布濃度 5
2.4 鉈對生物毒性簡介與鉀競爭關係 7
2.5 鉈在土壤中型態分布及移動性調查及作物生態危害風險 8
2.6 水稻田耕作及施肥方式簡介 12
2.7 土壤重金屬生物有效性及毒性評估之方法回顧 14
2.7.1. 序列萃取法 14
2.7.2. 生物累積量 15
2.7.3. 生物毒性檢測法 16
2.8 水稻田生態安全監測方法建立之必要性及模式生物選擇 17
2.9 研究目的 18
第三章、 材料與方法 19
3.1 研究架構說明 19
3.2 土壤採樣及基本性質分析 21
3.2.1 採樣地點與前處理方式 21
3.2.2 土壤基本性質分析 24
3.4 青鱂魚馴養及幼魚飼養條件 30
3.4.1 成魚飼養條件 30
3.4.2 試驗幼魚飼養 31
3.5 青鱂魚之水田土壤暴露系統 32
3.5.2 高鉈污染水田土壤之生物暴露試驗設計(共120天) 34
3.5.3. 低鉈污染水田土壤之生物暴露試驗設計(共34天) 41
3.6 土壤與水樣中金屬的化學分析 47
3.6.1 土壤總鉈量分析 47
3.6.2 孔隙水及覆蓋水之金屬濃度 47
3.6.3 續列萃取分析土壤鉈鍵結型態 48
3.7 統計分析 49
第四章、 結果與討論 50
4.1 土壤基本性質分析結果 50
4.2 高鉈污染土壤之生物暴露結果 52
4.2.1 生物暴露前土壤鉈總體濃度分析結果 52
4.3.2 第一次及第三次生物暴露前採表層土壤鉈之序列萃取結果 53
4.3.3 暴露期間覆蓋水鉈、鉀金屬釋出量變化(三次探討) 55
4.3.4 暴露期間第7天孔隙水鉈、鉀金屬釋出量變化 61
4.3.5 暴露於高鉈污染土壤對青鱂幼魚之致死毒性 63
4.3.6. 高鉈污染濃度土壤生物毒性結果綜合討論 66
4.4 低鉈污染土壤之生物暴露結果 73
4.4.1 第二次採樣土壤性質確定 73
4.4.2 生物暴露前之表層土壤鉈濃度分析結果 74
4.4.3 生物暴露期間之覆蓋水鉈、鉀金屬釋出量變化 75
4.4.4 孔隙水中金屬含量 77
4.4.5 對青鱂魚幼魚生長及泳動行為分析 78
4.4.6 青鱂幼魚體內生物鉈累積量 83
4.4.7 低鉈污染濃度土壤生物有效性結果綜合討論 85
4.5 多種化學方法與生物反應相關性結果 86
4.5.1 高鉈濃度土壤系統生物毒性相關性分析 86
4.5.2 低鉈濃度土壤系統生物有效性相關性分析 93
第五章、結論 99
第六章、參考文獻 101
第七章 、附錄圖表 108
dc.language.isozh-TW
dc.title探討土壤性質、鉀肥添加與淹水週期對水田土壤鉈的釋放與青鱂魚毒性影響zh_TW
dc.titleThe effects of soil properties, potassium fertilizer, and flooding cycles on thallium release and toxicity to medaka fish in paddy soilsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李達源(Dar-Yuan LEE),許正一(Zeng-Yei Hseu),林乃君(Nai-Chun Lin)
dc.subject.keyword鉈,水田生態暴露系統,鉀肥,排水,覆蓋水,生物毒性,zh_TW
dc.subject.keywordThallium,ecotoxicity exposure system of paddy soil,K fertilizer,drainage,overlaying water,en
dc.relation.page111
dc.identifier.doi10.6342/NTU202002043
dc.rights.note有償授權
dc.date.accepted2020-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-2907202016191400.pdf
  目前未授權公開取用
7.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved