請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55603完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張孟基(Men-Chi Chang) | |
| dc.contributor.author | Meng-Hsuan Hsieh | en |
| dc.contributor.author | 謝孟軒 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:12:03Z | - |
| dc.date.available | 2019-09-05 | |
| dc.date.copyright | 2014-09-05 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-20 | |
| dc.identifier.citation | Alonso-Allende R, Fernandez-Gonzalez JM, Grana O, Valencia A (2002) The REGIA database (RegiaDB): status, limitations and future developments. Comp Funct Genomics 3: 109–114
Aravind L, Koonin EV (1999) Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 285: 1353–1361 Assmann SM, Simoncini L, Schroeder JI (1985) Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318: 285–287 Barah P, Jayavelu ND, Rasmussen S, Nielsen HB, Mundy J, Bones AM (2013) Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes. BMC Genomics 14: 722 Bol JF, Linthorst HJM, Cornelissen BJC (1990) Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol 28: 113–138 Bormann C, Baier D, Horr I, Raps C, Berger J, Jung G, Schwarz H (1999) Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tu901 that enterferes with growth polarity. J Bacteriol 181: 7421–7429 C Despres CD (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12: 279–90 Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6: 1583–1592 Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 57–63 Castrillo G, Turck F, Leveugle M, Lecharny A, Carbonero P, Coupland G, Paz-Ares J, Onate-Sanchez L (2011) Speeding cis-trans regulation discovery by phylogenomic analyses coupled with screenings of an arrayed library of Arabidopsis transcription factors. PLoS ONE 6: e21524 Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129: 706–716 Chen F-C, Chuang T-J (2005) ESTviewer: a web interface for visualizing mouse, rat, cattle, pig and chicken conserved ESTs in human genes and human alternatively spliced variants. Bioinforma Oxf Engl 21: 2510–2513 Chern M, Canlas PE, Fitzgerald HA, Ronald PC (2005) Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J 43: 623–635 Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J Cell Mol Biol 16: 735–743 Cormack RS, Eulgem T, Rushton PJ, Kochner P, Hahlbrock K, Somssich IE (2002) Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochim Biophys Acta BBA - Gene Struct Expr 1576: 92–100 Dempsey DA, Silva H, Klessig DF (1998) Engineering disease and pest resistance in plants. Trends Microbiol 6: 54–61 Dixon RA, Harrison MJ, Lamb CJ (1994) Early events in the activation of plant defense responses. Annu Rev Phytopathol 32: 479–501 Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51: 21–37 Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Droge-Laser W (2006) Two-hybrid protein–protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46: 890–900 Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: 199–206 Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18: 4689–4699 Friedrich L (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant-Microbe Interact MPMI 14: 1114–24 Fukuda Y (2000) Interaction of nuclear proteins with intrinsically curved DNA in a matrix attachment region of a tobacco gene. Plant Mol Biol 44: 91–8 Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756 Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8: 211–215 Gong W, Shen Y-P, Ma L-G, Pan Y, Du Y-L, Wang D-H, Yang J-Y, Hu L-D, Liu X-F, Dong C-X, et al (2004) Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol 135: 773–782 Hilson P (2006) Cloned sequence repertoires for small- and large-scale biology. Trends Plant Sci 11: 133–41 Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30: 315–327 Horvath DM, Huang DJ, Chua N-H (1998) Four classes of salicylate-induced tobacco genes. Mol Plant Microbe Interact 11: 895–905 Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, et al (2006) Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 7: 149 Hu D (2012) Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci Int J Exp Plant Biol 185-186: 288–97 Huang H, Lee W, Lin J, Huang H, Jian S, Mao SJT, Yang P, Huang T, Liu Y (1999) Molecular cloning and characterization of porcine cDNA encoding a 90-kDa heat shock protein and its expression following hyperthermia. Gene 226: 307–315 Ichikawa T, Nakazawa M, Kawashima M, Iizumi H, Kuroda H, Kondou Y, Tsuhara Y, Suzuki K, Ishikawa A, Seki M, et al (2006) The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J 48: 974–985 Ishiguro, Nakamura (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. 244: 563–571 Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H (2011) Phosphorylation of the Nicotiana benthamiana WRKY8 Transcription factor by MAPK functions in the defense response. Plant Cell Online 23: 1153–1170 Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci U S A 102: 5280–5285 Jacobsen JV, Beach LR (1985) Control of transcription of α-amylase and rRNA genes in barley aleurone protoplasts by gibberellin and abscisic acid. Nature 316: 275–277 Kim K-C, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 Is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 142: 1180–1192 Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci 92: 1679–1683 Langridge P, Paltridge N, Fincher G (2006) Functional genomics of abiotic stress tolerance in cereals. Brief Funct Genomic Proteomic 4: 343–354 Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell Online 16: 319–331 Liu J, Wilson TE, Milbrandt J, Johnston M (1993) Identifying DNA-binding sites and analyzing DNA-binding domains using a yeast selection system. Methods 5: 125–137 Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30: 415–429 Loon LC (1990) The nomenclature of pathogenesis-related proteins. Physiol Mol Plant Pathol 37 1990 229-230 Loon LC van, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Report 12: 245–264 Ma M, Yan Y, Huang L, Chen M, Zhao H (2012) Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biol 12: 141 Manmathan H, Shaner D, Snelling J, Tisserat N, Lapitan N (2013) Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance. J Exp Bot 64: 1381–1392 Mayerhofer R, Langridge W h. r., Cormier M j., Szalay A a. (1995) Expression of recombinant Renilla luciferase in transgenic plants results in high levels of light emission. Plant J 7: 1031–1038 Mitsuda N, Ikeda M, Takada S, Takiguchi Y, Kondou Y, Yoshizumi T, Fujita M, Shinozaki K, Matsui M, Ohme-Takagi M (2010) Efficient yeast one-/two-Hybrid screening using a library composed only of transcription factors in Arabidopsis thaliana. Plant Cell Physiol 51: 2145–2151 Motoaki Seki KS (2009) Functional genomics using RIKEN Arabidopsis thaliana full-length cDNAs. J Plant Res 122: 355–66 Murphy D (2002) Gene expression studies using microarrays: principles, problems, and prospects. Adv Physiol Educ 26: 256–270 Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149: 88–95 Nath Radhamony R, Mohan Prasad A, Srinivasan R (2005) T-DNA insertional mutagenesis in Arabidopsis: a tool for functional genomics. Electron J Biotechnol. doi: 10.2225/vol8-issue1-fulltext-4 Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39: 500–507 Ou B, Yin K-Q, Liu S-N, Yang Y, Gu T, Hui JMW, Zhang L, Miao J, Kondou Y, Matsui M, et al (2011) A high-throughput screening system for Arabidopsis transcription factors and its application to med25-dependent transcriptional regulation. Mol Plant 4: 546–555 Riechmann JL, Heard J, Martin G, Reuber L, -Z C, Jiang, Keddie J, Adam L, Pineda O, Ratcliffe OJ, et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105–2110 Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28: 123–133 Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16: 1139–1149 Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner HY, Johnson J, Delaney TP, Jesse T, Vos P, et al (1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell Online 9: 425–439 Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell Online 8: 1809–1819 Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 10: 69–78 Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388: 1–13 Tsuneaki, Tena (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977–83 Verk MC, Bol JF, Linthorst HJ (2011) WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biol 11: 89 Wang X, Wang K, Radovich M, Wang Y, Wang G, Feng W, Sanford JR, Liu Y (2009) Genome-wide prediction of cis-acting RNA elements regulating tissue-specific pre-mRNA alternative splicing. BMC Genomics 10: S4 Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579: 5982–5987 Wehner N, Weiste C, Droge-Laser W (2011) Molecular screening tools to study Arabidopsis transcription factors. Front Plant Sci. doi: 10.3389/fpls.2011.00068 Weigel RR, Bauscher C, Pfitzner AJP, Pfitzner UM (2001) NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol Biol 46: 143–160 Weigel RR, Pfitzner UM, Gatz C (2005) Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. Plant Cell Online 17: 1279–1291 Woldemariam MG, Dinh ST, Oh Y, Gaquerel E, Baldwin IT, Galis I (2013) NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC Plant Biol 13: 73 Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell Online 18: 1310–1326 Yang P, Chen C, Wang Z, Fan B, Chen Z (1999) A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant J 18: 141–149 Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565–1572 Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell Online 13: 1527–1540 Yu Y, Na X, Shichao X, Xianguo C (2012) Profile of drought resistance of tomato transcription factor SlDREB2 gene mediated by VIGS. 0: 93–100 Zhang J, Williams T (2003) Identification and regulation of tissue-specific cis-acting elements associated with the human AP-2α gene. Dev Dyn 228: 194–207 Zhang Li (2012) Transcriptional regulatory networks in response to salt and drought stress in Arabidopsis thaliana. J Med Plants Res. doi: 10.5897/JMPR11.240 Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7: 2 Zhou J-M, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact 13: 191–202 Zwicker S, Mast S, Stos V, Pfitzner AJP, Pfitzner UM (2007) Tobacco NIMIN2 proteins control PR gene induction through transient repression early in systemic acquired resistance. Mol Plant Pathol 8: 385–400 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55603 | - |
| dc.description.abstract | 阿拉伯芥pathogenesis-related preoteins (PRs)在植物遭受病原菌入侵時會在植體內大量累積,其中PR1常被用作檢測是否發生系統性獲得抗性 (SAR)的指標基因,然而PR1轉錄層次上如何受到調控則尚未被研究清楚。分析發現PR1基因5’端上游1.5 kb序列中包含12個WRKY轉錄因子結合的W-box,推測WRKY轉錄因子及其基因調控網絡於PR1基因之表現具重要角色,因此本研究利用高通量篩選系統探討WRKY轉錄因子對PR1基因的轉錄調節。首先,試驗中建立一可快速構築WRKY轉錄因子大量表現的Gateway載體,共完成48個WRKY轉錄因子構築;其次,試驗中建立PR1 promoter / Luciferase轉殖阿拉伯芥;接著利用salicylic acid (SA)處理阿拉伯芥,釣取受SA誘導之WRKY基因;最後,利用polyethylene glycol (PEG)法分別將SA篩選所得WRKY蛋白質大量表現於PR1/Luciferase轉殖阿拉伯芥葉片原生質體,以分析各個WRKY基因對PR1啟動子活性的影響。結果顯示WRKY6, WRKY25, WRKY38, WRKY46, WRKY53轉錄因子大量表現可誘導luciferase活性達3∼8倍,顯示這些轉錄因子可能為正調控PR1表現的上游調控因子。本試驗結果可做為一新的研究方法,進一步確認調控PR1基因表現之重要因子及其可能參與的訊息傳遞路徑。 | zh_TW |
| dc.description.abstract | The Arabidopsis pathogenesis-related proteins (PRs) are induced by pathogen infection. The PR1 gene has been widely used as a marker gene for the onset of systemic acquired resistance (SAR); however, its upstream-transcriptional regulation remained unclear. In the 1.5 kb 5’-upstream region of PR1,12 WRKY transcription factors binding element (W-box) were observed. Thus, WRKY TF and its corresponding genes regulatory network are highly speculated to play important roles in regulation of PR1 gene expression. To understand how WRKY TFs participate in this process, a high-throughput system was set up. First, an overexpression gateway vector was created for efficient construction of 48 WRKY gene, and analysis of their transcriptional regulation on PR1. Second, transgenic Arabidopsis harboring PR1 promoter / Luciferase was generated. Third, induced expression of WRKYs were selected by salicylic acid treatment. Fourth, leaf protoplasts were used for studying the transcriptional regulation of WRKYs on the expression of PR1 / Luciferase. The result showed that overexpression of WRKY6, WRKY25, WRKY38, WRKY46, WRKY53 were significantly induced 3~8 folds of luciferase activity, indicating that these factors plays positive roles on PR1 expression. Our results represent a powerful approach to dissect key factors or components which involved either in gene regulation or signaling transduction pathway of PR1. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:12:03Z (GMT). No. of bitstreams: 1 ntu-103-R00621113-1.pdf: 2509234 bytes, checksum: 782fa89fbee0d9e3aa1a1c2f7818dfee (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
摘要 1 Abstract 4 縮寫字對照表 7 壹、 前人研究: 8 1.1 植物抵抗病原防禦機制 8 1.2 NPR1 (non-expressor of PR genes) 8 1.3 病原相關蛋白 (Pathogenesis-related protein) 9 1.4 Pathogenesis-related protein 1 (At2g14610) 10 1.5 轉錄因子 (Transcription factor, TF) 11 1.6 WRKY轉錄因子家族 11 1.6.1 WRKY轉錄因子生化特性 11 1.6.2 WRKY轉錄因子家族分類 12 1.6.3 WRKY轉錄活性調控功能 12 1.6.4 WRKY轉錄調控相關研究 12 1.7 基因轉錄層次研究 13 1.8 基因功能研究方法 14 1.8.1 阿拉伯芥轉錄因子資料庫 14 1.8.2 現行高通量篩選工具研究轉錄因子轉錄活性 15 1.8.3 酵母菌單雜合技術 15 1.8.4 生物資訊系統分析基因調控 16 1.8.5 原生質體系統 17 1.8.6 原生質體轉錄活性分析系統 17 1.8.7 病毒誘導基因靜默 (virus induced gene silencing, VIGS) 18 貳、 研究目的: 21 參、 材料方法: 22 3.1 試驗植物與生長條件 22 3.1.1 試驗植物 22 3.1.2 植物生長條件 22 3.1.3 pPR1/LUC轉殖株建立 22 3.2 質體構築 23 3.2.1 PR1 promoter驅動LUC表現構築 23 3.2.2 Gateway cloning 技術 23 3.2.3 病毒誘導基因靜默系統載體構築 23 3.3 質體構築相關技術 23 3.3.1 大腸桿菌 (E. coli)質粒DNA小量純化 23 3.3.2 大腸桿菌熱休克轉型勝任細胞製備 24 3.3.3 大腸桿菌的熱休克轉型作用 24 3.3.4 載體及 DNA 片段的置備及回收 25 3.4 黏接反應 25 3.4.1 線性載體 DNA 的去磷酸化作用 (Dephosphorylation) 25 3.4.2 載體與插入片段的黏接 26 3.5 農桿菌轉型及阿拉伯芥轉殖 26 3.5.1 農桿菌電穿孔轉型勝任細胞的製備 26 3.5.2 農桿菌轉型 26 3.5.3 阿拉伯芥轉殖 26 3.5.4 轉殖株同型合子 (homozygote)篩選 27 3.6 阿拉伯芥RNA製備 27 3.6.1 RNA萃取 27 3.6.2 RNA電泳 28 3.6.3 以DNase處理去除RNA樣品中的DNA 29 3.6.4 合成第一股cDNA 29 3.7 基因表現分析 30 3.7.1 半定量反轉錄聚合酶連鎖反應 (semi-quantitative RT-PCR) 30 3.7.2 PCR 產物瓊脂凝膠電泳分析 30 3.8 轉錄因子大量表現 31 3.8.1 原生質體抽取 31 3.8.2 PEG轉殖 32 3.8.3 Firefly luciferase及Renilla luciferase活性分析 32 3.9 SA處理 33 肆、 結果: 34 4.1 PR1啟動子序列分析 34 4.2 pPR1/LUC 轉殖株之建立及分析 34 4.3 大量表現轉錄因子與VIGS之質粒構築 34 4.4 由SA所誘導之WRKY轉錄因子 35 4.5 正向調控PR1之轉錄因子測試結果 36 4.6 正向調控PR1轉錄因子之基因表現 36 4.7 病毒誘導基因靜默 (VIGS)策略 37 伍、 討論: 38 5.1 PR1啟動子序列分析 38 5.2 高通量篩選系統應用 38 5.3 高通量系統篩選PR1基因上游WRKY轉錄因子及其驗證 39 5.4 PR1上游調控網路建立 41 5.5 高通量篩選系統討論 43 陸、 參考資料: 45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 病原相關蛋白 | zh_TW |
| dc.subject | 轉錄調控網絡 | zh_TW |
| dc.subject | WRKY | en |
| dc.subject | Arabidopsis | en |
| dc.subject | transcriptional regulatory network | en |
| dc.subject | pathogenesis-related preotein 1 | en |
| dc.title | 構建並分析WRKY轉錄因子對阿拉伯芥Pathogenesis-related protein 1基因表現之轉錄調控網絡 | zh_TW |
| dc.title | Construction and Analysis of the Gene Regulatory Network of WRKY Transcription Factors Involved in Regulation of Pathogenesis-related protein 1 in Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 洪傳揚(Chwan-Yang Hong) | |
| dc.contributor.oralexamcommittee | 葉信宏(Hsin-Hung Yeh),陳仁治(Jen-Chih Chen) | |
| dc.subject.keyword | 阿拉伯芥,病原相關蛋白,轉錄調控網絡, | zh_TW |
| dc.subject.keyword | Arabidopsis,pathogenesis-related preotein 1,WRKY,transcriptional regulatory network, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
