請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55557
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張慈錦(Tzu-Ching Chang) | |
dc.contributor.author | Fang-Chun Liu | en |
dc.contributor.author | 劉芳君 | zh_TW |
dc.date.accessioned | 2021-06-16T04:09:16Z | - |
dc.date.available | 2015-09-05 | |
dc.date.copyright | 2014-09-05 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-21 | |
dc.identifier.citation | [1] J. E. Gunn and B. A. Peterson. On the Density of Neutral Hydrogen in Intergalactic Space. Astrophys. J., 142:1633--1641, November 1965.
[2] X. Fan, M. A. Strauss, R. H. Becker, R. L. White, J. E. Gunn, G. R. Knapp, G. T. Richards, D. P. Schneider, J. Brinkmann, and M. Fukugita. Constraining the Evolu- tion of the Ionizing Background and the Epoch of Reionization with z ̃6 Quasars. II. A Sample of 19 Quasars. Astron. J., 132:117--136, July 2006. [3] J.Miralda-Escude.ReionizationoftheIntergalacticMediumandtheDampingWing of the Gunn-Peterson Trough. Astrophys. J., 501:15--22, July 1998. [4] D.J.Mortlock,S.J.Warren,B.P.Venemans,M.Patel,P.C.Hewett,R.G.McMahon, C. Simpson, T. Theuns, E. A. Gonzales-Solares, A. Adamson, S. Dye, N. C. Hambly, P. Hirst, M. J. Irwin, E. Kuiper, A. Lawrence, and H. J. A. Rottgering. A luminous quasar at a redshift of z = 7.085. Nature, 474:616--619, June 2011. [5] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, and et al. Planck 2013 results. XVI. Cosmological parameters. ArXiv e-prints, March 2013. [6] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, N. Odegard, K. M. Smith, R. S. Hill, B. Gold, M. Halpern, E. Komatsu, M. R. Nolta, L. Page, D. N. Spergel, E. Wollack, J. Dunkley, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. L. Wright. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Ob- servations: Final Maps and Results. Astrophys. J. Suppl., 208:20, October 2013. 44 [7] A. Mesinger, S. Furlanetto, and R. Cen. 21CMFAST: a fast, seminumerical simula- tion of the high-redshift 21-cm signal. MNRAS, 411:955--972, February 2011. [8] O.Zahn,A.Mesinger,M.McQuinn,H.Trac,R.Cen,andL.E.Hernquist.Compari- son of reionization models: radiative transfer simulations and approximate, seminu- meric models. MNRAS, 414:727--738, June 2011. [9] S. A. Wouthuysen. On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. Astron. J., 57:31--32, 1952. [10] G. B. Field. Excitation of the Hydrogen 21-CM Line. Proceedings of the IRE, 46:240--250, January 1958. [11] S. R. Furlanetto, S. P. Oh, and F. H. Briggs. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe. Phys. Rep., 433:181--301, October 2006. [12] J. R. Pritchard and A. Loeb. 21 cm cosmology in the 21st century. Reports on Progress in Physics, 75(8):086901, August 2012. [13] Y. B. Zel'dovich. Gravitational instability: An approximate theory for large density perturbations. Astron. Astrophys., 5:84--89, March 1970. [14] S. R. Furlanetto, M. Zaldarriaga, and L. Hernquist. The Growth of H II Regions During Reionization. Astrophys. J., 613:1--15, September 2004. [15] J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser. Excursion set mass functions for hierarchical Gaussian fluctuations. Astrophys. J., 379:440--460, October 1991. [16] R. Barkana and A. Loeb. The difference PDF of 21-cm fluctuations: a powerful statistical tool for probing cosmic reionization. MNRAS, 384:1069--1079, March 2008. [17] R.K.ShethandG.Tormen.Large-scalebiasandthepeakbackgroundsplit.MNRAS, 308:119--126, September 1999. 45 [18] S.R.Furlanetto.Theglobal21-centimeterbackgroundfromhighredshifts.MNRAS, 371:867--878, September 2006. [19] R. Barkana and A. Loeb. Detecting the Earliest Galaxies through Two New Sources of 21 Centimeter Fluctuations. Astrophys. J., 626:1--11, June 2005. [20] J. Scalo. The IMF Revisited: A Case for Variations. In G. Gilmore and D. Howell, editors, The Stellar Initial Mass Function (38th Herstmonceux Conference), volume 142 of Astronomical Society of the Pacific Conference Series, page 201, 1998. [21] B. A. Bassett, Y. Fantaye, R. Hlozek, and J. Kotze. Fisher Matrix Preloaded -- FISHER4CAST. International Journal of Modern Physics D, 20:2559--2598, 2011. [22] H.-J. Grimm, M. Gilfanov, and R. Sunyaev. High-mass X-ray binaries as a star formation rate indicator in distant galaxies. MNRAS, 339:793--809, March 2003. [23] M. Gilfanov, H.-J. Grimm, and R. Sunyaev. LX -SFR relation in star-forming galax- ies. MNRAS, 347:L57--L60, January 2004. [24] M.F.Morales.PowerSpectrumSensitivityandtheDesignofEpochofReionization Observatories. Astrophys. J., 619:678--683, February 2005. [25] M. McQuinn, O. Zahn, M. Zaldarriaga, L. Hernquist, and S. R. Furlanetto. Cosmo- logical Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization. Astrophys. J., 653:815--834, December 2006. [26] G. B. Taylor, C. L. Carilli, and R. A. Perley, editors. Synthesis Imaging in Radio Astronomy II, volume 180 of Astronomical Society of the Pacific Conference Series, 1999. [27] A. Parsons, J. Pober, M. McQuinn, D. Jacobs, and J. Aguirre. A Sensitivity and Array-configuration Study for Measuring the Power Spectrum of 21 cm Emission from Reionization. Astrophys. J., 753:81, July 2012. [28] J. C. Pober, A. Liu, J. S. Dillon, J. E. Aguirre, J. D. Bowman, R. F. Bradley, C. L. Carilli, D. R. DeBoer, J. N. Hewitt, D. C. Jacobs, M. McQuinn, M. F. Morales, A. R.Parsons, M. Tegmark, and D. J. Werthimer. What Next-generation 21 cm Power Spectrum Measurements can Teach us About the Epoch of Reionization. Astro- phys. J., 782:66, February 2014. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55557 | - |
dc.description.abstract | 再游離時期是一個宇宙相變的過程,當第一批恆星形成時,會釋放 出紫外光去游離中性氫原子。到目前為止,這個過程的觀測證據仍然 非常有限。由於宇宙再游離牽涉許多複雜的物理機制,現今的理論模 型依然有相當大的不確定性。在這個論文中,我們使用一個公開的模 擬套件叫 21cmFAST (Mesinger el al. 2011)。利用這個套件,我們在短 時間內模擬出一個大的宇宙體積,並且探索在宇宙再游離這個過程中, 影響 21 公分功率譜的關鍵參數。為了量化這些關鍵天文物理參數的 衝擊,我們建構出一個費雪訊息矩陣 (Fisher Information Matrix),並且 假設實驗設計去預測觀測結果,和檢視這個實驗假設,在宇宙再游離 過程會有多強的約束。這些實驗設計為 Hydrogen Epoch of Reionization Array (HERA) 和 Square Kilometer Array (SKA1-low),是正在計劃中的 下一代觀測儀器。我們量化這些關鍵參數隨著紅移的變化,最後發現 恆星形成效率,在高紅移 21 ≲ z ≲ 26 時對 21 公分功率譜有顯著的影 響,而在宇宙再游離快結束時則變小。在單位重子釋放的紫外光數目 對功率譜的影響方面,宇宙再游離發生前影響最大,並在紅移 z ∼ 24 有峰值;當來曼 α 耦合機制達到飽和時,紫外光對功率譜的影響則快 速下降。由於X射線有較長的平均自由徑,可以加熱較遠的低密度星 際物質,其加熱機制的影響,衝擊值在紅移 z ∼ 21 時達到高峰。我們 還找到了紫外光的逸散分數,為光子從它們的宿主星系逃逸到星際物 質的比值,此衝擊 21 公分功率譜則在宇宙再游離最後階段達到峰值。 | zh_TW |
dc.description.abstract | Up to date there has been little observational constraints on the cosmic reionization process, the phase transition of the universe caused by the for- mation of the first luminous objects. Current theoretical modelling of reion- ization is subject to large uncertainties due to the complex astrophysical pro- cesses. In this thesis, we use a publicly available semi-numerical package, 21cmFAST (Mesinger et al. 2011), to simulate a large comoving cosmic vol- ume and explore key astrophysical parameters that impact the neutral hydro- gen 21-cm power spectra during reionization. We construct the Fisher infor- mation Matrix to quantify the impact of these astrophysical parameters, and make forecasts on how well we can constrain the reionization process given an experimental design, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometer Array (SKA1-low). We quantify the im- pact of model parameters as a function of redshifts. We find the star formation efficiency affects more on power spectra at high redshift 21 ≲ z ≲ 26 and less at late stage of reionization. The number of UV photon per baryon influences more before the reionization starts with a peak at redshift z ∼ 24, and drops rapidly after Lyα coupling saturates. The X-ray heating mechanism peaks at redshift z ∼ 21, and provides the most heating on the low density Intergalac- tic Medium (IGM) due to the long mean free path. We also find the fraction of the UV photons escape from their host galaxies into the IGM impact the 21-cm power spectra at the final stage of the reionization process. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T04:09:16Z (GMT). No. of bitstreams: 1 ntu-103-R00244009-1.pdf: 1935048 bytes, checksum: af3d2061033136023f9c8fa575351b7d (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 iii 中文摘要 iv Abstract v Contents vi List of Figures viii List of Tables ix 1 Introduction 1 2 Simulation 4 2.1 21-cmBasics ................................ 4 2.2 SimulationRun ............................... 6 2.2.1 Generatedensityfield ....................... 7 2.2.2 SpintemperatureCalculation.................... 8 2.2.3 Identifyionizedregions ...................... 8 2.3 FiducialSimulation............................. 10 2.4 FisherMatrix ................................ 10 2.5 KeyParameters............................... 11 2.5.1 UVionization............................ 12 2.5.2 X-rayHeating............................ 13 2.5.3 IdealizedQuantification ...................... 14 3 Observational Forecast 24 3.1 ThermalNoise ............................... 25 3.2 SampleVariance .............................. 27 3.3 SensitivitytothePowerSpectrum ..................... 28 3.4 Experiments................................. 29 4 Discussion 39 5 Conclusion 43 Bibliography 44  | |
dc.language.iso | en | |
dc.title | 利用 21 公分功率譜約束宇宙再游離過程 | zh_TW |
dc.title | Constraining the Reionization Process via 21-cm Power Spectra | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林彥廷(Yen-Ting Lin),王為豪(Wei-Hao Wang) | |
dc.subject.keyword | 宇宙學,宇宙再游離,第一批恆星, | zh_TW |
dc.subject.keyword | cosmology,reionization,first stars, | en |
dc.relation.page | 47 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-22 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 天文物理研究所 | zh_TW |
顯示於系所單位: | 天文物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。