請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55538
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳惠文 | |
dc.contributor.author | Lan-Hui Li | en |
dc.contributor.author | 李蘭蕙 | zh_TW |
dc.date.accessioned | 2021-06-16T04:08:09Z | - |
dc.date.available | 2014-10-09 | |
dc.date.copyright | 2014-10-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-24 | |
dc.identifier.citation | Non-cytotoxic Nanomaterials Enhance Antimicrobial Activities of Cefmetazole against Multidrug-Resistant Neisseria Gonorrhoeae
1. Patel AL, Chaudhry U, Sachdev D, Sachdeva PN, Bala M, et al. (2011) An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae. Indian J Med Res 134: 419-31. 2. Wang CC, Celum CL (1999) Global risk of sexually transmitted diseases. Med Clin North Am 83: 975-995. 3. http://nidss.cdc.gov.tw/SingleDisease.aspx?dc=1&dt=3&disease=098 4. Workowski KA, Berman SM, Douglas JJM (2008) Emerging antimicrobial resistance in Neisseria gonorrhoeae: urgent need to strengthen prevention strategies. Ann Intern Med 148(8): 606-613. 5. Rennie RP (2012) Current and future challenges in the development of antimicrobial agents. Handb Exp Pharmacol 211: 45-65. 6. Lewis DA (2014) Global resistance of Neisseria gonorrhoeae: when theory becomes reality. Curr Opin Infect Dis 27(1): 62-7. 7. Centers for Disease Control and Prevention. Sexually Transmitted Diseases Treatment Guidelines. MMWR 2006; 55(RR-11): 42-48. 8. Centers for Disease Control and Prevention. Sexually Transmitted Diseases Treatment Guidelines. MMWR 2010; 59(RR-12): 49-55. 9. Ohnishi M, Saika T, Hoshina S, Iwasaku K, Nakayama SI, et al. (2011) Ceftriaxone-Resistant Neisseria gonorrhoeae, Japan. Emerg Infect Dis 17(1): 148-149. 10. Engel LS (2009) Multidrug-Resistant Gram-Negative Bacteria: Trends, Risk Factors, and Treatments. Emerg Med 41(11): 18-27. 11. World Health Organization Department of Reproductive Health and Research. Emergence of multi-drug resistant Neisseria gonorrhoeae – Threat of global rise in untreatable sexually transmitted infections. 2011; WHO/RHR/11.14. 12. Murugan K, Senthilkumar B, Senbagam D, Al-Sohaibani S (2014) Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. Int J Nanomedicine 9: 2431-8. 13. Song J, Jang J (2014) Antimicrobial polymer nanostructures: synthetic route, mechanism of action and perspective. Adv Colloid Interface Sci 203: 37-50. 14. Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, et al. (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10): 499-511. 15. Blecher K, Nasir A, Friedman A (2011) The growing role of nanotechnology in combating infectious disease. Virulence 2(5): 395-401. 16. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7: 2767-81. 17. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, et al. (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18): 4591-4602. 18. Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9(10): 2677-2681. 19. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Nineteenth Informational Supplement M100-S19. CLSI, Wayne, PA, USA, 2009. 20. Yang CY, Meng CL (1994) Regulation of PG Synthase by EGF and PDGF in Human Oral, Breast, Stomach, and Fibrosarcoma Cancer Cell Lines. J Dent Res 73: 1407-1415. 21. National Committee for Clinical Laboratory Standards. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria-Sixth Edition; Approved Standard M11-A6, NCCLS, Wayne, PA, 2004. 22. Kim ES, Jeong SI, Kim JH, Park C, Kim SM, et al. (2009) Synergistic Effects of the Combination of 20-Hydroxyecdysone with Ampicillin and Gentamicin Against Methicillin-Resistant Staphylococcus aureus. J Microbiol Biotechnol 19(12): 1576-1581. 23. You C, Han C, Wang X, Zheng Y, et al. (2009) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39(9): 9193-201. 24. Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology 8: 1. 25. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3: 168-171. 26. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275: 177-182. 27. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, et al. (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85: 1115-1122. 28. Danilczuk M, Lund A, Sadlo J (2006) Conduction electron spin resonance of small silver particles. Spectrochim Acta A Mol Biomol Spectrosc 63: 189-191. 29. dos Santos CA, Jozala AF, Pessoa A Jr, Seckler MM (2012) Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68. J Nanobiotechnology 10: 43. 30. Ge L, Li Q, Wang M, Ouyang J, et al. (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine 9: 2399-407. 31. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, et al. (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3: 95-101. 32. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, et al. (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4): 662-668. 33. Liu W, Wu Y, Wang C, Li HC, Wang T, et al. (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3): 319-330. 34. EI Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, et al. (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1): 283-287. 35. Powers CM, Badireddy AR, Ryde IT, Seidler FJ, Slotkin TA (2011) Silver nanoparticles compromise neurodevelopment in PC12 cells: critical contributions of silver ion, particle size, coating, and composition. Environ Health Perspect 119(1): 37-44. 36. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 27(6): 1712-1720. 37. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, et al. (2007) Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2(1): 129-136. 38. Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiriou GA (2013) Toxicity of Silver Nanoparticles in Macrophages. Small [Epub ahead of print] 39. Sotiriou G, Pratsinis A (2010) Antibacterial Activity of Nanosilver Ions and Particles. Environ Sci Technol 44: 5649–5654. 40. Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS (2009) Synergistic Interaction between Silver Nanoparticles and Membrane-Permeabilizing Antimicrobial Peptides. Antimicrob Agents Chemother 53(8): 3538-3540. 41. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, et al. (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179: 130-139. 42. Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24: 872-878. 43. Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390: 733-737. 44. Vlachou E, Chipp E, Shale E, Wilson YT, Papini R (2007) The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption. Burns 33(8): 979-985. 45. Trop M, Novak M, Rodl S, Hellbom B, Kroell W, et al. (2006) Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma 60(3): 648-652. 46. Hyun JS, Lee BS, Ryu HY, Christodoulides M (2008) Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicol Lett 179: 130-139. 47. Morones JR, Elechiguerra JL, Camacho A, Ramirez JT (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353. 48. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology 9: 30. 49. Chen M, Yang Z, Wu H, Pan X, Xie X, et al. (2011) Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int J Nanomedicine 6: 2873–2877. 50. Cortivo R, Vindigni V, Iacobellis L, Abatangelo G, Pinton P, et al. (2010) Nanoscale particle therapies for wounds and ulcers. Nanomedicine (Lond) 5: 641-656. 51. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, et al. (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388-1401. 52. Kurek A, Grudniak AM, Kraczkiewicz-Dowjat A, Wolska KI (2011) New antibacterial therapeutics and strategies. Pol J Microbiol 60: 3-12. 53. Mohammed Fayaz A, Ao Z, Girilal M, Chen L, Xiao X, et al. (2012) Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection. Int J Nanomedicine 7: 5007-5018. 54. Abdel-Mohsen AM, Abdel-Rahman RM, Hrdina R, Imramovský A, Burgert L, et al. (2012) Antibacterial cotton fabrics treated with core-shell nanoparticles. Int J Biol Macromol 50:1245-1253. 55. Makepeace BL, Watt PJ, Heckels JE, Christodoulides M (2001) Interactions of Neisseria gonorrhoeae with mature human macrophage opacity proteins influence production of proinflammatory cytokines. Infect Immun 69: 1909-1913. Hinokitiol Induces DNA Damage and Autophagy Followed by Cell Cycle Arrest and Senescence in Gefitinib-Resistant Lung Adenocarcinoma Cells 1. Liu F, Yu G, Wang G, Liu H, Wu X, et al. (2012) An NQO1-initiated and p53-independent apoptotic pathway determines the anti-tumor effect of tanshinone IIA against non-small cell lung cancer. PLoS One 7(7): e42138. 2. Ma L, Wen ZS, Liu Z, Hu Z, Ma J, et al. (2011) Overexpression and small molecule-triggered downregulation of CIP2A in lung cancer. PLoS One 6(5): e20159. 3. Roberts PJ, Stinchcombe TE (2013) KRAS mutation: should we test for it, and does it matter? J Clin Oncol 31(8): 1112-1121. 4. Wang J, Li ZH, White J, Zhang LB (2014) Lung cancer stem cells and implications for future therapeutics. Cell Biochem Biophys 69(3): 389-98. 5. Chen WJ, Ho CC, Chang YL, Chen HY, et al. (2014) Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun5: 3472. 6. Fukumasu H, Rochetti AL, Pires PR, Silva ER, et al. (2014) Constitutive androstane receptor ligands modulate the anti-tumor efficacy of Paclitaxel in non-small cell lung cancer cells. PLoS One 9(6): e99484. 7. Broet P, Dalmasso C, Tan EH, Alifano M, Zhang S, et al. (2011) Genomic profiles specific to patient ethnicity in lung adenocarcinoma. Clin Cancer Res 17(11): 3542-3550. 8. Lee H, Kim SJ, Jung KH, Son MK, Yan HH, et al. (2013) A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells. Oncol Rep 30(2): 863-869. 9. Brand TM, Iida M, Luthar N, Starr MM, Huppert EJ, et al. (2013) Nuclear EGFR as a molecular target in cancer. Radiother Oncol 108(3): 370-377. 10. Zhang W, Lei P, Dong X, Xu C (2014) The new concepts on overcoming drug resistance in lung cancer. Drug Des Devel Ther 8: 735-744. 11. Rogerio AP, Andrade EL, Leite DF, Figueiredo CP, Calixto JB (2009) Preventive and therapeutic anti-inflammatory properties of the sesquiterpene alpha-humulene in experimental airways allergic inflammation. Br J Pharmacol 158(4): 1074-1087. 12. Darmanin S, Wismayer PS, Camilleri Podesta MT, Micallef MJ, Buhagiar JA (2009) An extract from Ricinus communis L. leaves possesses cytotoxic properties and induces apoptosis in SK-MEL-28 human melanoma cells. Nat Prod Res 23(6): 561-571. 13. Bhalla Y, Gupta VK, Jaitak V (2013) Anticancer activity of essential oils: a review. J Sci Food Agric 93(15): 3643-53. 14. da Silva EB, Matsuo AL, Figueiredo CR, Chaves MH, Sartorelli P, et al. (2013) Chemical constituents and cytotoxic evaluation of essential oils from leaves of Porcelia macrocarpa (Annonaceae). Nat Prod Commun 8(2): 277-279. 15. Cai L, Ye H, Li X, Lin Y, Yu F, et al. (2013) Chemical constituents of volatile oil from Pyrolae herba and antiproliferative activity against SW1353 human chondrosarcoma cells. Int J Oncol 42(4): 1452-1458. 16. Su YC, Hsu KP, Wang EI, Ho CL (2012) Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. konishii from Taiwan. Nat Prod Commun 7(9): 1245-1247. 17. Seal S, Chatterjee P, Bhattacharya S, Pal D, Dasgupta S, et al. (2012) Vapor of volatile oils from Litsea cubeba seed induces apoptosis and causes cell cycle arrest in lung cancer cells. PLoS One 7(10): e47014. 18. Liu CC, Lin CC, Chen WS, Chen HY, Chang PC, et al. (2006) CRSD: a comprehensive web server for composite regulatory signature discovery. Nucleic Acids Res 34(Web Server issue): W571-577. 19. Yen TB, Chang HT, Hsieh CC, Chang ST (2008) Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. formosana (Florin) heartwood. Bioresour Technol 99(11): 4871-7. 20. Sudo M, Chin TM, Mori S, Doan NB, Said JW, et al. (2013) Inhibiting proliferation of gefitinib-resistant, non-small cell lung cancer. Cancer Chemother Pharmacol 71(5): 1325-1334. 21. Chang TH, Tsai MF, Su KY, Wu SG, Huang CP, et al. (2011) Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor. Am J Respir Crit Care Med 183(8): 1071-1079. 22. Schnekenburger M, Grandjenette C, Ghelfi J, Karius T, Foliguet B, et al. (2011) Sustained exposure to the DNA demethylating agent, 2'-deoxy-5-azacytidine, leads to apoptotic cell death in chronic myeloid leukemia by promoting differentiation, senescence, and autophagy. Biochem Pharmacol 81(3): 364-378. 23. González-Rodríguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, et al. (2014) Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 17(5): e1179. 24. Lee J, Ryu SH, Kang SM, Chung WC, Gold KA, et al. (2011) Prevention of bronchial hyperplasia by EGFR pathway inhibitors in an organotypic culture model. Cancer Prev Res (Phila) 4(8): 1306-15. 25. Shih YH, Chang KW, Hsia SM, Yu CC, Fuh LJ, et al. (2013) In vitro antimicrobial and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. Microbiol Res 168(5): 254-262. 26. Shih MF, Chen LY, Tsai PJ, Cherng JY (2012) In vitro and in vivo therapeutics of beta-thujaplicin on LPS-induced inflammation in macrophages and septic shock in mice. Int J Immunopathol Pharmacol 25(1): 39-48. 27. Morita Y, Matsumura E, Okabe T, Fukui T, Shibata M, et al. (2004) Biological activity of alpha-thujaplicin, the isomer of hinokitiol. Biol Pharm Bull 27(6): 899-902. 28. Komaki N, Watanabe T, Ogasawara A, Sato N, Mikami T, et al. (2008) Antifungal mechanism of hinokitiol against Candida albicans. Biol Pharm Bull 31(4): 735-737. 29. Budihas SR, Gorshkova I, Gaidamakov S, Wamiru A, Bona MK, et al. (2005) Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones. Nucleic Acids Res 33(4): 1249-1256. 30. Liu S, Yamauchi H (2009) p27-Associated G1 arrest induced by hinokitiol in human malignant melanoma cells is mediated via down-regulation of pRb, Skp2 ubiquitin ligase, and impairment of Cdk2 function. Cancer Lett 286(2): 240-249. 31. Liu S, Yamauchi H (2006) Hinokitiol, a metal chelator derived from natural plants, suppresses cell growth and disrupts androgen receptor signaling in prostate carcinoma cell lines. Biochem Biophys Res Commun 351(1): 26-32. 32. Lee YS, Choi KM, Kim W, Jeon YS, Lee YM, et al. (2013) Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment. J Nat Prod 76(12): 2195-202. 33. Shih YH, Chang KW, Hsia SM, Yu CC, Fuh LJ, et al. (2013) In vitro antimicrobial and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. Microbiol Res 168(5): 254-62. 34. Huang MH, Lee JH, Chang YJ, Tsai HH, Lin YL, et al. (2013) MEK inhibitors reverse resistance in epidermal growth factor receptor mutation lung cancer cells with acquired resistance to gefitinib. Mol Oncol 7(1): 112-20. 35. La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Ardizzoni A, et al. (2009) Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines. Biochem Pharmacol 78(5):460-8. 36. Calderon-Montano JM, Burgos-Moron E, Orta ML, Pastor N, Perez-Guerrero C, et al. (2012) Guanidine-reactive agent phenylglyoxal induces DNA damage and cancer cell death. Pharmacol Rep 64(6): 1515-1525. 37. Hisatomi T, Sueoka-Aragane N, Sato A, Tomimasu R, Ide M, et al. (2011) NK314 potentiates antitumor activity with adult T-cell leukemia-lymphoma cells by inhibition of dual targets on topoisomerase II{alpha} and DNA-dependent protein kinase. Blood 117(13): 3575-3584. 38. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, et al. (2008) GammaH2AX and cancer. Nat Rev Cancer 8(12): 957-967. 39. Podhorecka M, Skladanowski A, Bozko P (2010) H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. J Nucleic Acids 2010: 9. 40. Watrin E, Peters JM (2009) The cohesin complex is required for the DNA damage-induced G2/M checkpoint in mammalian cells. EMBO J 28(17): 2625-35. 41. Caron P, Aymard F, Iacovoni JS, Briois S, Canitrot Y, et al. (2012) Cohesin Protects Genes against cH2AX Induced by DNA Double-Strand Breaks. PLoS Genetics 8(1): e1002460. 42. Mah LJ, El-Osta AKaragiannis TC (2010) gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24(4): 679-686. 43. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, et al. (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8(3): 311-23. 44. Shamim U, Hanif S, Albanyan A, Beck FW, Bao B, et al. (2012) Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer. J Cell Physiol 227(4): 1493-1500. 45. Chiu SJ, Lee YJ, Hsu TS, Chen WS (2009) Oxaliplatin-induced gamma-H2AX activation via both p53-dependent and -independent pathways but is not associated with cell cycle arrest in human colorectal cancer cells. Chem Biol Interact 182(2-3): 173-182. 46. Hebar A, Rutgen BC, Selzer E (2012) NVX-412, a new oncology drug candidate, induces S-phase arrest and DNA damage in cancer cells in a p53-independent manner. PLoS One 7(9): e45015. 47. Lam M, Carmichael AR, Griffiths HR (2012) An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression. PLoS One 7(6): e40152. 48. Rodriguez-Rocha H, Garcia-Garcia A, Panayiotidis MI, Franco R (2011) DNA damage and autophagy. Mutat Res 711(1-2): 158-166. 49. Polewska J, Skwarska A, Augustin E, Konopa J (2013) DNA-damaging imidazoacridinone C-1311 induces autophagy followed by irreversible growth arrest and senescence in human lung cancer cells. J Pharmacol Exp Ther 346(3): 393-405. 50. Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, et al. (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23(7): 798-803. 51. Luo Y, Zou P, Zou J, Wang J, Zhou D, et al. (2011) Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKα dependent manner. Exp Gerontol 46(11): 860-7. 52. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24(22): 2463-79. 53. Szmulewitz RZ, Clark R, Lotan T, Otto K, Taylor Veneris J, et al. (2012) MKK4 suppresses metastatic colonization by multiple highly metastatic prostate cancer cell lines through a transient impairment in cell cycle progression. Int J Cancer 130(3): 509-20. 54. Kitagawa M, Niisato N, Shiozaki A, Ohta-Fujimoto M, Hosogi S, et al. (2013) A regulatory role of K(+)-Cl(-) cotransporter in the cell cycle progression of breast cancer MDA-MB-231 cells. Arch Biochem Biophys 539(1): 92-8. 55. Tang YC, Williams BR, Siegel JJ, Amon A (2011) Identification of aneuploidy-selective antiproliferation compounds. Cell 144(4): 499-512. 56. Cho JY, Kim AR, Jung JH, Chun T, Rhee MH, et al. (2004) Cytotoxic and pro-apoptotic activities of cynaropicrin, a sesquiterpene lactone, on the viability of leukocyte cancer cell lines. Eur J Pharmacol 492(2-3): 85-94. 57. Chowdhury G, Junnotula V, Daniels JS, Greenberg MM, Gates KS (2007) DNA strand damage product analysis provides evidence that the tumor cell-specific cytotoxin tirapazamine produces hydroxyl radical and acts as a surrogate for O(2). J Am Chem Soc 129(42): 12870-12877. 58. Weeks LD, Fu P, Gerson SL (2013) Uracil-DNA glycosylase expression determines human lung cancer cell sensitivity to pemetrexed. Mol Cancer Ther 12(10): 2248-60. 59. Chen HW, Lee JY, Huang JY, Wang CC, Chen WJ, et al. (2008) Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res 68(18): 7428-38. 60. Sugiyama A, Miyagi Y, Komiya Y, Kurabe N, Kitanaka C, et al. (2003) Forced expression of antisense 14-3-3beta RNA suppresses tumor cell growth in vitro and in vivo. Carcinogenesis 24(9): 1549-59. 61. Patanè S, Avnet S, Coltella N, Costa B, Sponza S, et al. (2006) MET overexpression turns human primary osteoblasts into osteosarcomas. Cancer Res 66(9): 4750-7. 62. White E, Lowe SW (2009) Eating to exit: autophagy-enabled senescence revealed. Genes Dev 23(7): 784-7. 63. Hiyoshi H, Abdelhady S, Segerström L, Sveinbjörnsson B, Nuriya M, et al. (2012) Quiescence and γH2AX in neuroblastoma are regulated by ouabain/Na,K-ATPase. Br J Cancer 106(11): 1807-15. 64. Shimizu M, Noda T, Yamano T, Yamada A, Morita, S (1993) Acute Oral Toxicity of Natural Food Additives in Mice and Rats. Seikatsu Eisei 37: 215-220. (Japanese) 65. Imai N, Doi Y, Nabae K, Tamano S, Hagiwara A, et al. (2006) Lack of hinokitiol (beta-thujaplicin) carcinogenicity in F344/DuCrj rats. J Toxicol Sci 31(4): 357-370. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55538 | - |
dc.description.abstract | 低毒性奈米材料增強Cefmetazole對多重抗藥性淋菌的抑菌效果
淋菌的多重抗藥性是目前臨床治療上棘手的挑戰,因此找出具預防或治療淋病效果的新策略是迫切的。本研究的目的為從各式奈米材料中找出具抗淋菌效果的奈米材料並探討其抑菌機轉。本研究共測試了21種包括矽類、碳類、金屬類及金屬氧化物類等各式奈米材料,結果顯示大部分的奈米材料皆有不錯的抗淋菌效果,其中金屬類的奈米銀(120 nm)抑菌效果最佳(MIC:12.5 μg/ml),若進一步測試不同尺寸的金屬銀粒子抗淋菌效果則可發現,120 nm奈米銀與20 nm奈米銀抑菌效果相近(MIC:12.5 μg/ml),但1 μm銀粒子抑菌效果最差(MIC:500 μg/ml)。進一步測試120 nm與20 nm奈米銀對細胞毒性可發現,120 nm奈米銀抑制90%淋菌生長的劑量對於人類纖維細胞株及上皮細胞株皆不會產生毒性,因此將針對120 nm奈米銀進行機轉探討。進一步以掃描式電子顯微鏡觀察可發現,經奈米銀處理的淋菌菌體外觀尺寸變小且細胞膜皺縮破損,而穿透式電子顯微鏡切面顯示細胞壁/膜變薄且細胞質空泡化。奈米銀除了可有效抑制淋菌標準菌株的生長外,對於臨床分離的多重抗藥性淋菌菌株也具有同樣效果,而且當奈米銀與抗生素cefmetazole合併使用時具有協同的抑菌作用,可有效降低抗生素使用劑量,讓菌株對cefmetazole從具抗性轉變為具感受性。而透過抗生素與奈米銀的結合試驗可證明,cefmetazole可有效攜帶奈米銀離子,且經感應耦合電漿質譜分析儀(Inductively Coupled Plasma-Mass Spectrometer)分析證實,奈米銀抗菌作用主要來自奈米結構而不是解離後的銀離子。本篇是第一篇探討奈米材料抗淋菌的研究,結果顯示奈米銀(120 nm)可輔助抗生素的作用且對細胞毒性小,預期未來在外用藥膏或衛生用品敷料具應用價值,以達到預防或治療多重抗藥性淋菌。 扁柏醇引起Gefitinib抗藥性肺腺癌DNA損傷自噬細胞週期停滯及衰老 根據2013年全美癌症統計報告,肺癌死亡率排名第1;而在台灣,肺癌也是國人十大癌症死因的第1名。肺癌治療除了傳統的手術切除搭配化學或放射治療外,亞洲人肺腺癌細胞特有的表皮生長因子接受器(Epidermal Growth Factor Receptor,EGFR)突變,對標把藥物也有良好感受性,但在標把藥物使用後的9個月內,病人通常會產生抗藥性,因此發展新的抗肺癌策略是迫切的。本研究的目的是從40種台灣特有植物萃取精油,找出對肺癌具有療效的精油並探討其機轉。研究結果發現台灣肖楠心材精油的活性成分扁柏醇(hinokitiol),具有抑制一系列肺癌細胞株生長的能力,同時也包括抑制對標把藥物具有抗性的PC9-IR與 H1975細胞株的聚落生長能力。進一步以基因微陣列分析及預測受到扁柏醇調控的基因及訊息傳遞路徑發現,DNA損傷(DNA damage)、自噬(autophagy)及細胞週期(cell cycle)是主要受到影響的層面。在H1975細胞株驗證也證實了扁柏醇(5 μM, 72 h)會引起DNA損傷指標γ-H2AX蛋白質的表現增加,且與p53無關;引起自噬指標LC3-II、p62、ATG5蛋白質的表現增加;引起細胞週期停滯在S期;引起細胞衰老等機轉導致細胞生長受到抑制。有趣的是,扁柏醇處理下,正常的肺臟纖維細胞在DNA損傷、自噬、細胞週期停滯現象皆不顯著。而動物實驗進一步證明了扁柏醇具有抑制腫瘤生長的效果,且免疫組織化學染色法也證實了DNA損傷及自噬現象相較於對照組皆有顯著增加與細胞實驗呼應。這篇研究發現了扁柏醇抑制肺腺癌腫瘤細胞生長的機轉,對於標把藥物具有抗性的肺腺癌具有治療潛力。 | zh_TW |
dc.description.abstract | Non-cytotoxic Nanomaterials Enhance Antimicrobial Activities of Cefmetazole against Multidrug-Resistant Neisseria Gonorrhoeae
The emergence and spread of antibiotic-resistant Neisseria gonorrhoeae has led to difficulties in treating patients, and novel strategies to prevent and treat this infection are urgently needed. Here, we examined 21 different nanomaterials including Si, carbons, metals and metal oxides for their potential activity against N. gonorrhoeae (ATCC 49226). The data showed good antibacterial activity among most nanomaterials. Specifically, silver nanoparticles (Ag NPs, 120 nm) showed the greatest potency for reducing N. gonorrhoeae colony formation (MIC: 12.5 μg/ml). We further test the size effects of silver nanoparticles and found 120 nm and 20 nm (MIC: 12.5 μg/ml) had better activity than 1 μm (MIC: 500 μg/ml) against N. gonorrhoeae. Ag NPs in 120 nm within a concentration range that did not induce cytotoxicity in human fibroblasts or epithelial cells compared with smaller size of 20 nm. Thus we focused on the antibacterial mechanisms of Ag NPs in 120 nm in the following experiments. Scanning electron microscopy revealed that the Ag NPs significantly reduced bacterial size and cell membrane integrity; transmission electron microscopy revealed that Ag NPs significantly reduced bacterial cell wall/ membrane thickness and simulated cytoplasm disorganization. Besides ATCC N. gonorrhoeae, Ag NPs possessed similar effects against multidrug-resistant N. gonorrhoeae in clinical isolates. Furthermore, combined treatment with 120 nm Ag NPs and cefmetazole produced additive effects. The modes of action probably due to the zeta potential of Ag NPs that might form complex with cefmetazole to enhance the susceptibility. Based on the ICP-MASS analysis, Ag NPs possessed the dominant influence on the antibacterial activity with their properties of the nanoparticles. This is the first report to screen the effectiveness of nanomaterials against N. gonorrhoeae, and our results indicate that 120 nm Ag NPs deliver low levels of toxicity to human epithelial cells and could be used as an adjuvant with antibiotic therapy, either for topical use or as a coating for biomaterials, to prevent or treat multidrug-resistant N. gonorrhoeae.. Hinokitiol Induces DNA Damage and Autophagy Followed by Cell Cycle Arrest and Senescence in Gefitinib-Resistant Lung Adenocarcinoma Cells According to the cancer statistics in 2013, lung cancer remains the top one leading cause of cancer death in USA and also in Taiwan. Despite of the good response initially following standard treatment options, most of the lung adenocarcinoma patients with EGFR mutations took EGFR-tyrosine kinase inhibitors (TKIs) might develop resistance within 9 months. To explore the new anti-cancer strategy is urgent. In this study, we investigated 40 Taiwan indigenous essential oils, these essential oils from plants were used as alternative treatments for a wide range of illnesses; however its’ anti-cancer effects and underlying mechanisms are less evaluated. In this study, we found hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, exhibited potent anticancer effects. Here, we demonstrated that hinokitiol inhibited a series of lung adenocarcinoma cells proliferation and colony formation as well as corresponding EGFR-TKI resistant cell lines (PC9-IR and H1975). The transcriptomic analysis and pathway prediction indicated that DNA damage, autophagy, and cell cycle pathways were majorly affected. Further validations confirmed that hinokitiol could inhibit cell proliferation without inducing apoptosis but autophagy; induced p53-independent DNA damage, arrested cell cycle in S phase and senescence, whereas had less effects in lung stromal fibroblasts. Furthermore, hinokitiol inhibited the growth of xenograft tumors and increaseed DNA damage and autophagy evidenced by IHC staining. Taken together, we first demonstrated the novel mechanisms of hinokitiol from essential oils as a promising anticancer agent to overcome the EGFR-TKI resistant lung cancer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T04:08:09Z (GMT). No. of bitstreams: 1 ntu-103-D98447003-1.pdf: 2812670 bytes, checksum: 8f1fe239a256538aa5fa50f5bf2fd584 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Contents
中文摘要 ii/v Abstract iii/vi Contents vii List of Figures ix List of Tables x Chapter I. The Impact of Developing Drug Resistance in Clinical Therapy 1. Summary 1 2. Drug resistance on infectious disease 1 3. Drug resistance on cancer 2 4. Motivation and purpose 2 5. References 3 Chapter II. Non-cytotoxic Nanomaterials Enhance Antimicrobial Activities of Cefmetazole against Multidrug-Resistant Neisseria Gonorrhoeae 1. Summary 4 2. Introduction 5 3. Materials and Methods 8 4. Results 12 5. Discussion 17 6. References 21 7. Figures 27 8. Tables 33 Chapter III. Hinokitiol Induces DNA Damage and Autophagy Followed by Cell Cycle Arrest and Senescence in Gefitinib-Resistant Lung Adenocarcinoma Cells 1. Summary 39 2. Introduction 40 3. Materials and Methods 42 4. Results 50 5. Discussion 56 6. References 62 7. Figures 69 8. Tables 84 List of Figures Non-cytotoxic Nanomaterials Enhance Antimicrobial Activities of Cefmetazole against Multidrug-Resistant Neisseria Gonorrhoeae Figure 1. The anti-bacterial activity of Ag particles against N. gonorrhoeae. 27 Figure 2. The cytotoxicity of Ag NPs of different sizes. 29 Figure 3. Morphological analysis of N. gonorrhoeae in response to 120-nm Ag NPs 30 Figure 4. Ag NPs form a complex with cefmetazole (CMZ). 31 Figure 5. Schematic representation of the interactions between Ag NPs and cefmetazole against N. gonorrhoeae. 32 Hinokitiol Induces DNA Damage and Autophagy Followed by Cell Cycle Arrest and Senescence in Gefitinib-Resistant Lung Adenocarcinoma Cells Figure 1. The effects of hinokitiol on cell proliferation. 69 Figure 2. The effect of hinokitiol on gene expression. 70 Figure 3. The effect of hinokitiol on the expression of DNA damage regulatory proteins. 72 Figure 4. The effect of hinokitiol on apoptosis and autophagy. 74 Figure 5. The effect of hinokitiol on cell cycle distribution. 76 Figure 6. Hinokitiol induced cellular senescence in H1975 cells and lung stromal fibroblasts. 78 Figure 7. In vivo antitumor activity of hinokitiol. 80 Figure 8. A schematic representation of the hypothetical mechanisms for the role of hinokitiol in suppressing lung adenocarcinomas. 83 List of Tables Non-cytotoxic Nanomaterials Enhance Antimicrobial Activities of Cefmetazole against Multidrug-Resistant Neisseria Gonorrhoeae Table 1. Anti-N. gonorrhoeae activity of the different nanomaterials tested. 33 Table 2. Minimum inhibitory concentration (MIC) values of silver nanoparticles of different sizes against a standard N. gonorrhoeae strain. 35 Table 3. Concentration of Ag+ ions leaching from Ag particles 36 Table 4. The results of a checkerboard assay using Ag NPs and cefmetazole combinations against drug-resistant N. gonorrhoeae clinical isolates. 37 Hinokitiol Induces DNA Damage and Autophagy Followed by Cell Cycle Arrest and Senescence in Gefitinib-Resistant Lung Adenocarcinoma Cells Table 1. The screening of essential oils on A549 cell proliferation as determined using MTT assay 84 Table 2. The effect of hinokitiol on adenocarcinoma cell proliferation as determined through trypan blue staining. 86 | |
dc.language.iso | en | |
dc.title | 克服治療傳染病與癌症抗藥性之新策略 | zh_TW |
dc.title | New Strategies to Overcome Drug Resistance on Infectious Disease and Cancer | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳健尉,陳璿宇,林泰元,周涵怡,何肇基 | |
dc.subject.keyword | 淋菌,多重抗藥性,奈米材料,奈米銀,細胞毒性,肺腺癌,表皮生長因子接受器突變,精油,扁柏醇,DNA損傷,自噬,衰老, | zh_TW |
dc.subject.keyword | Neisseria gonorrhoeae,multidrug resistance,nanomaterials,Ag NPs,cytotoxicity,lung adenocarcinoma,EGFR mutation,essential oils,hinokitiol,p53-independent DNA damage,autophagy,senescence,xenograft, | en |
dc.relation.page | 86 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-25 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。