請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55514
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾鈞懋 | |
dc.contributor.author | Zhi-Yu Luo | en |
dc.contributor.author | 羅智譽 | zh_TW |
dc.date.accessioned | 2021-06-16T04:06:47Z | - |
dc.date.available | 2019-09-05 | |
dc.date.copyright | 2014-09-05 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-09-01 | |
dc.identifier.citation | 中文部分
賴星宇(2009),2008年晚春到初夏期間台灣周遭海域的二氧化碳海氣交換通量與分佈。國立臺灣師範大學海洋環境科技研究所碩士論文。 沈柏源(2010),2003年夏季東海表水二氧化碳之時空變化。國立臺灣大學海洋研究所碩士論文。 楊胤飛(2013),2006年秋季東海表水二氧化碳之空間分佈與控制機制探討。國立臺灣大學海洋研究所碩士論文。 英文部分 Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., ... & Yoo, K. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53-60. Bauer, J. M., Grav, T., Blauvelt, E., Mainzer, A. K., Masiero, J. R., Stevenson, R., ... & Wright, E. L. (2013). Centaurs and Scattered Disk Objects in the Thermal Infrared: Analysis of WISE/NEOWISE Observations. The Astrophysical Journal, 773(1), 22. Beardsley, R. C., Limeburner, R., Yu, H., & Cannon, G. A. (1985). Discharge of the Changjiang (Yangtze river) into the East China sea. Continental Shelf Research, 4(1), 57-76. Cai, W. J. (2011). Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?. Annual Review of Marine Science, 3, 123-145. Chen, C., Beardsley, R. C., Limeburner, R., & Kim, K. (1994). Comparison of winter and summer hydrographic observations in the Yellow and East China Seas and adjacent Kuroshio during 1986. Continental Shelf Research, 14(7), 909-929. Chen, C. T. A., & Borges, A. V. (2009). Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8), 578-590. Chou, W. C., Gong, G. C., Sheu, D. D., Hung, C. C., & Tseng, T. F. (2009). Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007. Journal of Geophysical Research, 114(C7), C07026. Chou, W. C., Gong, G. C., Tseng, C. M., Sheu, D. D., Hung, C. C., Chang, L. P., & Wang, L. W. (2011). The carbonate system in the East China Sea in winter. Marine Chemistry, 123(1), 44-55. Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., ... & Melack, J. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1), 172-185. Dickson, A.G. (Ed.). (1994). Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. Gong, G. C., Lee Chen, Y. L., & Liu, K. K. (1996). Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Continental Shelf Research, 16(12), 1561-1590. Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., & Hill, P. (2006). Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophysical Research Letters, 33(16), L16611. Hsueh, Y. (2000). The Kuroshio in the East China Sea. Journal of Marine Systems, 24(1), 131-139. Jacobs, C. M., Kohsiek, W. I. M., & Oost, W. A. (1999). Air–sea fluxes and transfer velocity of CO2 over the North Sea: results from ASGAMAGE. Tellus B, 51(3), 629-641. Large, W. G., & Pond, S. (1981). Open ocean momentum flux measurements in moderate to strong winds. Journal of physical oceanography, 11(3), 324-336. Liss, P. S. (1973, March). Processes of gas exchange across an air-water interface. In Deep Sea Research and Oceanographic Abstracts (Vol. 20, No. 3, pp. 221-238). Elsevier. Liss, P. S., & Merlivat, L. (1986). Air-sea gas exchange rates: Introduction and synthesis. In The role of air-sea exchange in geochemical cycling (pp. 113-127). Springer Netherlands. Liu, K.K., Peng, T.H., Shaw, P.T., and Shiah, F.K., 2003. Circulation and biogeochemical processes in the East China Sea and the vicinity of Taiwan: an overview and a brief synthesis. Deep Sea Research PartⅡ: Topical Studies in Oceanography, 50(6): 1055-1064. McGillis, W. R., Edson, J. B., Zappa, C. J., Ware, J. D., McKenna, S. P., Terray, E. A., Feely, R. A. (2004). Air‐sea CO2 exchange in the equatorial Pacific. Journal of Geophysical Research: Oceans (1978–2012), 109(C8). Milliman, J. D., Qin, Y. S., & Park, Y. A. (1989). Sediments and sedimentary processes in the Yellow and East China Seas. Sedimentary facies in the active plate margin. Terra Scientific Publishing Company, Tokyo, 233-249. Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Upstill‐Goddard, R. C. (2000). In situ evaluation of air‐sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1), 373-387. Nitani, H. (1972). Beginning of the Kuroshio. In Kuroshio: Its physical aspects. ed. by H. Stommel and K. Yoshida, University of Tokyo Press, Tokyo, 129-163. Peng, B. T. H., Hung, J. J., Wanninkhof, R., & Millero, F. J. (1999). Carbon budget in the East China Sea in spring. Tellus B, 51(2), 531-540. Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., ... & Thullner, M. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6(8), 597-607. Shim, J., Kim, D., Kang, Y. C., Lee, J. H., Jang, S. T., & Kim, C. H. (2007). Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea. Continental Shelf Research, 27(20), 2623-2636. Tseng, C. M., Liu, K. K., Gong, G. C., Shen, P. Y., & Cai, W. J. (2011). CO2 uptake in the East China Sea relying on Changjiang runoff is prone to change. Geophysical Research Letters, 38(24). Tseng, C. M., Shen, P. Y., Liu, K. K. (2014). Reliability of a synthetic dataset of air-sea CO2 exchange flux in the river-dominated East China Sea and improved estimates of annual and seasonal net mean fluxs. Biogeoscience, (submitted). Tsunogai, S., Watanabe, S., Nakamura, J., Ono, T., & Sato, T. (1997). A preliminary study of carbon system in the East China Sea. Journal of Oceanography, 53(1), 9-17. Tsunogai, S., Watanabe, S., & Sato, T. (1999). Is there a “continental shelf pump” for the absorption of atmospheric CO2?. Tellus B, 51(3), 701-712. Wanninkhof, R., & McGillis, W. R. (1999). A cubic relationship between air‐sea CO2 exchange and wind speed. Geophysical Research Letters, 26(13), 1889-1892. Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., & McGillis, W. R. (2009). Advances in quantifying air-sea gas exchange and environmental forcing*. Marine Science, 1. Wang, S. L., Arthur Chen, C. T., Hong, G. H., & Chung, C. S. (2000). Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research, 20(4), 525-544. Wark, K., C.F. Warner, & W.T. Davis (1998). Air Pollution: Its Origin and Control. 3rd ed. Menlow Park, Ca: Addison-Wesley, pp. 584. Weiss, R. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine chemistry, 2(3), 203-215. Welschmeyer, N. A. (1994). Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39(8), 1985-1992. Zhai, W., & Dai, M. (2009). On the seasonal variation of air–sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Marine Chemistry, 117(1), 2-10. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55514 | - |
dc.description.abstract | 近岸海域位於開放性大洋和陸地的緩衝地帶,其對大氣CO2的吸收與釋放,受到環境與人為活動之影響,其碳通量變化在全球碳循環中扮演相當重要的角色。過往東海CO2通量之研究,受限於時間、經費和人力等因素,其研究區域均不能完整覆蓋東海,各研究之觀測結果是否能代表整個東海?。本研究利用東海pCO2經驗模式(Tseng et al. 2014)並結合衛星遙測表水溫(SST)、葉綠素a (Chl-a)和風速之資料,與現場資料進行評估,佐證經驗模式的可靠性與代表性。進一步進行了衛星風場資料的校正,顯示遙測風速偏高於實測風速(實測風速=0.8×遙測風速),重新評估了東海之CO2碳量,東海全年平均碳通量約為 -1.1 mol C m-2 y-1,各季節之通量,春(3至5月)、夏(6至8月)、秋(9至11月)、冬(12至2月)分別為 -2.1、-0.3、-0.2、-1.9 mol C m-2 y-1。顯示東海是碳的儲存區(sink),春季碳之吸收量最大,至夏季因溫度上升導致吸收能力減弱,而在夏末秋初(約在8至10月),由匯(sink)轉源(source),秋末又由source轉為sink,至冬季sink增強。相較於前人之結果碳通量少了近一半,顯示風場之空間分布對CO2通量是有影響的,特別是在一些劇烈氣候下,使風速之空間梯度越顯著,對CO2通量影響顯著。 | zh_TW |
dc.description.abstract | To accurately investigate air-sea CO2 exchange in the coastal waters, especially for the East China Sea (ECS), is challenging because of the environment complexities and diversity of the shelf seas, easily affected by human activities and climate changes. Reliable assessments of air-sea CO2 exchange fluxes in the ECS are additionally limited by inadequately spatiotemporal coverage and shortage of manpower resources. Here, we explore seasonally representative CO2 uptakes by the whole ECS by combining the remote sensing data and field observations. We firstly evaluated the results of Tseng et al. (2014) and further demonstrated the reliability and representativeness of Tseng’s empirical algorithm for computing pCO2 by using remote sensing data including SST, Chlorophyll a (Chl-a) and wind speed. Secondly, we demonstrated the satellite wind speed data are higher than those collected in land weather station (field wind speed = 0.8 × satellite wind speed), in order to re-evaluate the CO2 fluxes in the ECS. The average annual flux between 2003 and 2010 was constrained to -1.1 mol C m-2 y-1 as a net sink of atmospheric CO2 with the seasonal mean fluxes of -2.1 (Mar.-May), -0.3 (June-Aug.), -0.2 (Sep.-Nov.) and -1.9(Dec.-Jan.), respectively. The flux seasonality showed a strong sink in spring and winter, a sink-to-source transition during late summer – mid-fall period and a source-to-sink transition in late fall. Finally, the annual mean CO2 flux estimated in this study was nearly one half of those reported previously, indicating the importance of wind effect regarding spatial variability and reliability of wind field. Especially in some severe weather events, the more spatial gradients of wind speed would make more significant impact on the air-sea exchange flux of CO2 in continental margins. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T04:06:47Z (GMT). No. of bitstreams: 1 ntu-103-R00241405-1.pdf: 7935493 bytes, checksum: de41f1ffa6aec7819f4653ce18afdb2e (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv 第一章 緒論 1 1.1 引言 1 1.2 海氣介面CO2通量之研究 2 1.3 k值文獻整理與比較 4 1.4 東海概況與pCO2之研究 8 1.5 東海pCO2時序變化之經驗模式 12 1.6 研究目的 18 第二章 研究材料與方法 19 2.1 研究區域與東海環流概述 19 2.2 二氧化碳分壓測定之方法 23 2.2.1 儀器設備 23 2.2.2 二氧化碳分壓自動分析系統採樣方法 26 2.3 水文與生地化參數資料 28 2.4 陸上與海面氣象測站資料 29 2.4.1 陸上氣象站 29 2.4.2 海面氣象站 29 2.5 衛星資料 32 第三章 結果與討論 33 3.1 衛星資料可靠性之評估 33 3.1.1 衛星海表面溫度(SST)之評估 35 3.1.2 衛星海表面葉綠素a(Chl-a)之評估 36 3.1.3 衛星風場之評估 37 3.2 研究區域之平均值是否能代表整個東海? 40 3.2.1 網格平均法 40 3.2.2 區域代表性 41 3.3 東海CO2海氣交換通量之評估 43 3.4 風場空間分布對CO2海氣交換通量之影響 45 第四章 結論 48 Reference 49 | |
dc.language.iso | zh-TW | |
dc.title | 風場數據可靠性及變異性對東海二氧化碳海氣交換通量估算的影響 | zh_TW |
dc.title | Effect of wind regarding reliability and variability on the flux estimates of the air-sea CO2 exchange in the East China Sea | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 余英芬,陳宗岳,黃國芳 | |
dc.subject.keyword | 東海,二氧化碳分壓,海氣交換,衛星遙測, | zh_TW |
dc.subject.keyword | East China Sea,pCO2,Air-sea exchange,Satellite Remote Sensing, | en |
dc.relation.page | 53 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-09-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 7.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。