Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55509
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世銘
dc.contributor.authorTzu-Yu Keen
dc.contributor.author柯姿瑜zh_TW
dc.date.accessioned2021-06-16T04:06:29Z-
dc.date.available2019-09-09
dc.date.copyright2014-09-09
dc.date.issued2014
dc.date.submitted2014-09-02
dc.identifier.citation王文政、藍惠玲。1998。近紅外光測定技術在水產飼料品管上的應用。FossNIRSystem近紅外光光譜儀研討會講義。台北:頤華科技股份有限公司。
王怡景。2010。碳氮對文心蘭生長與開花之影響。碩士論文。台北:臺灣大學園藝暨景觀學系研究所。
李哖、王明吉。1997。白花蝴蝶蘭由幼年到成孰相之礦物程分和碳水化合物之變化。中國園藝 43: 275-305。
李哖。2005。蝴蝶蘭。臺灣農家要覽:899-901。臺北:豐年社。
席友亮。2001。以機器視覺分級文心蘭切花之研究。中國園藝 43: 275-305。農業機械 10: 17-30。
邱鶴圍。1999。近紅外光應用於芒果內部品質分析之研究。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。
林育如、李哖。1998。蝴蝶蘭涼溫催花前後之光需求。中國園藝 44: 463-478。
侯雋言。2008。貯運條件對蝴蝶蘭植株生理及貯後品質之影響。碩士論文。台北:國立臺灣大學園藝系研究所。
柯姿瑜、陳世銘、張耀乾、蔡兆胤、張詠惠。2013。以近紅外光光譜進行蝴蝶蘭葉片蔗糖含量之非破壞性檢測。出自“2013生機與農機學術研討會論文集”,H14。台北:台灣生物機電學會。
陳世銘、張文宏、謝廣文。1998。果汁糖度檢測模式之研究。農業機械學刊 7(3): 41-60。
陳加增。2001。近紅外光應用於水果糖酸度線上檢測之研究。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。
陳加增。2007。應用智慧型光譜資訊分析於蔬菜植株氮含量檢測之研究。博士論文。台北:國立台灣大學生物產業機電工程學研究所。
陳加增、陳世銘、林宗賢、楊宜璋、莊永坤。2008。應用近紅外光於芒果內部品質線上檢測系統之整合研究。農業機械學刊 17(1): 1-14。
陳彥睿、易美秀、魏芳明、蔡宛育。2003。應用 1-MCP 在蝴蝶蘭屬及朵麗蝶蘭盆花模擬外銷貯運之研究。台中區農業改良場研究彙報,79:1-10。
陳順宇。2005。多變量分析。台北:華泰文化出版公司。
胡易平。2011。利用近紅外光技術檢測稻米鮮度之研究。碩士論文。台北:臺灣大學生物產業機電工程學系研究所。
張文宏、陳世銘。1993。以機器視覺引導機器人選別水果。農業機械學刊 2(3): 11-24。
區少梅、林聖敦、林添立、吳松杰、田美純。1997。近紅外線光譜技術分析椪柑品質相關成分之研究。中國農業化學會誌35(4): 462-474。
張詠惠、陳世銘、張耀乾、蔡兆胤、柯姿瑜。2013。應蝴蝶蘭葉片粉末蔗糖含亮光譜分析之研究。出自“2013 年生機與農機學術研討會論文集”,H06。台北:台灣生物機電學會。
黃君席、陳世銘、羅筱鳳、蔡兆胤、莊永坤、胡易平、王啟維、楊宜璋、陳毓良。2010。應用光譜影像檢測蔬菜硝酸鹽含量。出自“2010 年農機與生機科技論文發表會論文集”,419-424。屏東:中華農業機械學會。
黃君席。2011。以光譜影像技術檢測葉菜類蔬菜之硝酸鹽含量。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。
潘慶民、韓興國、白永飛、楊景成。2002。植物非結構性儲藏碳水化合物的生理生態學研究進展。植物學通報。19(1): 30-38。
蔡媦婷、賴思輪、陳珊妮、戴廷恩、謝廷芳、呂椿棠。2013。白花蝴蝶蘭葉片性狀與開花性狀之相關性探討。台灣農業研究 62(1): 11-20。
蔡媦婷、賴思輪、陳珊妮、謝廷芳、呂椿棠。2014。以葉片性狀作為預測蝴蝶蘭開花品質之參考指標。台灣蘭花 13: 30-36。
戴竹君、陳世銘、潘姵如、蔡兆胤、莊永坤、張耀乾、侯雋言。2011。應用近紅外光譜技術於蝴蝶蘭蔗糖含量之研究。出自“2011 年生機與農機論文發表會論文集”,C-10。嘉義:台灣生物機電學會。
謝志誠、林勁助。1994。以類神經網路技術作為青椒形狀及大小之分級。農業機械學刊 3(3): 15-27。
Al-Mallahi, A, T Kataoka and H Okamoto 2008. Discrimination between potato tubers and clods by detecting the significant wavebands. Biosystems Engineering 100: 329-337.
Bro, Rasmus, Frans van den Berg, Anette Thybo, Charlotte M Andersen, Bo M Jorgensen and Henrik Andersen 2002. Multivariate data analysis as a tool in advanced quality monitoring in the food production chain. Trends in Food Science & Technology 13: 235-244.
Chang, Y. H., S. Chen, Y. C. Alex Chang, C. Y. Tsai, I. C. Yang, Y. C. Chien and T.Y. Ko. 2014. Evaluation of sucrose content of phalaenopsis leaf powder using near infrared spectroscopy. In “Proceedings of the 7th International Symposium on Machinery and Mechatronics for Agricultural and Bio-systems Engineering (ISMAB 2014)”, 927-933. Yilan, Taiwan: National Ilan University.
Chang, W. H., S. Chen, and C. C. Tsai. 1998. Development of a universal algorithm for use of NIR in estimation of soluble solids in fruit juices. Transactions of the ASAE 41(6):1739-1745.
Chao, K., P. M. Mehl, and Y. R. Chen. 2002. Use of hyper- and multi- spctral imaging for detection of chicken skin tomors. American Society of Agricultural Engineers 18(1): 113-119.
Choi, CH, KJ Lee and B Park 1997. Prediction of soluble solid and firmness in apple by visible/near-infrared spectroscopy. Journal of the Korean Society for Agricultural Machinery 22.
Chen, W. S., H. Y. Liu, Z. H. Liu, L. Yang, and W. H. Chen. 1994 Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiol. Plant 90: 391-395.
Chen., C. T., S. Chen, C. Y. Wang, I. C. Hsiao and C. Y. Tsai. 2008. Evalution of nitrogen content in cabbage seedlings using hyper-spectral images. Sensing and Instrumentation for Food Quality and Safety 2(2): 97-102.
Elmasry, Gamal, Mohammed Kamruzzaman, Da-Wen Sun and Paul Allen 2012. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Critical reviews in food science and nutrition 52: 999-1023.
Gonzales, R.C. and R. E. Woods. 1992. Digital Image Processing. Addison-Wesley Publishing Company.
Galactic. 1997. PLSplus / IQ User's Guide. Salem, NH, U.S.A.:Galactic Industries Corporation.
Hou, J. Y., W.B. Miller and Y.C.A. Chang. 2011. Effects of simulated dark shipping on the carbohydrate status and post-shipping performance of Phalaenopsis. J. Amer. Soc. Hort. Sci. 136: 364-371.
Johnson, R. A. and D. W. Wichern. 2007. Applied Multivarite Statistical Analysis. 6/E. Pearson Publishing Company.
Kataoka, K., K. Sumitomo, T. Fudano, K. Kawase. 2004. Changes in sugar content of Phalaenopsis leaves before floral transition. Scientia Horticulturar 102L 121-132.
Kim, MS, YR Chen and PM Mehl 2001. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transaction-ASAE 44: 721-730.
Kolzlowski, T. T., P. J. Kramer and S. G. Pallardy. 1991. The Physiological Ecology of Woody Plants. Academic Press, New York.
Ko, T. Y., S. Chen, W. T. Tsai, Y. C. Alex Chang, C. Y. Tsai, Y. H. Chang and T. E. Dai. 2014. Development of phalaneopsis quality model using hyperspectral imaging techniques. In “Proceedings of the 7th International Symposium on Machinery and Mechatronics for Agricultural and Bio-systems Engineering (ISMAB 2014)”, 340-346. Yilan, Taiwan: National Ilan University.
Kubota, S. and K. Yoneda. 1993. Effect of light intensity preceding day/light temperature on the sensitivity of Phalaenopsis flower. J. Japan Soc. Hort. Sci. 62: 595-600.
Magwaza, Lembe S, Umezuruike Linus Opara, Helene Nieuwoudt, Paul JR Cronje, Wouter Saeys and Bart Nicolai 2012. NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food and Bioprocess Technology 5: 425-444.
Mehl, Patrick M, Yud-Ren Chen, Moon S Kim and Diane E Chan 2004. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. Journal of Food Engineering 61: 67-81.
Nicolai, Bart M, Elmi Lotze, Ann Peirs, Nico Scheerlinck and Karen I Theron 2006. Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and Technology 40: 1-6.
Noh, Hyun Kwon and Renfu Lu 2007. Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biology and Technology 43: 193-201.
Ozaki, Yukihiro, W Fred McClure and Alfred A Christy 2006. Near-infrared spectroscopy in food science and technology: Wiley. com.
Plaza, Antonio, Jon Atli Benediktsson, Joseph W Boardman, Jason Brazile, Lorenzo Bruzzone, Gustavo Camps-Valls, Jocelyn Chanussot, Mathieu Fauvel, Paolo Gamba and Anthony Gualtieri 2009. Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment 113: S110-S122.
Sun, Da-Wen 2009. Infrared spectroscopy for food quality analysis and control: Academic Press.
Tsai, W. T., S. L. Lai, S. N. Chen, T. E. Dai, T. F. Hsieh, C. T. Lu. 2013. Correlation analysis between leaf and flower traits of Phalaenopsis. Taiwan Agricultural Research 62(1) 20-26.
Vaz, A. P. A., G. B. Kerbauy, and R. C. L. Figueiredo-Ribeiro. 1998. Changes in soluable carbohydrates and starch partioning during vegetative bud formation from root tips of Catasetum fimbriatum(Orchidaceae). Plant Cell, Tissue and Organ Culture 54: 105-111.
Wang, Y. T. 1995. Phalaenopsis orchid light requirement during the induction of spiking. HorScience 30: 59-61.
Xing, J. and Josse De Baerdemaeker. 2005. Bruise detection on ‘Jonagold’apples using hyperspectral imaging. Postharvest Biology and Technology 37: 152-162.
Yang, C. W., S. Chen, F. Ouyang, I. C. Yang, and C. Y. Tsai. 2011. A Robust Identification Model for Herbal Medicine Using Near Infrared Spectroscopy and Artificial Neural Network. Food and Drug Analysis 19(1): 9-17.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55509-
dc.description.abstract蝴蝶蘭優美,花色豐富且花期長,深受消費者喜愛,為台灣四大出口農產品之一。然而面對國際市場之競爭,台灣必須在栽培管理及儲運管理做更大的改善,以提升品質與國際競爭力。根據前人研究(Kubota and Yoneda, 1993;Wang, 1995)指出蝴蝶蘭抽梗率與澱粉、蔗糖和葡萄糖等碳水化合物之變化有關;其中在碳水化合物的變化上,蝴蝶蘭容易受儲運條件和栽培環境的影響。但目前檢測碳水化合物含量使用的化學方法,不但耗時,且須破壞樣本,無法進行全面性檢測。除了碳水化合物對於蝴蝶蘭造成影響外,亦有研究(蔡等人,2013;李與王,1997)指出大苗階段的蝴蝶蘭葉片幾何外觀與開花性狀表現有相關性。本研究希望應用光譜影像技術,利用其即時、非破壞性且具有空間資訊之優點,用以檢測大白花蝴蝶蘭( Phalaenopsis Sogo Yukidian ‘V3’ )葉片之碳水化合物值和其幾何性狀參數,並建立模式以預測開花品質。
本研究分為三部份(三次試驗),試驗一為建立鮮葉高光譜及粉末光譜檢量模式,研究結果顯示鮮葉高光譜蔗糖檢量模式以(1,8,8,1)的檢量模式為最佳,其RSQ為0.545,1-VR為0.396,SEC為2.020,SECV為2.553﹔而鮮葉高光譜澱粉檢量模式以(1,6,6,1)為最佳,其RSQ達至0.823,1-VR為0.758,SEC為3.351,SECV為4.257。粉末光譜蔗糖檢量模式,以(2,8,8,1)的檢量模式為最佳,其RSQ為0.930,1-VR為0.863,SEC為1.193,SECV為1.669﹔粉末光譜澱粉檢量模式為(2,8,8,1)為最佳,其RSQ為0.957,1-VR為0.886,SEC為2.037,SECV為3.332。
試驗二為建立鮮葉光纖光譜檢量模式,結果顯示鮮葉光纖光譜之蔗糖檢量模式以(1,8,8,1)的檢量模式為最佳,其RSQ為0.916,1-VR為0.860,SEC為1.219,SECV為1.204﹔而鮮葉光纖光譜之澱粉檢量模式為(2,6,6,1)為最佳,RSQ為0.863,1-VR為0.784,SEC為1.475,SECV為2.714。
試驗三為以鮮葉光纖光譜及高光譜影像建立開花品質預測模型,其中蝴蝶蘭樣本量測鮮葉光纖光譜值和鮮葉高光譜光譜值後栽培成花,量測所得的高光譜值亦可用鮮葉光纖光譜值所推測而得之蔗糖值和澱粉值建立檢量線。結果顯示鮮葉高光譜蔗糖檢量模式以(1,8,8,1)的檢量模式為最佳,其RSQ為0.562,1-VR為0.498,SEC為1.291,SECV為1.351﹔而鮮葉高光譜澱粉檢量模式為(1,10,10,1)為最佳,其RSQ達至0.748,1-VR為0.707,SEC為2.335,SECV為3.094。
建立開花品質預測模型中,本研究選用倒傳遞類神經網路作為開花品質預測模型。其中模型又依碳水化合物來自於不同試驗,分為模型I和模型II。模型I以試驗二中的粉末光譜檢量模式所推論得到兩個代表性內部品質參數(第2片葉蔗糖值、第2片葉澱粉值)和三個代表性外部品質參數(第2片葉面積、第2片葉面積、第3片葉周長)預測開花品質,結果顯示單梗模型的平均準確率比不分梗數模型的平均準確率高約6%左右,其中單梗模型中又以輸入層參數含有澱粉值得平均準確力為最高,均方根誤差為0.7295朵;預測能力在±1朵時其平均準確率,訓練組可達81.42%、驗證組為75%。模型II以試驗三中的所量測鮮葉高光譜值代入試驗一中的鮮葉高光譜蔗糖檢量模式得的蔗糖值和三個代表性外部品質參數(第2片葉蔗糖值、第2片葉面積、第2片葉面積、第3片葉周長)以單梗植株預測開花品質,均方根誤差為1.3180朵;預測能力在±1.4朵時其平均準確率,訓練組可達81.92%、驗證組為74.49%。上述之結果顯示值得作為蘭花產業的應用性。
zh_TW
dc.description.abstractPhalaenopsis is one of the most valuable potted floriculture crops in the world; and it is one of the most important exported flowers from Taiwan. Facing the competition from the international markets, the management of cultivation and storage treatments should be enhanced to improve the quality and the competition ability.
According to previous studies, content of carbohydrate in leaves is a crucial indicator to evaluate the flowering quality of Phalaneopsis. However, the current chemical methods to measure carbohydrate content in different parts of plants and thin section specimen examination of lateral buds are time consuming, laborious and destructive. In addition to interior quality (carbohydrate content), previous study also showed spiking rate was positively correlated with leaf area of Phalaneopsis. Instead of correlating leaf area with spiking rate, canonical correlation could be used to identify significant correlations between leaf traits and flower traits. Furthermore, it also showed that the second and third leaf traits of tested varieties had the highest correlation with flowering traits. Therefore, the spectral analysis and imaging technology was adopted in this study to analyze the carbohydrate in the leaves of Phalaneopsis. Spectral imaging technology is a rapid, non-destructive inspection method, and the distribution of carbohydrates in each leaf can be measured, especially the second and third leaf. In order to predict the quality of flowers, we proposed to use above significant parameters with backpropagation artificial neural network (BANN) to build a classifier based on the interior and exterior parameters for predicting the flowering quality of Phalaneopsis.
This study was devided into three parts (three experiments). The purpose of first experiment was to build the fresh leaf hyperspectral imaging calibration models (FLHI) and powder form near infrared calibration models (PFNI). The FLHI results showed that sucrose content model under math treatment of (1,8,8,1) gave the results of RSQ=0.545, 1-VR=0.396, SEC=2.020 and SECV=2.553; and starch content model under math treatment of (1,6,6,1) gave RSQ=0.823, 1-VR=0.758, SEC=3.351 and SECV=4.257. The PFNI sucrose content under math treatment of (2,8,8,1) gave the results of RSQ=0.930, 1-VR=0.863, SEC=1.193 and SECV=1.669 while PFNI starch content under math treatment of (2,8,8,1) concluded RSQ=0.957, 1-VR=0.886, SEC=2.073 and SECV=3.332.
The second experiment was to build the fresh leaf fiber optic spectral calibration models (FLFOS). It showed that the results of FLFOS sucrose content model under math treatment of (1,8,8,1) were RSQ=0.916, 1-VR=0.860, SEC=1.219 and SECV=1.204 while FLFOS starch content model under math treatment of (2,6,6,1) were RSQ=0.863, 1-VR=0.784, SEC=1.475 and SECV=2.714.
The third experiment was using fresh leaf fiber optic spectral and hyperspectral imaging system technique to predict the flowering quality. In this experiment, we cultivated all of samples until they had buds and flowers. Futhermore, we also used the hyperspectral measurements to predict the sucrose and starch content. The results showed that FLHI sucrose content model of the third experiment under math treatment of (1,8,8,1) were RSQ=0.562, 1-VR=0.498, SEC=1.291 and SECV=1.351. while FLHI starch content model under math treatment of (1,10,10,1) were RSQ=0.748, 1-VR=0.707, SEC=2.335 and SECV=3.094.
Regarding the development of BANN prediction models for flowering quality, we devided into model I and model II based on the interior parameters. Model I used FLFOS sucrose and starch contents with the exterior parameterts to predict the flowering quality. The results showed the model I with the number of one spike, having the starch content and sucrose conttent, had the best predicted ability. The root mean square (RMS) error was XXX, and averaged accuracy rate is 81.42% when applied to the training set, while the test set is 75%. In model II, FLHI sucrose content and the exterior parameters were used to predict the flowering quality. The RMS error was XXX, and averaged accuracy rate is 81.92% when applied to the training set, while the test set is 74.49%.
All of results proved that the hyperspectral imaging system and near infrared technique can be used as a rapid and non-destructive methods for the prediction of flowering quality in the orchid production.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:06:29Z (GMT). No. of bitstreams: 1
ntu-103-R01631027-1.pdf: 5446736 bytes, checksum: a8130fbd734f6add7aa52fa4d51f46ac (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌 謝 i
摘 要 ii
Abstract iv
目 錄 vii
圖目錄 x
表目錄 xiv
第一章 前 言 1
1.1前言 1
1.2研究目的 2
第二章 文獻探討 3
2.1蝴蝶蘭大苗與未來開花品質之相關性 3
2.1.1蝴蝶蘭大苗葉片幾何特徵 3
2.1.2蝴蝶蘭大苗葉片碳水化合物 5
2.2近紅外光理論與應用 6
2.3光譜影像與應用 8
2.3.1高光譜影像 9
2.4機器學習演算法 14
第三章 材料與方法 16
3.1試驗流程 16
3.2實驗設備 17
3.2.1試驗一實驗設備 18
3.2.2試驗二之實驗設備 26
3.2.3試驗三實驗設備 29
3.3試驗一:建立鮮葉高光譜及粉末光譜檢量模式 29
3.3.1樣本準備 30
3.3.2光譜量測 30
3.3.3化學分析:可溶性醣萃取 34
3.3.4化學分析:蔗糖成份分析 35
3.3.5化學分析:澱粉測定 35
3.3.6光譜檢量模式建立 36
3.4試驗二:建立鮮葉光纖光譜檢量模式 38
3.4.1樣本準備 39
3.4.2試驗場所 40
3.4.3光譜量測 41
3.4.4光譜檢量模式建立 42
3.5試驗三:以鮮葉光纖光譜及高光譜影像建立開花品質預測模式 42
3.5.1樣本準備 43
3.5.2蝴蝶蘭開花栽培 45
3.5.3光譜量測 50
3.5.4外部品質參數之量測 52
3.5.5外部品質參數之影像處理 53
3.3.6調查開花品質指標 58
3.3.7開花品質模式建立 61
3.3.7.1主成份分析挑選輸入層參數 61
3.3.7.2模型建立與驗證方式 63
第四章 結果與討論 66
4.1試驗一:建立鮮葉高光譜和粉末光譜檢量模式 66
4.1.1鮮葉高光譜檢量模式 66
4.1.2粉末光譜檢量模式 74
4.2試驗二:建立鮮葉光纖光譜檢量模式 79
4.3試驗三:以鮮葉光纖光譜及高光譜影像建立開花品質預測模式 82
4.3.1建立鮮葉高光譜檢量模式 82
4.3.2外部品質參數分析 86
4.3.3開花品質指標調查 88
4.3.4倒傳遞類神經網路模式建立 89
4.3.4.1輸入層參數之選定 89
4.3.4.2開花品質預測模型I 96
4.3.4.3開花品質預測模型II 106
4.3.4.4開花品質預測模型綜合討論 110
結 論 113
參考文獻 116
dc.language.isozh-TW
dc.subject倒傳遞類神經網路zh_TW
dc.subject高光譜影像zh_TW
dc.subject近紅外光zh_TW
dc.subject蝴蝶蘭zh_TW
dc.subject碳水化合物zh_TW
dc.subject外觀性狀zh_TW
dc.subject開花品質zh_TW
dc.subject主成分分析zh_TW
dc.subject高光譜影像zh_TW
dc.subject近紅外光zh_TW
dc.subject蝴蝶蘭zh_TW
dc.subject碳水化合物zh_TW
dc.subject外觀性狀zh_TW
dc.subject開花品質zh_TW
dc.subject主成分分析zh_TW
dc.subject倒傳遞類神經網路zh_TW
dc.subjectPrincipal Component Analysisen
dc.subjectArtificial Neural Networken
dc.subjectHyperspectral Imagingen
dc.subjectHyperspectral Imagingen
dc.subjectNear Infrareden
dc.subjectPhalaenopsisen
dc.subjectCarbohydrateen
dc.subjectExterior Characteristicsen
dc.subjectFlowering Qualityen
dc.subjectPrincipal Component Analysisen
dc.subjectArtificial Neural Networken
dc.subjectNear Infrareden
dc.subjectPhalaenopsisen
dc.subjectCarbohydrateen
dc.subjectExterior Characteristicsen
dc.subjectFlowering Qualityen
dc.title以高光譜影像技術建立蝴蝶蘭開花品質模型之研究zh_TW
dc.titleModel Establishment of Phalaenopsis Flowering Quality Using Hyperspectral Imaging Techniqueen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡媦婷,楊宜璋,盛中德,張耀乾
dc.subject.keyword高光譜影像,近紅外光,蝴蝶蘭,碳水化合物,外觀性狀,開花品質,主成分分析,倒傳遞類神經網路,zh_TW
dc.subject.keywordHyperspectral Imaging,Near Infrared,Phalaenopsis,Carbohydrate,Exterior Characteristics,Flowering Quality,Principal Component Analysis,Artificial Neural Network,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2014-09-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved