Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55495
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊宏(Chun-Hung Lin),史有伶(Yu-Ling Shih)
dc.contributor.authorShih-Han Yanen
dc.contributor.author顏示涵zh_TW
dc.date.accessioned2021-06-16T04:05:41Z-
dc.date.available2024-08-18
dc.date.copyright2014-09-15
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citation1 Mileykovskaya, E. Subcellular localization of Escherichia coli osmosensory transporter ProP: focus on cardiolipin membrane domains. Mol. Microbiol. 64, 1419-1422 (2007).
2 Mileykovskaya, E. & Dowhan, W. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophys. Acta. 1788, 2084-2091 (2009).
3 Ha, E. E. & Frohman, M. A. Regulation of mitochondrial morphology by lipids. Biofactors 1-6 (2014).
4 Gonzalez Garcia, E. A. Animal health and foodborne pathogens: enterohaemorrhagic O157:H7 strains and other pathogenic Escherichia coli virotypes (EPEC, ETEC, EIEC, EHEC). Pol. J. Vet. Sci. 5, 103-115 (2002).
5 Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142-201 (1998).
6 Robins-Browne, R. M. Traditional enteropathogenic Escherichia coli of infantile diarrhea. Reviews of infectious diseases 9, 28-53 (1987).
7 Rowe, B. The role of Escherichia coli in gastroenteritis. Clinics in gastroenterology 8, 625-644 (1979).
8 Baudry, B., Savarino, S. J., Vial, P., Kaper, J. B. & Levine, M. M. A sensitive and specific DNA probe to identify enteroaggregative Escherichia coli, a recently discovered diarrheal pathogen. J. Infect. Dis. 161, 1249-1251 (1990).
9 Schmidt, H. et al. Development of PCR for screening of enteroaggregative Escherichia coli. J. Clin. Microbiol. 33, 701-705 (1995).
10 Levine, M. M. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J. Infect. Dis. 155, 377-389 (1987).
11 Tzipori, S., Wachsmuth, K. I., Smithers, J. & Jackson, C. Studies in gnotobiotic piglets on non-O157:H7 Escherichia coli serotypes isolated from patients with hemorrhagic colitis. Gastroenterology 94, 590-597 (1988).
12 Karmali, M. A., Steele, B. T., Petric, M. & Lim, C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1, 619-620 (1983).
13 Fenton, A. K. & Gerdes, K. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. EMBO J. 32, 1953-1965 (2013).
14 Vats, P., Shih, Y. L. & Rothfield, L. Assembly of the MreB-associated cytoskeletal ring of Escherichia coli. Mol. Microbiol. 72, 170-182 (2009).
15 Ozyamak, E., Kollman, J. M. & Komeili, A. Bacterial actins and their diversity. Biochemistry 52, 6928-6939 (2013).
16 Kruse, T., Moller-Jensen, J., Lobner-Olesen, A. & Gerdes, K. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J. 22, 5283-5292 (2003).
17 Gitai, Z., Dye, N. & Shapiro, L. An actin-like gene can determine cell polarity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 101, 8643-8648 (2004).
18 Shih, Y. L. & Rothfield, L. The bacterial cytoskeleton. Microbiol. Mol. Biol. Rev. 70 (2006).
19 Margolin, W. Themes and variations in prokaryotic cell division. FEMS Microbiol. Rev. 24, 531-548 (2000).
20 Rothfield, L., Taghbalout, A. & Shih, Y. L. Spatial control of bacterial division-site placement. Nat. Rev. Microbiol. 3, 959-968 (2005).
21 Szeto, T. H., Rowland, S. L., Rothfield, L. I. & King, G. F. Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proceedings of the National Academy of Sciences, USA 99, 15693-15698 (2002).
22 Hsieh, C. W. et al. Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli. Mol. Microbiol. 75, 499-512, (2010).
23 Fu, X., Shih, Y. L., Zhang, Y. & Rothfield, L. I. The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc. Natl. Acad. Sci. U. S. A. 98, 980-985 (2001).
24 Mileykovskaya, E. et al. Effects of phospholipid composition on MinD-membrane interactions in vitro and in vivo. J. Biol. Chem. 278, 22193-22198 (2003).
25 Shih, Y. L., Le, T. & Rothfield, L. Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc. Natl. Acad. Sci. U. S. A. 100, 7865-7870 (2003).
26 Hu, Z. & Lutkenhaus, J. A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum. Mol. Microbiol. 47, 345-355 (2003).
27 Szeto, T. H., Rowland, S. L., Habrukowich, C. L. & King, G. F. The MinD membrane targeting sequence is a transplantable lipid-binding helix. J. Biol. Chem. 278, 40050-40056 (2003).
28 Vecchiarelli, A. G., Li, M., Mizuuchi, M. & Mizuuchi, K. Differential affinities of MinD and MinE to anionic phospholipid influence Min Patterning dynamics in vitro. Mol. Microbiol. (2014).
29 Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720-731 (1972).
30 Nicolson, G. L. The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta 1838, 1451-1466 (2014).
31 Rousselet, A., Colbeau, A., Vignais, P. M. & Devaux, P. F. Study of the transverse diffusion of spin-labeled phospholipids in biological membranes. II. Inner mitochondrial membrane of rat liver: use of phosphatidylcholine exchange protein. Biochim. Biophys. Acta 426, 372-384 (1976).
32 Rousselet, A., Guthmann, C., Matricon, J., Bienvenue, A. & Devaux, P. F. Study of the transverse diffusion of spin labeled phospholipids in biological membranes. I. Human red bloods cells. Biochim. Biophys. Acta 426, 357-371 (1976).
33 Banerjee, R. Liposomes: applications in medicine. J Biomater Appl 16, 3-21 (2001).
34 Akbarzadeh, A. et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 8, 102 (2013).
35 Lu, Y. H., Guan, Z., Zhao, J. & Raetz, C. R. Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli. J. Biol. Chem. 286, 5506-5518 (2011).
36 Lenstra, J. A. et al. Molecular tools and analytical approaches for the characterization of farm animal genetic diversity. Anim. Genet. 43, 483-502 (2012).
37 Mileykovskaya, E. & Dowhan, W. Role of membrane lipids in bacterial division-site selection. Curr. Opin. Microbiol. 8, 135-142 (2005).
38 Zhang, Y. M. & Rock, C. O. Thematic review series: Glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis. J. Lipid Res. 49, 1867-1874 (2008).
39 Icho, T., Sparrow, C. P. & Raetz, C. R. Molecular cloning and sequencing of the gene for CDP-diglyceride synthetase of Escherichia coli. J. Biol. Chem. 260, 12078-12083 (1985).
40 Kanfer, J. & Kennedy, E. P. Metabolism and Function of Bacterial Lipids. Ii. Biosynthesis of Phospholipids in Escherichia Coli. J. Biol. Chem. 239, 1720-1726 (1964).
41 Shibuya, I. Metabolic regulations and biological functions of phospholipids in Escherichia coli. Prog. Lipid Res. 31, 245-299 (1992).
42 Chang, Y. Y. & Kennedy, E. P. Phosphatidyl glycerophosphate phosphatase. J. Lipid Res. 8, 456-462 (1967).
43 Hirschberg, C. B. & Kennedy, E. P. Mechanism of the enzymatic synthesis of cardiolipin in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 69, 648-651 (1972).
44 Schlame, M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res. 49, 1607-1620 (2008).
45 Nowicki, M., Muller, F. & Frentzen, M. Cardiolipin synthase of Arabidopsis thaliana. FEBS Lett. 579, 2161-2165 (2005).
46 Haines, T. H. A new look at Cardiolipin. Biochim. Biophys. Acta 1788, 1997-2002 (2009).
47 Huang, K. C. & Ramamurthi, K. S. Macromolecules that prefer their membranes curvy. Mol. Microbiol. 76, 822-832 (2010).
48 Mukhopadhyay, R., Huang, K. C. & Wingreen, N. S. Lipid localization in bacterial cells through curvature-mediated microphase separation. Biophys. J. 95, 1034-1049 (2008).
49 Huang, K. C., Mukhopadhyay, R. & Wingreen, N. S. A curvature-mediated mechanism for localization of lipids to bacterial poles. PLoS Comput. Biol. 2, e151 (2006).
50 Renner, L. D. & Weibel, D. B. Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc. Natl. Acad. Sci. U. S. A. 108, 6264-6269 (2011).
51 Yeaman, M. R. & Yount, N. Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27-55 (2003).
52 Belikova, N. A. et al. Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry 45, 4998-5009 (2006).
53 Lucken-Ardjomande, S. & Martinou, J. C. Newcomers in the process of mitochondrial permeabilization. J. Cell Sci. 118, 473-483 (2005).
54 Paradies, G., Paradies, V., De Benedictis, V., Ruggiero, F. M. & Petrosillo, G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim. Biophys. Acta 1837, 408-417 (2014).
55 Haines, T. H. & Dencher, N. A. Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett. 528, 35-39 (2002).
56 Gomez, B., Jr. & Robinson, N. C. Phospholipase digestion of bound cardiolipin reversibly inactivates bovine cytochrome bc1. Biochemistry 38, 9031-9038 (1999).
57 Arnarez, C., Marrink, S. J. & Periole, X. Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Sci Rep 3, 1263 (2013).
58 Arnarez, C., Mazat, J. P., Elezgaray, J., Marrink, S. J. & Periole, X. Evidence for cardiolipin binding sites on the membrane-exposed surface of the cytochrome bc1. J. Am. Chem. Soc. 135, 3112-3120 (2013).
59 Ortiz, A., Killian, J. A., Verkleij, A. J. & Wilschut, J. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Biophys. J. 77, 2003-2014 (1999).
60 Romantsov, T. et al. Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol. Microbiol. 64, 1455-1465 (2007).
61 Romantsov, T., Battle, A. R., Hendel, J. L., Martinac, B. & Wood, J. M. Protein localization in Escherichia coli cells: comparison of the cytoplasmic membrane proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. J. Bacteriol. 192, 912-924 (2010).
62 Barak, I., Muchova, K., Wilkinson, A. J., O'Toole, P. J. & Pavlendova, N. Lipid spirals in Bacillus subtilis and their role in cell division. Mol. Microbiol. 68, 1315-1327 (2008).
63 Mileykovskaya, E., Sun, Q., Margolin, W. & Dowhan, W. Localization and function of early cell division proteins in filamentous Escherichia coli cells lacking phosphatidylethanolamine. J. Bacteriol. 180, 4252-4257 (1998).
64 Dowhan, W., Mileykovskaya, E. & Bogdanov, M. Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. Biochim. Biophys. Acta 1666, 19-39 (2004).
65 Septinus, M., Berthold, T., Naujok, A. & Zimmermann, H. W. Hydrophobic acridine dyes for fluorescent staining of mitochondria in living cells. 3. Specific accumulation of the fluorescent dye NAO on the mitochondrial membranes in HeLa cells by hydrophobic interaction. Depression of respiratory activity, changes in the ultrastructure of mitochondria due to NAO. Increase of fluorescence in vital stained mitochondria in situ by irradiation. Histochemistry 82, 51-66 (1985).
66 Mileykovskaya, E. & Dowhan, W. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J. Bacteriol. 182, 1172-1175 (2000).
67 Maftah, A., Petit, J. M., Ratinaud, M. H. & Julien, R. 10-N nonyl-acridine orange: a fluorescent probe which stains mitochondria independently of their energetic state. Biochem. Biophys. Res. Commun. 164, 185-190 (1989).
68 Petit, J. M. et al. Direct analysis and significance of cardiolipin transverse distribution in mitochondrial inner membranes. Eur. J. Biochem. 220, 871-879 (1994).
69 Petit, J. M., Maftah, A., Ratinaud, M. H. & Julien, R. 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur. J. Biochem. 209, 267-273 (1992).
70 Mileykovskaya, E. et al. Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Lett. 507, 187-190 (2001).
71 Kates, M. Biology of halophilic bacteria, Part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia 49, 1027-1036 (1993).
72 Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl 40, 2004-2021 (2001).
73 Hein, C. D., Liu, X. M. & Wang, D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res. 25, 2216-2230 (2008).
74 Kalesh, K. A., Shi, H., Ge, J. & Yao, S. Q. The use of click chemistry in the emerging field of catalomics. Org. Biomol. Chem. 8, 1749-1762 (2010).
75 Kolb, H. C. & Sharpless, K. B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 8, 1128-1137 (2003).
76 Brase, S., Gil, C., Knepper, K. & Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed Engl 44, 5188-5240 (2005).
77 Rodionov, V. O., Fokin, V. V. & Finn, M. G. Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. Angew Chem Int Ed Engl 44, 2210-2215 (2005).
78 Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective 'ligation' of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596-2599 (2002).
79 Tan, B. K. et al. Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc. Natl. Acad. Sci. U. S. A. 109, 16504-16509 (2012).
80 Xia, J. & Hui, Y.-Z. Synthesis of a small library of mixed-acid phospholipids from D-Mannitol as a homochiral starting material. Chem. Pharm. Bull 47, 1659-1663 (1999).
81 Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48, 6974-6998 (2009).
82 Prescher, J. A. & Bertozzi, C. R. Chemistry in living systems. Nat. Chem. Biol. 1, 13-21 (2005).
83 Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873-877 (2004).
84 Neef, A. B. & Schultz, C. Selective fluorescence labeling of lipids in living cells. Angew Chem Int Ed Engl 48, 1498-1500 (2009).
85 Adams, S. R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063-6076 (2002).
86 Zhang, X. & Zhang, Y. Applications of azide-based bioorthogonal click chemistry in glycobiology. Molecules 18, 7145-7159 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55495-
dc.description.abstract心磷脂 (cardiolipin, CL) 為組成細胞膜與粒線體膜的磷脂質之一,其結構具有緊密的磷酸根頭基及四條自由擺盪的脂肪酸鏈,形成圓錐狀外型而易聚集於細胞膜中高曲度處之膜內側,如細菌細胞端點及分裂縊縮點。文獻指出CL功能域 (domain) 會影響某些蛋白質的定位、結構與功能如大腸桿菌中調節滲透壓的滲透轉運子 (osmosensory transporter) ProP、細胞分裂相關蛋白MinD。在真核生物中,CL在粒線體的分佈被認為能調控粒線體的型態及功能,故CL的分佈位置為一個重要的議題。
目前廣泛用來偵測CL的染劑為10-N-壬基吖啶橙 (10-N-nonyl acridine orange, NAO),本研究以NAO針對不同大腸桿菌菌株細胞膜中的CL分佈情形進行探討。
首先探討不同形態的菌體與細胞膜CL分佈的相關性,發現CL均分佈於高曲度的端點及縊縮處,我們進一步使用CL生合成途徑的酵素 (PgsA、PgpA、PgpB、Cls) 突變株探討CL在細胞膜的分佈情形,文獻指出PgpA、PgpB缺失雖降低磷脂醯甘油 (phosphatidylglycerol, PG) 的含量卻不影響下游產物CL的生成量,Cls缺失導致CL的生成量下降,然而CL在細胞膜的分佈卻尚未被探討。NAO染色結果顯示野生株與突變株的CL在細胞膜上的分佈情形有顯著差異,其中野生株的CL分佈多數呈現周邊一圈 (peripheral) 附加端點 (pole) 的情形;突變株則是單純周邊一圈 (peripheral-only) 比例最高。
此外,實驗過程中我們發現NAO的光漂白 (photobleach) 速度造成CL螢光成像實驗操作上的困難。因此本研究利用七步驟化學反應合成含疊氮基心磷脂 (azide-containing cardiolipin, N3-CL),並藉由點擊化學概念在銅離子催化下與含炔基螢光團 (AlexaFluor-594-alkyne) 進行1,3-偶極環加成 (1.3-dipolar cycloaddition) 反應,開發螢光心磷脂類似物 (fluorescent cardiolipin, F-CL) 並將F-CL送至菌體內並使之重新分佈。藉由比對NAO染色及F-CL餵養的兩種CL定位結果發現在野生株大腸桿菌中CL的分佈情形相似,皆以周邊一圈附加端點的螢光分佈比例最高,證明F-CL的可行性,期望此新工具能為CL的定位實驗開拓一條新的道路。
zh_TW
dc.description.abstractCardiolipin (CL) belongs to the family of phospholipids. It is a conical-shaped lipid that has one head group and four acyl chains in the tail region. Because CL tends to aggregate in highly-curved membranes such as those at the polar and division sites of bacteria, it is classified as a high-curvature lipid. Previous studies indicated that CL domain affects localization, structure and function of proteins, such as osmosensory transporter ProP, cell division protein MinD in Escherichia coli. and fusion and fission-promoting protein in mitochondria, leading to an important issue in cell biology: how to detect the cellular localization of CL.
10-N-nonyl acridine orange (NAO) has been used as a fluorescent indicator for cardiolipin and is the only CL-specific dye to track its cellular localization currently. Here we visualize the bacterial phospholipid domains by using NAO to monitor CL distribution of cell membranes in different morphology of Escherichia coli. We found CL-enriched membrane domains located at cell poles and division sites. Next step we performed systematic analyses to compare the localization pattern of CL using NAO between wild-type and specific mutants that are defective on the phospholipid biosynthesis (pgsA, ΔpgpA, ΔpgpB, Δcls) of Escherichia coli. Data shows there are significant differences of CL distribution between wild-type and mutants. The major pattern of CL in wild-type is peripheral and pole while in mutants is peripheral-only.
In experiment we found NAO suffer from easy photobleaching. Herein we first established a seven-step procedure to synthesize an azide-containing cardiolipin (N3-CL), which was shown to react with AlexaFluor-594-alkyne via 1,3-dipolar cycloaddition. The resulting fluorescent cardiolipin (F-CL) was successfully taken by Escherichia coli. We compare the CL distribution between NAO staining and F-CL positioning and found the similar result that CL occupy at peripheral and pole of cell membrane. It prove the feasibility of F-CL and we hope this usage will be of great promise to study bacterial phospholipid domains, which is applicable to various studies in cell imaging.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:05:41Z (GMT). No. of bitstreams: 1
ntu-103-R01b46020-1.pdf: 12089286 bytes, checksum: 35178567ede9ecd2638355e46f0da410 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents縮寫對照表………………………………………………………………………………i
中文摘要………………………………………………………………………………..iii
ABSTRACT...……………………………..…………………………………………….v
目錄…………………………………………………………………………………….vii
圖目錄…………………………………………………………………………………...x
表目錄………………………………………………………………………………….xii
流程目錄………………………………………………………………………………xiii
第一章 緒論 1
1.1 前言 1
1.2 大腸桿菌 2
1.2.1 大腸桿菌的簡介 2
1.2.2 大腸桿菌的生長與分裂機制 4
1.3 磷脂質 7
1.3.1 磷脂質的概述及生合成途徑 7
1.3.2 心磷脂 10
1.3.3 CL的螢光染劑:10-N-壬基吖啶橙 (10-N-nonyl acridine orange, NAO) 14
1.4 點擊化學 18
1.5 研究動機 20
第二章 材料與方法 21
2.1 材料 21
2.1.1 菌種 21
2.1.2 培養基 22
2.1.3 緩衝液 22
2.1.4 化學藥品及儀器 23
2.2 生物暨影像處理方法 25
2.2.1 10-N-壬基吖啶橙於非溫度敏感型之大腸桿菌細胞膜心磷脂染色之實驗 25
2.2.2 10-N-壬基吖啶橙於溫度敏感型之大腸桿菌細胞膜心磷脂染色之實驗 (低溫型,30 oC) 25
2.2.3 10-N-壬基吖啶橙於溫度敏感型之大腸桿菌細胞膜心磷脂染色之實驗 (高溫型,42 ℃) 26
2.2.4 細菌磷脂質之萃取 26
2.2.5 薄層色層分析 27
2.2.6 製備含AlexaFluor-594-CL之單層脂微粒 (small unilamellar vesicle, SUV) 溶液 27
2.2.7 含AlexaFluor-594-CL之單層脂微粒溶液併入勝任細胞膜上磷脂質 28
2.2.8 微分干涉差顯微鏡 (Differential interference contrast, DIC) 觀察菌體型態 29
2.2.9 螢光顯微鏡 (Fluorescent microscope) 觀察10-N-壬基吖啶橙於大腸桿菌細胞膜心磷脂染色之分佈情形 29
2.2.10 螢光顯微鏡觀察AlexaFluor-594-CL併入大腸桿菌細胞膜之分佈情形 30
2.2.11 影像分析 30
2.2.12 菌體分類暨統計 31
2.2.13 以Image J軟體針對心磷脂生合成突變體之心磷脂進行相對定量分析 34
2.3 合成方法與鑑定 35
2.3.1 合成含疊氮基心磷脂類似物 (N3-CL) 35
2.3.2 一價銅離子催化1,3-偶極環加成 (Copper(I)-catalyzed 1,3-dipolar cycloaddition) 40
第三章 實驗結果 41
3.1 細胞骨架及分裂相關蛋白突變體的心磷脂分佈 41
3.1.1 大腸桿菌野生株、∆minCDE及∆mreB突變株之型態觀察 41
3.1.2 大腸桿菌野生株、∆minCDE及∆mreB突變株之心磷脂分佈位置 43
3.2 磷脂質生合成相關酵素突變體的心磷脂分佈情形 46
3.2.1 磷酸醯磷酸生合成酵素:PgsA的突變 46
3.2.2 磷酸醯甘油及心磷脂生合成酵素:PgpA、PgpB、Cls的突變 48
3.3 合成含螢光團心磷脂類似物 62
3.3.1 合成含疊氮基心磷脂類似物 62
3.3.2 利用點擊化學合成含螢光心磷脂類似物 64
3.4 螢光心磷脂類似物於大腸桿菌細胞膜上的分佈 67
第四章 討論與總結 76
4.1 實驗結果討論 76
4.2 未來展望 81
4.3 實驗技術檢討與未來改進方向 83
第五章 參考文獻 85
第六章 附錄 95
6.1 磷脂質生合成相關酵素突變體的心磷脂分佈情形 (統計暨分析圖表) 95
6.2 螢光心磷脂類似物於大腸桿菌細胞膜的分佈情形 (統計暨分析圖表) 103
6.3 1H/13C NMR 光譜 108
dc.language.isozh-TW
dc.subject大腸桿菌zh_TW
dc.subject心磷脂zh_TW
dc.subject細胞膜曲度zh_TW
dc.subject10-N-壬基?啶橙zh_TW
dc.subject點擊化學zh_TW
dc.subject脂質螢光標定zh_TW
dc.subjectEscherichia coli.en
dc.subjectfluorescent lipid probesen
dc.subjectclick chemistryen
dc.subject10-N-nonyl acridine orange (NAO)en
dc.subjectcell membrane curvatureen
dc.subjectcardiolipin (CL)en
dc.title以10-N-壬基吖啶橙及含疊氮基心磷脂觀察細菌磷脂質功能域zh_TW
dc.titleVisualization of bacterial phospholipid domains by using 10-N-nonyl acridine orange and azide-containing cardiolipinen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳佩燁(Pei-Yeh Chen),徐尚德(Shang-Te Hsu)
dc.subject.keyword大腸桿菌,心磷脂,細胞膜曲度,10-N-壬基?啶橙,點擊化學,脂質螢光標定,zh_TW
dc.subject.keywordEscherichia coli.,cardiolipin (CL),cell membrane curvature,10-N-nonyl acridine orange (NAO),click chemistry,fluorescent lipid probes,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
11.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved