Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55452
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇國棟(Guo-Dung Su)
dc.contributor.authorChung-Yi Yuen
dc.contributor.author游中邑zh_TW
dc.date.accessioned2021-06-16T04:03:14Z-
dc.date.available2018-02-03
dc.date.copyright2015-02-03
dc.date.issued2014
dc.date.submitted2014-10-13
dc.identifier.citation[1] Electroactive Polymers and Devices 2013-2018: Forecasts, Technologies, Players. [Online]. Available:
http://www.idtechex.com/research/reports/electroactive-polymers-and-devices-2013-2018-forecasts-technologies-players-000347.asp?viewopt=desc
[2] K.A. Mauritz and R.B. Moore, “State of Understanding of Nafion,” Chem. Rev.,104, pp.4535-4585, 2004.
[3] Polymer Electrolyte Membrane Degradation and Mobility in Fuel Cells: a Solid-state NMR Investigation. [Online]. Available:
http://elib.uni-stuttgart.de/opus/volltexte/2010/5598/pdf/Thesis_Lida_Ghassemzadeh.pdf
[4] H.C. Chien, L.D. Tsai, C.P. Huang, C.Y. Kang, J.N. Lin and F. C. Chang, “Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells,” Journal of Hydrogen Energy, Vol. 38, pp. 13792-13801, 2003.
[5] DuPont fuel cells. [Online]. Available: http://www2.dupont.com/FuelCells/en_US/assets/downloads/dfc101.pdf
[6] Shahinpoor, M., “Ionic polymeric conductor nanocomposites (IPCNCs) as distributed nanosensors and nanoactuators,” Bioinspir. Biomim., Vol. 3, 035003, 2008.
[7] Bonomo C, Bottino M, Brunetto P, Di Pasquale G, Fortuna L,Graziani S and Pollicino A., “Tridimensional ionic polymer metal composites: optimization of the
manufacturing techniques,” Smart Mater. Struct., Vol. 19, No. 5, 055002, 2010.
[8] Kim S. M. and Kim K. J., “Palladium buffer-layered high performance ionic polymer–metal composites,” Smart Mater. Struct., Vol. 17, No. 3, 035011, 2008.
[9] Barramba, J., Silva, J. and Costa Branco, P. J., “Evaluation of dielectric gel coating for encapsulation of ionic polymer–metal composite (IPMC) actuators,” Sensors and Actuators A: Physical, Vol. 140, No. 2, pp.232-238, 2007.
[10] Park, Il-Seok, Sang-Mun Kim, and Kwang J. Kim, “Mechanical and thermal behavior of ionic polymer–metal composites: effects of electroded metals,” Smart Mater. Struct. Vol. 16, No. 4, pp.1090-1097, 2007
[11] Shahinpoor, Mohsen, et al., “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review,” Smart materials and structures, Vol. 7, No. 6, R15, 1998.
[12] Tiwari, R., and K. J. Kim. “Disc-shaped ionic polymer metal composites for use in mechano-electrical applications,” Smart Materials and Structures, Vol. 19, No. 6, 065016, 2010
[13] Nemat-Nasser, Sia, and Jiang Yu Li. “Electromechanical response of ionic polymer-metal composites,” Journal of Applied Physics, Vol. 87, No. 7, pp. 3321-3331, 2000.
[14] Seddon, Kenneth R., Annegret Stark, and Maria-Jose Torres, “Influence of chloride, water, and organic solvents on the physical properties of ionic liquids,” Pure and Applied Chemistry, Vol. 72, No. 12, pp. 2275-2287, 2000.
[15] Holbrey, J. D., and K. R. Seddon, “Ionic liquids.” Clean Products and Processes, pp. 223-236, 1999
[16] Wilkes, John S., and Michael J. Zaworotko, “Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids.” J. Chem. Soc., Chem. Commun, 13, pp. 965-967, 1992.
[17] Zamani, Shahram, and Sia Nemat-Nasser. 'Controlled actuation of Nafion-based ionic polymer-metal composites (IPMCs) with ethylene glycol as solvent.'Smart Structures and Materials. International Society for Optics and Photonics, 2004
[18] Chung, Chen-Kuei, et al. 'A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders.' Sensors and Actuators B: Chemical117.2, pp.367-375, 2006
[19] Lopes, Bruno, and P. J. Costa Branco, “Ionic polymer metal-composite (IPMC) actuators: Augmentation of their actuation force capability,” Industrial Electronics, IECON'09, 35th Annual Conference of IEEE, 2009.
[20] Shahinpoor, Mohsen, and Kwang J. Kim, “Effects of counter-ions on the performance of IPMCs.” SPIE's 7th Annual International Symposium on Smart Structures and Materials, International Society for Optics and Photonics, 2000
[21] Xu, Kang. 'Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.' Chemical reviews 104.10, pp.4303-4418, 2004
[22] Brandell, Daniel, et al. “Molecular dynamics studies of interpenetrating polymer networks for actuator devices.” The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2008
[23] H. Lund, M. M. Baizer, eds. Organic Electrochemistry: An Introduction and a Guide, Third Edition, Revised and Expanded, New York: Marcel Dekker, 1991
[24] Paquette, Jason W., Kwang J. Kim, and Doyeon Kim. 'Low temperature characteristics of ionic polymer–metal composite actuators.' Sensors and Actuators A: Physical 118.1, pp.135-143, 2005.
[25] Lee, Jang-Woo, et al. 'The performance of Nafion-based IPMC actuators containing polypyrrole/alumina composite fillers.' Macromolecular Research17.12, pp.1032-1038, 2009
[26] Shahinpoor, Mohsen, and Kwang J. Kim, “The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles,” Smart Materials and Structures, Vol. 9, No. 4, pp. 543-551, 2000.
[27] Shahinpoor, Mohsen, and Kwang J. Kim, “Ionic polymer–metal composites: III.
Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles,” Smart Materials and Structures, Vol. 10, No. 4, pp. 819-833, 2001
[28] Ion-Exchange Polymer Metal Composites (IPMC) Membranes. [Online]. Available:
http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/IPMC_PrepProcedure.htm
[29] Takenaka, H. et al., “Solid polymer electrolyte water electrolysis,” International Journal of Hydrogen Energy, Vol. 7, No. 5, pp. 397-403, 1982.
[30] Millet, P., M. Pineri, and R. Durand, “New solid polymer electrolyte composites for water electrolysis,” Journal of Applied Electrochemistry, Vol. 19, No. 2, pp. 162-166, 1989.
[31] Shahinpoor, Mohsen, and Kwang J. Kim, “Novel ionic polymer–metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles,” Sensors and Actuators A: Physical, Vol. 96, No. 2, pp. 125-132, 2002.
[32] Shahinpoor, Mohsen, and Kwang J. Kim, “The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles,” Smart Materials and Structures, Vol. 9, No. 4, pp. 543-551, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55452-
dc.description.abstract離子聚合物金屬複合材料為一種電制動高分子,對電氣刺激有極高的響應,由於其具有驅動電壓低和體積小等優點而被作為制動器應用於許多光機電系統。當施予電壓時,離子聚合物金屬複合材料會因為內部離子遷移而被制動,故離子液體會影響離子聚合物金屬複合材料的物理性質。在本文中我們使用了非水溶液的離子液體來取代水溶液型離子聚合物金屬複合材料並探討其可靠性。傳統鉑電極離子聚合物金屬複合材料配合氫氧化理水溶液可以達到最大位移量,但制動過程容易造成水的電解,為了改善電解問題來延長在空氣中的操作壽命,須選擇高電解電壓且低蒸氣壓的離子液體。此外,利用聚對二甲苯封裝也可以防止溶劑的散失。使用銀來取代傳統鉑電極可製作出可在低於電解電壓下驅動的離子聚合物金屬複合材料。本文主要探討離子聚合物金屬複合材料在空氣中的耐用度,經由聚對二甲苯封裝並配合高電解電壓離子溶液,銀電極離子聚合物金屬複合材料在空氣中的使用壽命為沒有封裝的水溶液型銀電極離子聚合物金屬複合材料的15倍,但最後仍然無法制動,我們發現影響離子聚合物金屬複合材料在空氣中可靠性的主要因子為電極的龜裂。鉑電極和銀電極離子聚合物金屬複合材料的制動位移量和反應時間也會在本文中比較。zh_TW
dc.description.abstractIPMC (Ionic Polymer Metallic Composite) is a kind of electroactive polymer (EAP) which is capable of exhibiting large property changes in response to electrical stimulation. IPMC is used as an actuator in opto-mechanical application because of its low driving voltage and small size. The mechanism of IPMC actuator is due to the ionic diffusion when the voltage gradient is applied, so that the type of ionic solution has a large impact on the physical properties of IPMC. In this paper, the reliability tests of IPMC with non-aqueous ionic solution are demonstrated. Pt-IPMC with LiOH aqueous solution exhibits the best maximum displacement, but the water in LiOH solution is electrolyzed because of the low electrolysis voltage 1.23 V of water. To improve electrolysis problems and the operation time in the air, proper solvents including high electrolysis voltage and low vapor pressure should be chosen. Parylene-coated IPMC module can also prevent IPMC from solvent loss. Traditional platinum electrodes are replaced by silver to decrease surface resistance which can be operated below the electrolysis voltage. The reliability tests focus on the durability of IPMC in dry air. The improvements of IPMC fabrication such as Ag-IPMC can be further developed in this paper. Through using parylene protection and ionic solution which has high electrolysis voltage, the life time of Ag-IPMC surviving in dry air is up to 15 times greater than uncoated Ag-IPMC with aqueous solution but IPMC still cannot survive in the air. We mentioned the possible problems for IPMC in actuation and found that the crack of electrodes has the main impact on the reliability of IPMC. The comparison of response time and tip bending displacement of Pt-IPMC and Ag-IPMC will also be presented.en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:03:14Z (GMT). No. of bitstreams: 1
ntu-103-R01941078-1.pdf: 2148556 bytes, checksum: 094aa85f6899cf754203dac5060a35b1 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝……………………………………………………………………………ii
中文摘要………………………………………………………………………………iii
ABSTRACT………………………………………………………………………iv
CONTENTS…………………………………………………………………………vi
LIST OF FIGURES………………………………………………………………viii
LIST OF TABLES……………………………………………………………………x
Chapter 1 Introduction……………………………………………1
1.1 Electroactive polymers………………………………………………………1
1.2 Ionic polymer metallic composite……………………………………………3
1.3 Liquid electrolyte……………………………………………………………9
1.4 Failure mechanism of IPMC in dry air……………………………………12
Chapter 2 Solution optimization…………………………………14
3.1 Ionic solution and metal salts selection…………………………………14
3.2 Lower resistance by silver………………………………………………20
3.3 Parylene coating………………………………………………….21
Chapter 3 Fabrication………………………………………………25
3.1 Pt-IPMC fabrication…………………………………………………25
3.1.1 Surface treatment……………………………………………………25
3.1.2 The initial composing process………………………………………29
3.1.3 The surface electroding process……………………………………32
3.2 Ag-IPMC fabrication………………………………………………… 36
3.2.1 Silver mirror reaction………………………………………………37
3.2.2 Surface roughness…………………………………………………38
3.2.3 First silver plating…………………………………………………40
3.2.4 Second silver plating…………………………………………………41
Chapter 4 Experimental results and discussions…………………45
4.1 Durability test………………………………………………………45
4.2 Surface resistance……………………………………………………………52
4.3 Response time………………………………………………………………53
4.4 Electrodes morphology………………………………………………56
Chapter 5 Conclusions……………………………………………59
REFERENCE…………………………………………………………………………60
dc.language.isoen
dc.title降低驅動電壓於可應用於光機電系統之離子高分子金屬複合材料之可靠性研究zh_TW
dc.titleReliability Tests for the Decreasing Driving Voltage of Ionic Polymer Metallic Composite in Opto-Electro-Mechanical System Applicationsen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡永傑(WK-Choi),林晃巖(Hoang-Yan Lin)
dc.subject.keyword電制動高分子,銀電極離子聚合物金屬複合材料制動器,離子溶液,zh_TW
dc.subject.keywordElectroactive polymer,Ag-IPMC actuator,ionic solution,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2014-10-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
2.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved