請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55450完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周崇熙教授(CHUNG-HSI CHOU) | |
| dc.contributor.author | Re-Shang Chen | en |
| dc.contributor.author | 陳瑞祥 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:03:08Z | - |
| dc.date.available | 2020-08-25 | |
| dc.date.copyright | 2020-08-25 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-03 | |
| dc.identifier.citation | 中華民國 94 年漁業統計年報。行政院農業委員會漁業署。2005 中華民國 107 年漁業統計年報。行政院農業委員會漁業署。2018 行政院公報2005。動物用藥品使用準則,附件一:水產動物用藥品使用規範。農業環保篇,011:082,10558–10576。 行政院公報2007。動物用藥殘留標準。衛生勞動篇,012:231,32977–32986。 行政院公報2007。動物用藥品使用準則,附件一:水產動物用藥品使用規範。農業環保篇,13:165,20070825。 行政院公報2011。動物用藥品使用準則,附件一:水產動物用藥品使用規範。農業環保篇,017:155,20110817。 行政院公報2019。動物用藥品使用準則,附件一:水產動物用藥品使用規範。農業環保篇,025:072,20190422 行政院公報 2019 動物用藥殘留標準。衛生勞動篇,025:163 20190829 行政院公報 2019 食品中動物用藥殘留量檢驗方法-多重殘留分析(二) 衛生勞動篇,025:190,20191008 行政院公報 2020 修正「農藥殘留容許量標準」第三條附表一、第四條附表三、第六條附表五及「動物產品中農藥殘留容許量標準」第三條。衛生勞動篇,026:093 20200520 方嘉德。2018。原子質譜法。儀器分析精華版。鼎隆圖書股份有限公司。P11(1)-11(29) 方嘉德。2018。分子質譜法。儀器分析精華版。鼎隆圖書股份有限公司。P20(1)-20(49) 方嘉德。2018。層析分離法。儀器分析精華版。鼎隆圖書股份有限公司。P26(1)-26(32) 方嘉德。2018。高效能液相層析法。儀器分析精華版。鼎隆圖書股份有限公司。P28(1)-28(49) 冉繁華。台灣石斑養殖產業的前世今生 石斑 Handbook of grouper。2007。台灣漁業經濟發展協會 行政院農業委員會。P8-24 冉繁華。石斑疾病診斷與防治 石斑 Handbook of grouper。2007。台灣漁業經濟發展協會 行政院農業委員會。。P112-156 冉繁華。海鱺疾病診斷及防治在海鱺 Handbook of cobia。2007。台灣漁業經濟發展協會。P148-166 冉繁華。海鱺養殖現況分析 在海鱺 Handbook of cobia。2007。台灣漁業經濟發展協會。P8-18 行政院農業委員會水產試驗所全球資訊網站 https://www.tfrin.gov.tw/News_Content.aspx?n=307 s=29019 (檢索日期:2020,1,19) 林呈翰,2007,水溫對歐索林酸在吳郭魚體內分佈及排出之影響及質譜檢測方法之確效摘要。臺灣碩博士論文知識加值系統(https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?randomimg=ZQR.0r_1591498283 validpath=%2Ftmp%2F%5Enclcdr__doschk%2FZQR.0r_1591498283__MmFoMjRw validinput=2ah24p check=%E7%A2%BA%E5%AE%9A) (檢索日期:109年5月8日) 林麗聰,樊海平,廖碧釵,餘培建,鍾全福,2012。噁喹酸在歐洲鰻鱺體內的藥代動力學及殘留研究。淡水漁業,1,24-29。 食品安全衛生管理法-全國法規資料庫https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=l0040001 動物用藥殘留標準-全國法規資料庫https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0040026 郭紀偉,2011。歐索林酸在海水魚黃長鰭黃鱲鰺與金目鱸之藥物動力學及殘留試驗。國立台灣大學碩士論文。 梁曾輝,林黎明,劉靖靖,江志剛,官慶禮,2006。噁喹酸和氟甲喹在鰻魚體內的藥代動力學研究。海洋水產研究,3,86-92。 詹勳隆、林秋華、林文華、李淑慧。2016。 歐索林酸於石斑魚與黑鯛之殘留試驗。家畜衛試所研究年報。50:43~56。 蔡信雄、謝嘉裕、吳宗炳。石斑魚疾病防治。行政院農業委員會動植物防疫檢疫局。2007 劉朝鑫。1988。Oxolinic acid 在鰻魚體內之藥物動力學。國家科學委員會計畫。 劉朝鑫、蔡倉吾。1988。Oxolinic acid應用於鰻魚細菌性疾病之控制。國立台灣大學農學院研究報告。28(2): 1-9。 劉朝鑫。1991。歐索林酸在魚類藥理學之研究(一)在鰻魚化學治療學之評估。國立台灣大學農學院研究報告。31(2): 54-70。 劉朝鑫。1994。Oxolinic acid 在鰻魚學毒性學之研究。國家科學委員會計畫。 劉朝鑫。獸醫師藥物使用要覽 產食動物篇。行政院農業委員會家畜衛生試驗所動物用藥品檢定分所。2010。 臺灣魚類料庫 https://fishdb.sinica.edu.tw/chi/family.php?id=F362(檢索日期:2020, 5. 20) Austin, B., Rayment, J., Alderman, D.J., 1983. Control furunculosis by oxolinic acid . Aquaculture 31, 101–108. Austin, B., 1985. Antibiotics pollution from fish farms : effects on aquatic microflora. Microbio. Sci. 2, 113–117. Barron, M.G., Gedutis, C and James, M.O. 1988. Pharmacokinetics of sulphadimethoxine in the lobster, Homerus americannus, following intrapericardial administration. Xenbiotica 18: 269-277. Benjaminsen, T., Hustvedt, S.O., 1986. Oxolinsyre til laksefisk; analysemetode og farmakokinetikk. M.Sc. thesis, Institute of Pharmacy, University of Oslo. Bitas, D., Samanidou V. F. , 2016. Effective cleanup for the determination of six quinolone residues in shrimp before HPLC with diode array detection in compliance with the European Union Decision 2002/657/EC. J. Sep. Sci. 2016, 39, 4805–4811 Bondad-Reantaso, M. G., Arthur, J. R., Subasinghe R. P., 2012. Improving biosecurity through prudent and responsible use of veterinary medicines in aquatic food production, FAO Fisheries and Aquaculture Technical Paper. No. 547. Rome, FAO. 207 pp. Bjorklund, H.V., Bylund, G., 1991. Comparative pharmacokinetics and bioavailability of oxolinic acid and oxytetracycline in rainbow trout (Oncorhynchus mykiss). Xenobiotica, 21(11): 1511-1520. Bjorklund, H.V., Eriksson, A., Bylund, G., 1992. Temperature-related absorption and excretion of oxolinic acid in rainbow trout (Oncorhynchus mykiss). Aquaculture, 102(1-2): 17-27. Chang, C. S., Wang, W. H., Tsai, C. E., 2008. 'Simultaneous determination of eleven quinolones antibacterial residues in marine products and animal tissues by liquid chromatography with fluorescence detection.' Journal of Food and Drug Analysis 16(6): 87-96, 100. Chen, R.S., Sheu, S.Y., Xue, Y. J., Wang, C.Y., Wang, W. S., Wang, J.H.*, Kuo, T. F.*, Chou, C. H.*. 2019a. Depletion study of oxolinic acid in freshwater softshell turtle (Pelodiscus sinensis) with multiple-dose oral administration. Israeli Journal of Aquaculture – Bamidgeh. 2019 Sep; 71:1595, 7 pages. (Uploaded, 2019.09.14) Chen, R. S., Sheu, S. Y., Xue, Y. J., Wang, C. Y., Liu, C. H., Kuo, T. F.#, Wang, J. H.#, Chou, C. H.#*. 2019b. Withdrawal Period of Oxolinic Acid in Cobia (Rachycentron canadum): Validation of an LC-MS/MS Method. Israeli Journal of Aquaculture – Bamidgeh. 2019 Dec; 71:1637, 7 pages. (Uploaded, 2019.12.23). Chen, R.S., Sheu, S. Y., Wang, C. Y., Kuo, C. W., Wang, J. H.*, Kuo, T. F.*, Chou, C. H.*.2020. Plasma and Tissue Depletion of Oxolinic Acid after Administration to Orange-Spotted Grouper (Epinephelus coioides), Snubnose Pompano (Trachinotus blochii) and Giant Seaperch (Lates calcarifer). Israeli Journal of Aquaculture – Bamidgeh. 2020 Apr; 72:961816, 9 pages. (Uploaded, 2020.04.08) Coyne, R., Bergh, O., Samuelsen, O., Andersen, K., Kongshaug, H., Lunestad, B.T., Nilsen, H., Dalsgaard, I., Smith, P., 2004. Attempts to validate breakpoint MIC values estimated from pharmacokinetic data obtained during oxolinic acid therapy of winter ulcer disease in Atlantic salmon (Salmo salar). Aquaculture, 238(1-4): 51-66. Ding, F.K., Cao, J.Y., Ma, L.B., Pan, Q. S., Fang, Z. P., Lu X. C., 1996. Pharmacokinetics and tissue residues of difloxacin in crucian carp (Carassius auratus) after oral administration. Aquaculture 256 : 121–128 Duis, K, Hamme, C., Beveridge, M.C.M., Inglis, V., Braun, E. 1995 . Delivery of quinolone antibacterials to turbot, Scophthalmus maximus (L.), via bioencapsulation: Quantifi cation and efficacy trial . J Fish Dis 18: 229-238 . Endo, T., Ogishima, K., Hayasaki, S., Kaneko, S., Ohshima, S., 1973a. Application of oxolinic acid as a chemotherapeutic agent against infectious disease in fish: I. Antibacterial activity, chemotherapeutic affect and pharmacokinetic effect of oxolinic acid in fish. Bull. Jpn. Soc. Sci. Fish. 39, 165–171. Endo, T., Sakuma, M., Tanaka, H., Ogishima, K., Hara, T., 1973b. Application of oxolinic acid as chemotherapeutic agent against infectious disease in fish: II. Study of chemotherapeutic effect by hole body antibacteriography. Bull. Jpn. Soc. Sci. Fish. 39, 173–177. Endo, T. 1992. Comparison of the bioavailability of micronized oxolinic acid in several animals. Chemotherapy in aquaculture: from theory to reality. Symposium, Paris, 12-15 March 1991. C. Michel and D. J. Alderman. Paris; France, Office International des Épizooties (OIE): 456-460. EMA (European Medicines Agency), 2005. Committee for medical products for veterinary use: Oxolinic acid, Summary report (5), EMEA/CVMP/41090/2005-Final. EMA (European Medicines Agency), 2018. Committee for medical products for veterinary use: Guideline on determination of withdrawal periods for edible tissues, EMEA/CVMP/SWP/735325/2012. EU (European Union), 2009. Commission Regulation No 37/2010 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. FAO, The State of World Fisheries and Aquaculture 2018, http://www.fao.org/3/i9540en/I9540EN.pdf (檢索日期:2020年6月 5日) Garcia de Mateos-Verchere, J., Vaugeois, J.M., Naudin, B., Costentin, J., 1998. Behavioural and neurochemical evidence that the antimicrobial agent oxolinic acid is a dopamine uptake inhibitor. Eur. Neuropsychopharmacol., 8(4):255-259. Gellert, M., Sukoneck, S.C., Bello, A., Ge, Z., and Grasela, D.M., 1997. Nalidixic acid resistance a second genetic character involved in DNA gyrase activity. Proceedings of the National Academy of Sciences United States of America 74: 4772-4778. Gonzalez, R.R., Fernandez, R.F., Vidal, J.L.M., Muros, M.J.S., Frenich, A.G., 2010. Depletion of veterinary drugs used in aquaculture after administration in feed to gilthead seabream (Sparus aurata). J. Food Prot., 73(9): 1664-1670. Gough, A., Barrett, N.J., Mitchell, L., McGuire, E. J., De la Iglesia, F. A., 1979 . Juvenile canone drug-induced arthropathy: clinicopathological stuies on articular lesions caused by oxolinic acid and pipedimic acids. Toxicol Appl Pharmacol 51: 177-187 Guo, J.J., Liao, I.C., 1994. Pharmacolinetics of oxolinic acid in orange-spotted grouper, Epinephelus coioides, after single oral administration at 24°C. J. Fish Soc. Taiwan, 21(3):263-272. Guyer, B.M., 1974. Drug profile: Prodoxol(oxolinic acid). J. Int Med Res. 2: 458-460. Hansen, M.K. and Horsberg, T.E., 2000. Single pharmacokinetics of flequine in cod (Gadus morhua ) and goldsinny wrasse (Ctenolabrus rupestris). J Vet. Pharmacol .Ther. 23: 163-168. Hamamoto, K., Mizuno, Y., 2017. LC-MS/MS measurement of ampicillin residue in chicken tissues at 2 days after in-feed administration. J. Vet. Med. Sci., 79(3): 474-478. Hunn., J.B., 1982. Urine flow rate in freshwater salmonids: a review. Prog. Fish Cult., 44: 119-126. Hustvedt, S.O., Salte, R., 1991. Distribution and elimination of oxolinic acid in rainbow trout (Oncorhynchus mykiss Walbaum) after a single rapid intravascular injection. Aquaculture, 92(1-2): 297-303. Hustvedt, S. O., Salte, R., Benjaminsen, T., 1989. Rapid high-performance liquid chromatographic method for the determination of oxolinic acid in fish serum employing solid-phase extraction. (Note). Journal of Chromatography, Biomedical Applications 494: 335-339. Hustvedt, S.O., Salte, R., Vassvik, V., 1991. Absorption, distribution and elimination of oxolinic acid in Atlantic salmon (Salmo salar L.) after various routes of administration. Aquaculture 95, 193–199. Ingham, B., Brentnall, D.W., Dale, E. A., Mcfadzean, J. A., 1977. Arthropathy induced by antibacterial fused N-alkyl-pyridone-3-carboxlic acid. Toxocol Lett 1: 21-26. Ishida, N. 1990. Comparison of tissue levels of oxolinic acid in freshwater and marine fish after oral administration. Bulletin of the Japanese Society of Scientific Fisheries. Nihon Suisan Gakkai-shi 56(2): 281-286 Ishida, N. 1992a. Tissue levels of oxolinic acid after oral or intravascular administration to freshwater and seawater rainbow trout. Aquaculture 102(1/2): 9-15. Ishida, N. 1992b. A study on the metabolic fate of oxolinic acid, a synthetic antibacterial agent, in cultured fishes. Bulletin of the National Research Institute of Fisheries Science (4): 1-58. Kasuga,T., Sugitani, A., Yamada, F., Arai, M. and Morikawa, S., 1984. Oxolinic acid residues in tissues of cultured rainbow trout and ayu fish. Journal Food Hyg. Soc. Japan., 25, 512-516。 Kleinow, K.M., Jarboe, H.H., Shoemaker, K.E., 1994. Comparative pharmacokinetics and bioavailability of oxolinic acid in channel catfish (Ictalurus punctatus) and rainbow trout (Oncorhynchus mykiss). Can. J. Fish Aquat. Sci., 51(5): 1205-1211. Li, J., Wang, Q., Sun, X.T., Ma, X.D., Liu, D.Y., Tong, X., 2001. Application of oxolinic acid against bacterial diseases in aquatic species and the body residues. J. Fish. Sci. China, 8(3): 45-49. Maddock, J., Massey, P. R., Lewis P. A., Robinson, P.R., Jhones, A., 1983. Determination of oxolinic acid in serum and tissue residues of two species of fish by high-performance liquid chromatography. Submitted to FAO Park-Davis Veterinary, Merthyr Tydfil, UK, SIMBEC Research Report Number RD 250/13244Yamada, K. Maita, J. Nakamura. 1994, Research section carcinogen studies of oxolinic acid in rats and mice. Food Chem. Toxic., 32(5): 397-408. Martin, A.P., Palumbi, S.R., 1993. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. USA, 90(9): 4087-4091. Martinsen, B., Horsberga, T. E., Sohlberg, S., Burkeb, Mary. 1993. Single dose kinetic study of sarafloxacin after intravenous and oral administration of different formulations to Atlantic salmon (Salmo salar) held in sea water at 8.5 °C. Aquaculture, 118, 37-47 Michel, C. M., Squibb, K. S., O'Connor, J. M., 1990. Pharmacokinetics of Sulphadimethoxine in Channel Catfish (Ictalurus Punctatus) Xenobiotica.1990 Dec;20(12): 1299-309. Moutou, K. A., Burke, M. D., Houlihan, D. F. 1998. Hepatic P450 monooxygenase response in rainbow trout (Oncorhynchus mykiss (Walbaum)) administered aquaculture antibiotics. Fish Physiology and Biochemistry 18: 97-106. Nagasawa, K., Cruz-Lacierda, E. R., 2004 Disease of Cultured Groupers. Southeast Asian Fisheries Development Center Aquaculture Department, Government of Japan Department, Iloilo, Philippines, 3-56. Norris, S., Mandell, G..L., 1988. In the Quinolones: history and overview. P.1-22 in Andriole V.T. ed. The Quinolones. Academic Press Inc. Sa Diego. USA. Oshima, Y., Kobayashi, K., Fachrudin, L., Ishida, N., 1996. Effect of the induced drug-metabolizing enzyme activity on the duration of oxolinic acid in fish. Marine Environmental Research 42(1/4): 335-338. Parke-Davis, 1994, Aqualinic powder, Part 4, Experimental and biological studies, Vol 1, Pharmacology and drug kinetics. Sumitted to FAO by Parke-Davis Veterinary, Merthyr Tydfil, UK Paschoal, J. A. R., Reyes F. G. R., Rath, S., 2009. Determination of Quinolone Residues in Tilapias (Orechromis Niloticus) by HPLC-FLD and LC-MS/MS QToF Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26(10): 1331-40. Rasmussen, K. E, Tqnnesen, F., Thanh, H. H., Rogstad, A., Aanesrud, A. 1989, Solid-Phase Extraction and High-Performance Liquid Chromatographic Determination of Flumequin and Oxolinic Acid in Salmon Plasma. Journal of Chromatography, Biomedical Applications, 496: 355-364. Rigos, G., Alexis, M., Andriopoulou, A., Nengas, I., 2002a. Temperature-dependent pharmacokinetics and tissue distribution of oxolinic acid in sea bass, Dicentrarchus labrax L., after a single intravascular injection. Aquac. Res., 33(14): 1175-1181. Rigos, G., Alexis, M., Tyrpenou, A.E., Nengas, I., Piper, I., Troisi, G., 2002b. Pharmacokinetics of oxolinic acid in gilthead sea bream, Sparus aurata L. J. Fish Dis., 25(7): 401-408. Rigos, G., Nengas, I., Alexis, M., Tyrpenou, A.E., Troisi, G.M., 2003. Tissue distribution and residue depletion of oxolinic acid in gilthead sea bream (Sparus aurata) and sharpsnout sea bream (Diplodus puntazzo) following multiple in-feed dosing. Aquaculture, 224(1-4):245-256. Rigos, G., Tyrpenou, A.E., Nengas, I., Alexis, M., Troisi. G., 2004. The kinetic profile of oxolinic acid in sharpsnout sea bream, Diplodus puntazzo (Cetti 1777). Aquac. Res., 35(14):1299-1304. Rodgers, C.J., Austin, B., 1983. Oxolinic acid of control of enteric red-mouth disease in rainbow trout. Vet. Rec. 112, 83. Rogstad, A., Ellingsen, O.F., Syvertsen, C., 1993. Pharmacokinetics and bioavailability of flumequine and oxolinic acid after various routes of administration to Atlantic salmon in sea water. Aquaculture 110, 207-220. Saad, B., Mohamad, R., Mohamed, N., Lawrence, G. D., Jab, M.S., Saleh, M. I., 2002. Determination of oxolinic acid in feeds and cultured fishusing capillary electrophoresis. Food Chemistry 78, 383-388. Samuelsen, O. B. 1990. Simple and rapid method for the determination of flumequine and oxolinic acid in salmon (Salmo salar) plasma by high-performance liquid chromatography and fluorescence detection. J Chromatogr 530(2): 452-457. Samuelsen, O. B. 1997. Efficacy of bath - administered flumequine and oxolinic acid in the treatment of vibriosis in Atlantic halibut. Journal of Aquatic Animal Health 9: 127-131 . Samuelsen, O. B., Lunestad, B. T., Jelmert, A., 1997. Pharmacokinetic and efficacy studies on bath - administering potentiated sulfonamides in Atlantic halibut, Hippoglossus hippoglossiodes L. Journal of Fish Diseases 20 : 287-296 . Samuelsen, O.B., Ervik, A., Pursell, L., Smith, P., 2000a. Single-dose pharmacokinetic study of oxolinic acid and vetoquinol, an oxolinic acid ester, in Atlantic salmon (Salmo salar) held in seawater and in vitro antibacterial activity against Aeromonas salmonicida. Aquaculture 187, 213–224. Samuelsen, O.B., Ervik, A., 2001. Absorption, tissue distribution and excretion of flumequine and oxolinic acid in corkwing wrasse (Symphodus melops) following a single intraperitoneal injection or bath treatment. J. Vet. Pharmacol. Ther., 24(2): 111-116. Samuelsen, O.B., 2003. Administration of the antibacterial agents flumequine and oxolinic acid to small turbot (Scophthalmus maximus L.) by bath. J. Appl. Ichthyol., 19(1): 55-58. Samuelsen, O.B., Bergh, O., Ervik, A., 2003. A single-dose pharmacokinetic study of oxolinic acid and vetoquinol, an oxolinic acid ester, in cod, Gadus morhua L., held in sea water at 8 °C and in vitro antibacterial activity of oxolinic acid against Vibrio anguillarum strains isolated from diseased cod. J. Fish Dis., 26(6): 339-347. Samuelsen, O.B., Bergh, Ø., 2004. Efficacy of orally administered florfenicol and oxolinic acid for the treatment of vibriosis in cod (Gadus morhua). Aquaculture 235, 27–35. Samuelsen, O.B., 2006a. Pharmacokinetics of quinolones in fish: A review. Aquaculture, 255(1-4): 55-75. Samuelsen, O.B., 2006b. Multiple dose pharmacokinetic study of oxolinic acid in cod, Gadus morhua. Aquacult. Int., 14(5): 443-450. Schuchardt, J.P., Hahn, A., 2017. Intestinal absorption and factors influencing bioavailability of magnesium-an update. Curr. Nutr. Food Sci., 13(4): 260-278. Shargel, L., Yu, A., 1999. Applied Biopharmaceutics and Pharmacokinetics, 4th ed. Appleton and Lange, Stamford, CT. 768 pp. Sheu, S.Y., Lei, Y.C., Tai, Y.T., Chang, T. H., Kuo, T. F., 2009. Screening of salbutamol residues in swine meat and animlal feed by an enzyme immunoassay in Taiwan. Analytica Chimica Acta, 654(2): 148-153. Sim, D.S.M., 2015. Drug distribution. In: Chan, Y.K., Ng, K.P. and Sim, D.S.M. (eds.): Pharmacological basis of acute care, 1st ed. Springer International Publishing, Cham, Switzerland, pp. 27-36. Skoog, A. D., Holler, F.J., Crouch, S.R. Atomic mass spectrometry. In: Principles of instrumental analysis. Cengage Learning, USA. 321-333, 2006a. Skoog, A. D., Holler, F.J., Crouch, S.R. High-performance liquid chromatography. In: Principles of instrumental analysis. Cengage Learning, USA. 765-776, 2006b. Sohlberg, S., Aulie, A., Sblie, N. E., 1994.Temperature dependent absorption and elimination of flumequine in rainbow trout (OncorhynchusmykissWalbaum) in fresh water. Aquaculture119, 1–10. Steffenak, I., Hormazabal, V., Yndddestad, M., 1991. Reservoir of quinolones residues in fish. Food Addit. Contam. 8, 777–780. The Japan Food Chemical Research Foundation, Table of MRLs for Agriculture Chemical, http://db.ffcr.or.jp/front/pesticide_detail?id=14500 (資料檢索:2020,6,6) Treves-Brown, K.M., 2000. Applied fish pharmacology. Kluwer Academic Publishers, Boston. Tu, C.Y., Ho, S.P., Hung, S.W., Chen, B.R., Tsou, L.T., Wang, W.S., 2006. Development of a technique to detect the residue of oxolinic acid in the serum and muscle of Chinese mitten crab, Eriocheir sinensis. J. Food Drug Anal., 14(4): 391-397. Tyrpenou, A.E., Rigos, G., 2004. Determination of oxolinic acid residues in gilthead seabream (Sparus aurata) muscle tissue and plasma by high-performance liquid chromatography. Chromatographia, 60(11/12): 657-661. Ueno, R., Horiguchi, Y., Kubota, S., 1988. Levels of oxolinic acid in cultured yellowtail after oral administration. Nippon Suisan Gakk., 54: 479-484. Uno, K., 1996. Pharmacokinetic study of oxytetracycline in healthy and vibriosis-infected ayu (Plecoglossus altivelis) Aquaculture. Volume 143, Issue 1, Pages 33-42. Uno, K., 2004. Pharmacokinetics of oxolinic acid and oxytetracycline in kuruma shrimp, Penaeus japonicas. Aquaculture 230, 1-11. Uno, K., Aoki, T., Kleechaya, W., Ruangpan, L., Tanasomwang, V., 2006. Pharmacokinetics of oxolinic acid in black tiger shrimp, Penaeus monodon Fabricius, and the effect of cooking on residues. Aquaculture Research 37, 826-833. Urh, M., Simpson, D., Zhao, K., 2009. Guide to Protein Purification, 2nd Edition In: Methods in Enzymology, Chapter 26 Affinity Chromatography: General Methods Vol(463): 417-438. Yeh, S. L., C. M. Kuo, Y. Y. Ting, and C. F. Chang, 2003, Androgen stimulated sex change in protogynous grouper, Epinephelus coioides: spawning performance in sex-changed males, Comp. Biochem. Physiol., 135C: 375-382. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55450 | - |
| dc.description.abstract | 本研究分三部分探討石斑魚、海鱺及甲魚之殘留停藥期。(1)石斑魚以口服單次投藥,歐索林酸( Oxoinic acid, OXO )在石斑魚血液、肌肉、肝臟及腎臟之半衰期,並以多重劑量投藥,探討OXO之殘留停藥期試驗。(2)海鱺以OXO口服30 mg/kg 及其倍數劑量(60 mg/kg)連續投藥5天後,探討OXO之殘留停藥期。(3)甲魚以OXO口服30 mg/kg 及其倍數劑量(60 mg/kg)連續投藥5天後,探討OXO之殘留停藥期。 石斑魚半衰期試驗係以單一劑量口服灌食投予OXO 60 mg/kg b.w.,投藥後第0.5小時開始在不同時間點陸續採樣,經由高效液相層析儀(high performance liquid chromatography, HPLC)搭配螢光偵測器檢測石斑魚組織中殘留量,本分析方法檢量線線性範圍為2.5~1000 ng/mL,線性迴歸方程式 Ŷ = 0.0704,其相關係數R2為 0.999。平均回收率為89.9 1.64 %。在本試驗的分析條件下,最低偵測極限(limit of detection, LOD)為3 ng/ mL(ppb),最低定量極限(limit of quantitation, LOQ)為5 ppb。分析的結果顯示,OXO在石斑魚血液、肌肉、肝臟及腎臟中的濃度在口服後4小時皆達到最高峰,其平均濃度分別為 0.59、1.76、2.18及3.61 μg/mL(ppm),在魚組織中檢測出來的濃度與時間的趨勢,在腎臟濃度為最高,其次分別為肝臟及肌肉,而血液中濃度最低。在石斑魚之血液、肌肉、肝臟及腎臟中的半衰期則為 136小時、131小時、158小時及110 小時。石斑魚殘留試驗則以60 mg/kg b.w. OXO,連續5天多劑量投予後,第1小時開始在不同時間點採樣,經由高效液相層析儀分析結果顯示,OXO在石斑魚之血液、肌肉、肝臟及腎臟在口服投藥結束後依序分別在第 4 天、6天、10天、10天,其平均濃度皆已低於歐盟動物用藥殘留標準的殘留容許量(0.1 ppm),其停藥期訂為15天。 海鱺以30 mg/kg 及 60 mg/kg之OXO劑量分成2組添加至飼料,連續5天,每天一次投予後停藥,且於停藥後第1、3、5、7、10、14、21天採樣,以液相層析串聯質譜儀 ( LC-MS/MS )分析組織中殘留量,本分析方法以OXO添加至肌肉及肝臟之平均回收率分別為95.8 %及86.55 %、肌肉及肝臟之線性迴歸方程式分別為Ŷ = 115139.57 X + 455100.54(R2=0.9989)及 Ŷ = 25239.75X — 37040.26(R2= 0.9992)。海鱺在低劑量組(30 mg/kg)與高劑量組(60 mg/kg)之帶皮肌肉及肝臟在投藥後第24小時平均濃度均達高峰依低、高劑量組海鱺之前揭組織順序分別為62 11.7、64 20.6 ng/g(ppb)與202 44.5、264 95.4 ppb。低劑量組不論帶皮肌肉或肝臟在投藥後第5天之濃度均低於殘留容許標準0.05 ppm,然而高劑量組之帶皮肌肉則於投藥後第7天及肝臟在投藥後第10天,其殘留濃度始低於殘留容許標準。因此建議停藥期為15天(殘留期間10天加0.5倍安全期間)。 甲魚以30 mg/kg 及 60 mg/kg之OXO劑量分成2組添加至飼料,連續5天,每天一次投予後停藥,且於停藥後第1、2、4、8、12、16、20、24、28、32、36、40、48天採樣,以高效液相層析儀(HPLC)搭配光二極體陣列檢出器分析組織中殘留量,本分析方法檢量線線性範圍0.01-10 ppm,在帶皮肌肉及肝臟之平均回收率分別為75.04% 及80.80%,線性迴歸方程式Ŷ=22233X–3495,其相關係數R2=0.997。在本試驗的分析條件下,LOD為0.03 ppm。甲魚在低劑量組(30 mg/kg)與高劑量組(60 mg/kg)之帶皮肌肉及肝臟在投藥後第1天平均濃度均達高峰,依低、高劑量組甲魚之前揭組織順序分別為3.01±0.15、3.550.27 μg/g (ppm)與5.710.58、5.210.72 ppm。低劑量組不論帶皮肌肉或肝臟在投藥後第36天之濃度均低於殘留容許標準0.1 ppm,然而高劑量組之帶皮肌肉則於投藥後第44天及肝臟在投藥後第48天,其殘留濃度始低於殘留容許標準。因此建議停藥期為72天(殘留期間48天加0.5倍安全期間)。 總之,本試驗研究結果顯示建議石斑魚、海鱺及甲魚之殘留停藥期,分別為15天、15天及72天。提供給政府制定停藥期參考依據。有鑒於水產動物係變溫動物生理代謝特殊,且受水溫、水質與鹽度及給藥途徑等多重因素影響,投藥時獸醫師應依專業調整用法、用量及停藥期,以確保水產動物安全。 | zh_TW |
| dc.description.abstract | This study was conducted to evaluate the depletion of residues of the antibiotics oxolinic acid (OXO) after administration to three cultured species, orange-spotted grouper Epinephelus coioides, cobia (Rachycentron canadum), and softshell turtle (Pelodiscus sinensis). The elimination half-life and residue study of OXO in grouper was assessed in single-oral at dose of 60 mg/kg bw and was conducted in multi-oral administration at the same dose treated once daily after 5 consecutive days. The other two studies were established an adequate depletion period of OXO in cobia and softshell turtle by determining the residues of OXO post feeding with multiple doses. The dosages of OXO were applied via oral administration at the dose of 30 and 60 mg/kg bw for 5 consecutive days. Samples for the elimination half-life study and for the residue study were collected at various time points after cessation of treatments by determining OXO concentrations with a validated high-performance liquid chromatography-fluorescence detection method (HPLC-FLD) in grouper, liquid chromatography tandem mass spectrometry (LC-MS/MS) in cobia and HPLC coupled with photodiode array detector (HPLC-DAD) in softshell turtle. The methodology showed very good linear relationship and linear regression equation R2˃ 0.998, and the mean recovery rate ˃ 75%. Also, methods showed that the detection of limit (LOD), the quantitation limit (LOQ) in HPLC-FLD, LC-MS/MS and HPLC-DAD were 3 and 5 ng/mL(ppb), 0.006 and 0.01 μg/mL(ppm), 0.03 and 0.1 ppm , respectively. In elimination half-life study in grouper, the results showed that the concentration of OXO in blood, muscle, liver and kidney of grouper reached the highest peak after 4 hours of oral administration, with average concentrations of 0.59, 1.76, 2.18 and 3.61 μg/mL, respectively. The trend of concentration and time detected in fish tissue was the highest in the kidney, followed by the liver and muscle, and the lowest in the blood. The elimination half-lives of grouper blood, muscle, liver and kidney were 136, 131, 158 and 110 hours. The grouper residue study showed that OXO in grouper blood, muscle, liver and kidney after the oral administration were completed on the 4, 10, 10, and 10th days, respectively. The mean concentration were lower than the residue tolerance of the EU residual standard (0.1 ppm), the conclusive approach would then result in a withdrawal period of 15 days as in the present study. In cobia residue study after the 30 and 60 mg/kg dose, results showed muscle with skin and liver samples at 24 h following termination of medication had a mean peak (n = 5) concentrations of 62 11.7, 64 20.6 ng/g (ppb) (30 mg/kg), and 202 44.5, 264 95.4 ppb (60 mg/kg), respectively. The residue OXO concentrations decreased to below the maximum residue limits (MRLs) of 0.05 ppm on the 5th day in muscle with skin and liver after the 30 mg/kg dose, while it occurred on the 10th day in muscle with skin and the 10th day in liver, respectively, after last 60 mg/kg dose. The results from this study suggested that the recommended withdrawal period was 15 days. In softshell turtle residue study after the 30 and 60 mg/kg dose, results showed muscle with skin and liver samples at 24h following termination of medication had a mean peak (n=6) concentrations of 3.01 0.15, 3.55 0.27 μg/g (30 mg/kg), and 5.71 0.58, 5.21 0.72 μg/g (60 mg/kg), respectively. The residue OXO concentrations decreased to below the MRLs of 0.1 ppm on the 36th day in muscle with skin and liver after the 30 mg/kg dose, while it occurred on the 44th day in muscle with skin and the 48th day in liver, respectively, after last 60 mg/kg dose. The results from this study suggested that the recommended withdrawal period was 72 days. Residue depletion of OXO in reptiles is much more slowly than other aquatic animals studied. Therefore, the depletion behavior of OXO in softshell turtle should be used on destined for human consumption, and they should be used cautiously and under veterinary medicines guidance. In conclusion, depletion studies were conducted the time for OXO concentrations to fall below 100 ppb (the current tolerance set by the European Medicines Agency (EMA) among fish species establishing an adequate depletion period), and in further considering the MRLs of 50 ppb established by the Taiwan FDA for OXO in muscle with skin in natural proportions. These results provide information on tissue depletions of OXO residues in farmed fish and turtles, the withdrawal period of 15 days in grouper and cobia and 72 days in softshell turtle were calculated on the basis of a safety span (corresponds to 50% of the time point when at which residues fall below the MRL) added to the depletion time. The depletion behavior we have detailed in this work suggests withdrawal times with reference to human consumption of treated fish, to establish policy guidelines and basic principles with regard to the use of OXO for fish farming, and to fish-farmers for the proper handling to ensure safe fish that the consumer will not be at risk. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:03:08Z (GMT). No. of bitstreams: 1 U0001-2907202022562500.pdf: 13333328 bytes, checksum: b1eca03cd51f04517a1a47c117ebd8b6 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌 謝 I 中文摘要 II 英文摘要 IV 目錄 VI 圖目錄 XV 表目錄 XVII 第一章 緒言 1 第二章 文獻綜述 4 第一節 石斑魚、海鱺及甲魚的概況 4 2.1.1石斑魚 4 2.1.1.1概說 4 2.1.1.2石斑的分類及型態特徵 4 2.1.1.3生態習性 4 2.1.1.4養殖情形 5 2.1.1.5常見疾病與防治情形 5 2.1.2海鱺 5 2.1.2.1概說 5 2.1.2.2海鱺的分類與形態特徵 6 2.1.2.3生態習性 6 2.1.2.4養殖情形 6 2.1.2.5常見疾病與防治情形 7 2.1.2.6產業現況 7 2.1.3甲魚 7 2.1.3.1概說 7 2.1.3.2分類與形態特徵 8 2.1.3.3生態習性 8 2.1.3.4養殖情況 9 2.1.3.5常見疾病與防治 9 第二節 水產動物用藥品之管理及使用 10 2.2.1管理 10 2.2.2 停藥期 11 2.2.3投予水產動物藥物之給藥途徑 12 2.2.3.1口服方式: 12 2.2.3.2藥浴 13 2.2.3.3注射 13 2.2.4 水產動物之藥物動力學 14 2.2.4.1影響水產動物用藥品之藥物動力學的因素 14 第三節 歐索林酸 17 2.3.1 Quinolones 簡介 17 2.3.2歐索林酸 19 2.3.2.1歐索林酸的結構及物理化學性質 19 2.3.2.2藥理作用機制 19 2.3.2.3藥理與毒理學 20 2.3.2.4 OXO在水產動物體內代謝 22 2.3.2.5 OXO在水產動物體之排除研究 22 2.3.2.6核准在動物之使用情形 26 2.3.2.7殘留容許量 27 2.3.2.8抗藥性與環境汙染 28 2.3.2.9歐索林酸藥物殘留檢測技術的方法 29 第四節 我國現行食品中動物用藥殘留檢驗標準 35 2.4.1食品安全衛生管理法第十五條規定 35 2.4.2食品安全衛生管理法第十五條之一規定 35 2.4.3食品中動物用藥殘留檢驗方法 35 第五節 高效液相層析法 (high performance liquid chromatography, HPLC) 35 2.5.1原理 35 2.5.2應用範圍 36 2.5.3管柱 36 2.5.4偵測器 37 第六節 液相層析串聯式質譜儀 (liquid chromatography tandem-mass spectrometry, LC-MS/MS) 37 2.6.1原理 38 2.6.2偵測器 38 2.6.3真空技術 39 2.6.4應用範圍 39 第三章、歐索林酸在石斑魚的殘留研究 40 第一節 前言 40 第二節 材料與方法 40 3.2.1實驗動物來源 40 3.2.1.1實驗魚種-石斑魚(Grouper; Epinephelus coioides) 40 3.2.2以高效液相層析儀進行殘留檢測 40 3.2.2.1分析設備 40 3.2.2.2其他設備及器材 41 3.2.2.3標準品及試藥 41 3.2.2.4 分析條件 42 3.2.3實驗所需之試劑溶液的配製 42 3.2.3.1歐索林酸投藥用口服溶液 42 3.2.3.2魚用抗凝血劑 42 3.2.3.3歐索林酸標準品 42 3.2.3.4 0.05 M磷酸二氫鈉緩衝溶液(pH 2.5) 42 3.2.3.5 10% 十二烷基硫酸納 43 3.2.3.6高效能液相層析儀流洗液A 43 第三節OXO在石斑魚之殘留試驗 43 3.3.1口服步驟 43 3.3.2石斑魚採樣方法 44 第四節 組織樣品萃取及分析檢體之製備: 44 第五節 檢測技術之品質管制 45 3.5.1標準曲線製作 45 3.5.2精密度測定 45 3.5.3偵測極限(limit of detection, LOD) 45 3.5.4定量極限(limit of quantification, LOQ) 45 3.5.5回收率測定 45 3.5.6鑑別試驗及含量測定 46 第六節 結果 46 3.6.1 OXO 標準曲線 46 3.6.2 血清、肝臟、腎臟及肌肉組織回收率測定結果 46 3.6.3同日間精密度(intra-day precision) 46 3.6.4異日間精密度(inter-day precision) 47 3.6.5 OXO於石斑魚之殘留試驗結果 47 第七節 討論 48 第四章、OXO在海鱺之殘留試驗 51 第一節 前言 51 第二節 材料與方法 51 4.2.1實驗魚種-海鱺(Cobia;Rachycentron canadum) 51 4.2.2以LC-MS/MS進行殘留檢測 51 4.2.2.1試藥 51 4.2.2.2其他器具及材料 52 4.2.2.3液相層析串連質譜分析條件 52 4.2.3 溶液配置 53 4.2.3.1標準溶液之配置 53 4.2.3.2 試劑與移動相之選定 53 4.2.3.3檢液之調製 53 4.2.4 回收率測定 54 4.2.5基質匹配檢量線之製作 54 4.2.6 OXO在海鱺之殘留試驗 54 4.2.6.1實驗動物分組 54 4.2.6.2殘留試驗 54 4.2.7殘留量分析 55 4.2.7.1標準曲線製作 55 4.2.7.2基質檢量線製作 55 4.2.8 鑑別試驗及含量測定 55 4.2.9組織樣品回收率試驗 56 4.2.10定量極限 56 第三節 結果 56 4.3.1 以LC-MS/MS檢測之肌肉及肝臟回收率測定結果 56 4.3.2以LC-MS/MS檢測之肝臟回收率測定結果 56 4.3.3 以LC-MS/MS檢測之帶皮肌肉回收率測定結果 57 4.3.4以LC-MS/MS檢測海鱺殘留性試驗結果 57 第四節 討 論 57 第五章 歐索林酸在甲魚之殘留試驗 60 第一節 前言 60 第二節 材料與方法 60 5.2.1實驗魚種-甲魚(Softshell Turtle;Pelodiscus Sinensis) 60 5.2.2以高效液相層析儀進行殘留檢測 60 5.2.2.1分析設備 60 5.2.2.2其他設備及器材 61 5.2.2.3標準品及試藥 61 5.2.1.4 分析條件 61 5.2.3 溶液配置 61 5.2.3.1標準品溶液配置 61 5.2.3.2緩衝液 62 5.2.4鑑別試驗及含量測定 62 5.2.5精密度 62 5.2.5.1同日間精密度測定 62 5.2.5.2異日間精密度測定 62 5.2.6 OXO於甲魚之殘留試驗 63 5.2.6.1試驗動物分組 63 5.2.6.2檢體採集 63 5.2.6.3 組織樣品前處理 63 第三節 結果 64 5.3.1 OXO 標準曲線 64 5.3.2 帶皮肌肉組織、肝臟回收率測定結果 65 5.3.3精密度 65 5.3.3.1 同日間(intra-day)精密度試驗結果 65 5.3.3.2異日間(inter-day)精密度試驗結果 65 5.3.4 OXO於甲魚之殘留試驗結果 65 第四節 討論 66 第六章 綜合討論與結論 69 參考文獻 76 圖 87 表 108 附錄 120 附錄一之1:壁報論文 120 附錄一之2:壁報論文 122 附錄一之3:壁報論文 124 附錄二之1:期刊論文 126 附錄二之2:期刊論文 134 附錄二之3:期刊論文 142 附錄三:作者簡歷 152 圖目錄 圖 1 Oxolinic acid (OXO) 歐索林酸 C13H11NO5 分子量 261.24 87 圖 2 Nalidixic acid 奈啶酸 C12H12N2O3 分子量 232.24 88 圖 3 OXO 標準曲線,直線迴歸方程式為Ŷ = 0.0704,其相關係數平方值 R2 為 0.9999。 89 圖 4海鱺飼養設施一 90 圖 5海鱺飼養設施二 91 圖 6海鱺肝臟添加曲線圖。直線迴歸方程式為 Ŷ = 25239.75X-37040.26,其 R2 為 0.9992。本實驗於分析條件下之定量極限為 0.01 μg/mL。 92 圖 7海鱺帶皮肌肉添加曲線圖。直線迴歸方程式為 Ŷ = 115139.57X+455100.54,其 R2 = 0.9989。本實驗於分析條件下之定量極限為 0.01 μg /mL。 93 圖 8 OXO殘留性試驗結果,海鱺以低劑量 (30 mg/Kg) 連續口服投藥5天後,其肌肉各時段之檢出量。 94 圖 9 OXO殘留性試驗結果,海鱺以低劑量 (30 mg/Kg) 連續口服投藥5天後,其肝臟各時段之檢出量。 95 圖 10 OXO殘留性試驗結果,海鱺以高劑量 (60 mg/Kg) 連續口服投藥5天後,其肌肉各時段之檢出量。 96 圖 11 OXO殘留性試驗結果,海鱺以高劑量 (60 mg/Kg) 連續口服投藥5天後,其肝臟各時段之檢出量。 97 圖 12利用HPLC分析OXO不同濃度標準液(0.1、1 、2及10 μg /mL)之層析圖,波峰出現之滯留時間為7.2-7.5分鐘。 98 圖 13利用HPLC方法分析不同濃度OXO 標準液的積分值之迴歸直線。其相關係數 R2= 0.9976,直線迴歸方程式 Ŷ = 22233x -3495。 99 圖 14 OXO於甲魚肌肉背景值波峰圖。 100 圖 15 OXO於甲魚肌肉回收率波鋒圖。 101 圖 16 OXO於甲魚肝臟背景值波峰圖。 102 圖 17 OXO於甲魚肝臟回收率波峰圖。 103 圖 18 OXO殘留性試驗結果,甲魚以 30 mg/kg 劑量 (低劑量組) 連續 5 天飼料添加給藥後,在肌肉中各時段之檢出量。於第44天其組織內殘留藥量低於檢測極限 0.05 ppm。 104 圖 19 OXO殘留性試驗結果,甲魚以 30 mg/kg 劑量 (低劑量組) 連續 5 天飼料添加給藥後,在肝臟中各時段之檢出量。於第44天其組織內殘留藥量低於檢測極限0.05 ppm。 105 圖 20 OXO殘留性試驗結果,甲魚以高劑量60 mg/kg投予後,肌肉中各時段OXO之檢出量。結果投藥後於第48天其檢體殘留平均濃度為 0.06 μg/ mL,仍高於檢測極限。 106 圖 21 OXO殘留性試驗結果,甲魚以高劑量60 mg/kg投予後,上圖為肝臟中各時段OXO之檢出量。結果投藥後於第48天,大部分檢體殘留平均濃度為0.07 μg/ mL,仍高於檢測極限。 107 表目錄 表 1不同國家或地區制定OXO在不同動物種類不同組織之殘留容許量 108 表 2以25 、50 、100 ppb三種不同濃度歐索林酸添加在石斑魚血清、肌肉、肝臟及腎臟之回收率 109 表 3同日間(Intra-day)及異日間(Inter-day)之精密度試驗 110 表 4 OXO以 60 mg/kg b.w.單一劑量投予石斑魚之濃度與時間曲線方程式及有關藥物動力學參數 111 表 5在溫度26-27 °C下,OXO以60 mg/kg/day,連續5天,多劑量投與石斑魚後,在石斑魚組織中OXO (ng/g)之平均濃度(mean ± SD) n = 6/group 112 表 6 OXO液相層析圖之移動相溶液梯度分析條件 113 表 7多重反應偵測相對離子強度之容許範圍 114 表 8 OXO添加於海鱺肌肉及肝臟之回收率。 115 表 9以高、低劑量之OXO 投予海鱺後,其帶皮肌肉及肝臟在不同停藥時段之殘留情形 116 表 10 OXO同日間精密度試驗(intra-day precision) 117 表 11 OXO異日精密度試驗 (inter-day precision) 118 表 12甲魚在22-28 °C分別以OXO 30 及 60 mg/kg劑量連續 5 天飼料添加給藥後,在肌肉及肝臟中各時段之OXO (g/g)檢出的平均濃度(Mean SD, n = 6/group) 119 | |
| dc.language.iso | zh-TW | |
| dc.subject | 歐索林酸 | zh_TW |
| dc.subject | 殘留 | zh_TW |
| dc.subject | 排除研究 | zh_TW |
| dc.subject | 石斑魚 | zh_TW |
| dc.subject | 海鱺 | zh_TW |
| dc.subject | 甲魚 | zh_TW |
| dc.subject | residues | en |
| dc.subject | depletion study | en |
| dc.subject | oxolinic acid | en |
| dc.subject | grouper | en |
| dc.subject | cobia | en |
| dc.subject | softshell turtle | en |
| dc.title | 歐索林酸在石斑魚、海鱺及甲魚之殘留研究 | zh_TW |
| dc.title | Residue Depletion Study of Oxolinic Acid in Grouper (Epinephelus coioides), Cobia (Rachycentron canadum), and Softshell Turtle (Pelodiscus sinensis) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 郭宗甫名譽教授(TZONG-FU KUO) | |
| dc.contributor.oralexamcommittee | 王渭賢教授(Way-Shyan Wang),王建雄教授(JIANN-HSIUNG WANG),張志成教授(Chih-Cheng Chang) | |
| dc.subject.keyword | 歐索林酸,殘留,排除研究,石斑魚,海鱺,甲魚, | zh_TW |
| dc.subject.keyword | residues,depletion study,oxolinic acid,grouper,cobia,softshell turtle, | en |
| dc.relation.page | 151 | |
| dc.identifier.doi | 10.6342/NTU202002067 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-04 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2907202022562500.pdf 未授權公開取用 | 13.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
