請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55442完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭振華(jehn-hwa kuo) | |
| dc.contributor.author | Wai-Ieng Leong | en |
| dc.contributor.author | 梁慧瑩 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:02:42Z | - |
| dc.date.available | 2018-02-03 | |
| dc.date.copyright | 2015-02-03 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-10-16 | |
| dc.identifier.citation | [1] N. Kato, Y. Ando, and T. Shigetomi, 'Precision Maneuvering of Underwater Robot by Mechanical Pectoral Fins,' in IEEE int'l.Symp.on Underwater Technology. Taipei, 2004, pp. 303-310.
[2] M. Sfakiotakis, D. M. Lane, and J. B. C. Davies, 'Review of fish swimming modes for aquatic locomotion,' J. Oceanic Eng., vol. 24, pp. 237-252, 1999. [3] 郭振華,吳泉興,'仿生型自主式水下載具胸鰭與尾鰭之協調循跡控制器設計',國立臺灣大學工程科學及海洋工程研究所碩士論文,2004。 [4] F. C. Chiu, J. Guo, and C. P. Wu, 'Simulation on the Undulatory Locomotion of a Flexible Slender Body,' in Int'l. Symp.on Aqua Bio-Mechanisms. Hawaii, 2000, pp. 185-190. [5] J. Guo, F. C. Chiu, Y. J. Joeng, and S. W. Cheng, 'Motion Control and Way-point Tracking of a Biomimetic Underwater Vehicle,' in IEEE Intl'l. Symp.on Underwater Technology. Tokyo, 2002, pp. 73-78. [6] J. Guo, F. C. Chiu, S. W. Cheng, and Y. S. Ho, 'Control Systems for Waypoint-tracking of a Biomimetic Autonomous Underwater Vehicle,' in OCEANS. San Diego, 2003, pp. 333-339. [7] F. C. Chiu, J. Guo, and C. K. Chen, 'A Practical Method for Simulating Pectoral Fin Locomotion of A Biomimetic Autonomous Underwater Vehicle,' in IEEE int'l. Symp.on Underwater Technology. Taipei, 2004, pp. 323-329. [8] E. A. Tannuri, D. C. Donha and C. P. Pesce, 'Dynamic positioning of a turret moored FPSO using sliding mode control,' in International Journal of Robust and Nonlinear Control, vol.11, pp. 1239–1256, November 2001. [9] E. A. Tannuri, H.M. Morishita, 'Experimental and numerical evaluation of a typical dynamic positioning system,' in Applied Ocean Research, vol. 28, pp. 133–146, April 2006. [10] E.A.Tannuri, A.C.Agostinho, H.M.Morishita, L.MoratelliJr, 'Dynamic positioning systems: An experiment analysis of sliding mode control,' in Control Engineering Practice, vol.18, pp. 1121–1132, October 2010. [11] C. M. Breder, 'The locomotion of fishes,' Zoologica, vol. 4, pp. 159-256, 1926. [12] J. H. Guo, 'A waypoint-tracking controller for a biomimetic autonomous underwater vehicle,' Ocean Engineering, vol. 33, pp. 2369-2380, Dec 2006. [13] 郭振華,邱柏昇,'仿生型自主式水下載具利用雙魚眼攝影機在已知環境中之導航',國立臺灣大學工程科學及海洋工程研究所碩士論文,2012。 [14] T. D. Nguyen,A. J. Sorensen, S. T.Quek, 'Design of hybrid controller for dynamic positioning from calm to extreme sea conditions,' in Automatica, vol.43, pp. 768–785, May 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55442 | - |
| dc.description.abstract | 仿生型自主式水下載具(BAUV)在紊流場下達到動態定位之目的為本研究團隊發展水下雷射通訊系統最不可或缺的技術。為了提高資料傳送的準確性和完整性,本文致力於發展仿生型自主式水下載具在紊流場下達到動態定位,由於仿生型水下載具系統之非線性及所在環境的不確定性,增加了自主式水下載具在控制上之困難度,所以希望載具在水中達到穩定精確定位的前提下,本文提出以立體視覺作為回授輔助並發展一控制器,使系統動態誤差達到全域性的穩定狀態。本文首先使用拉格朗日方程推導仿生型自主式水下載具的動力平面數學模型,求得尾鰭和胸鰭運動參數與仿生型水下載具的運動關係,並依據此關係所計算出的追踪誤差及其隨時間的變化量提出滑模控制器設計之方法,再利用立體視覺觀測目標物(三球)之測量值,透過幾何方法計算出載具與目標物之間的相對關係,結合載具系統之數學模型經由實驗取得適當的權重作為控制器回授,並利用雷射掃描測量其路徑找出實際值與立體視覺之測量值之間的誤差。實驗包括放置仿生型自主式水下載具於有波浪干擾及定速流干擾之流場,觀察其運動及使用雷射掃描測量其路徑,透過上述實驗驗証本文所使用的控制器能有效令仿生型水下載具系統達到動態定位之目的。 | zh_TW |
| dc.description.abstract | Biomimetic Autonomous Underwater Vehicle (BAUV) achieve the purpose of dynamic positioning in turbulent flow environment is the essential technology for our research team of Underwater Laser Communication System. In order to improve the accuracy and completeness of the information transmitted, this thesis is committed to development of a stable dynamic positioning for the BAUV in the turbulent water field. Nonlinearity of the dynamic systems and the uncertain environment are challenges of the controller design. This work presents a controller which adopts the stereo visual feedback as aids to the BAUV for the dynamic positioning in water currents. Firstly, a planar mathematical model of the BAUV is derived based on the Euler-Lagrange equation. The relationship between parameters of caudal, pectoral fins and movement of the BAUV are determined and design method based on sliding mode control theory is presented. Measured positions of the landmark by stereo vision were used to calculate relative relationship between the landmark and the BAUV in global coordinate. They combined with the motion model of the BAUV as the controller feedback. It is shown that the system error dynamics achieves stable state. This is verified by experimental data by showing that the vehicle under control reached stable hovering in water of constant and periodic disturbances flow. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:02:42Z (GMT). No. of bitstreams: 1 ntu-103-R01525084-1.pdf: 2138333 bytes, checksum: 3eeaad1311217f9169fd4b5d04d183a0 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III CONTENTS V LIST OF FIGURES VIII LIST OF TABLES XVIII LIST OF SYMBOLS XIX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 2 1.3 Thesis Overview 3 Chapter 2 Vehicle Introduction 5 2.1 Vehicle Appearance 5 2.2 Vehicle Structure 6 2.2.1 Pectoral Fins 10 2.2.2 Tail Fin 10 2.3 Configuration of Waterproof Box 11 Chapter 3 Dynamic Modeling 13 3.1 Assumptions 13 3.2 Dynamics model of BAUV 14 3.3 Hydrodynamics of BAUV and Multi-fins 19 3.3.1 Hydrodynamics of Caudal Fin 19 3.3.2 Hydrodynamics of pectoral fins 21 3.4 Dynamics of BAUV 24 Chapter 4 Controller Design 26 4.1 Stereo Vision 27 4.1.1 Image Formation 27 4.1.2 Radial Distortion Adjustment 29 4.1.3 Epipolar geometry 31 4.1.4 Stereo Vision 35 4.2 Localization system 37 4.2.1 Hue, Saturation, Value Color Space 37 4.2.2 Location System 38 4.3 Controller Design 43 4.3.1 Kinematics Design 44 4.3.2 Sliding Mode Control 51 4.3.3 Controller Design 55 Chapter5 Experiments 61 5.1 Description of hardware of the BAUV 62 5.2 Characteristics of the BAUV 64 5.3 Stereo vision results 67 5.4 Dynamic positioning experiments 77 5.4.1 Dynamic positioning test with no environmental action 79 5.4.2 Dynamic positioning test with periodic disturbances 102 5.4.3 Dynamic positioning tests in water current 126 5.5 Statics of the stereo visual position 152 Chapter 6 Conclusions 153 Reference 155 | |
| dc.language.iso | en | |
| dc.subject | 仿生型水下載具 | zh_TW |
| dc.subject | 非線性控制 | zh_TW |
| dc.subject | 滑模控制 | zh_TW |
| dc.subject | 雙眼視覺 | zh_TW |
| dc.subject | 動態定位 | zh_TW |
| dc.subject | nonlinear control | en |
| dc.subject | stereo vision | en |
| dc.subject | dynamic positioning | en |
| dc.subject | sliding mode control | en |
| dc.subject | BAUV | en |
| dc.title | 仿生型自主式水下載具使用立體視覺在水流中之動態定位控制器設計 | zh_TW |
| dc.title | Design of a Dynamic Positioning Controller Using Stereo Vision for a Biomimetic Autonomous Underwater Vehicle in Water Current | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江茂雄(Mao-Hsiung Chiang),林顯群(Xian-Qun Lin) | |
| dc.subject.keyword | 仿生型水下載具,非線性控制,滑模控制,雙眼視覺,動態定位, | zh_TW |
| dc.subject.keyword | BAUV,nonlinear control,stereo vision,dynamic positioning,sliding mode control, | en |
| dc.relation.page | 157 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-10-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
