請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55441完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙里(Li Zhao) | |
| dc.contributor.author | Yu-Pin Lin | en |
| dc.contributor.author | 林侑頻 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:02:39Z | - |
| dc.date.available | 2020-02-03 | |
| dc.date.copyright | 2015-02-03 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-10-16 | |
| dc.identifier.citation | An, M. (2012), A simple method for determining the spatial resolution of a general inverse problem, Geophys. J. Int., 191, 849-864.
Ando, M. (1984), ScS polarization anisotropy around the Pacific Ocean, J. Phys. Earth, 32, 179-195. Argus, D. F., R. G. Gordon, and C. DeMets (2011), Geologically current motion of 56 plates relative to the no-net-rotation reference frame, Geochem. Geophys. Geosyst., 12, Q11001, doi:10.1029/2011GC003751. Babuška, V., and M. Cara (1991), Seismic Anisotropy in the Earth, Kluwer Academic Publishers, The Netherlands. Becker, T. W., S. Chevrot, V. Schulte-Pelkum, and D. K. Blackman (2006), Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models, J. Geophys. Res., 111, B08309, doi:10.1029/2005JB004095. Bird, P. (2003), An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 4(3), 1207, doi: 10.1029/2001GC000252. Bodin, T., M. Sambridge, and K. Gallagher (2009), A self-parameterising partition model approach to tomographic inverse problems, Inverse Problems, 25, 055009. Browaeys, J., and S. Chevrot (2004), Decomposition of the elastic tensor and geophysical applications, Geophys. J. Int., 159, 667– 678. Castagna, J. P., M. L. Batzle, and R. L. Eastwood (1985), Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks, Geophysics, 50, No. 4, 571-581. Červeny, V. (1987), Ray tracing algorithms in three-dimensional laterally varying layered structures, in Seismic Tomography, pp.99-133, ed. Nolet, G., Reidel, Dordrecht. Červeny, V., I. Molotkov, and, I. Pšenčik (1977), Ray Method in Seismology, University of Karlova, Prague, Czechoslovakia. Chaljub, E., Y. Capdeville, and J. P. Vilotte (2003), Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids, J. Comput. Phys., 187, 457–491. Chapman, C. H., J.-Y. Chu, and D. G. Lyness (1988), The WKBJ seismogram algorithm, in Seismological Algorithms, edited by D. J. Doornbos, pp. 47–74, Academic Press, London. Chen, C. H., and Y. T. Wu (1971), Volcanic geology of the Tatun geothermal area, northern Taiwan, Proc. Geol. Soc. China, 14, 5-28. Chen, P., L. Zhao, and T. H. Jordan (2007), Full 3D seismic waveform tomography for the Los Angeles Basin area, Bull. Seismol. Soc. Am., 97, 1094-1120, doi: 10.1785/0120060222. Chevrot, S. (2000), Multichannel analysis of shear wave splitting, J. Geophys. Res., 105, 21 579–21 590. Chevrot, S. (2006), Finite frequency vectorial tomography: a new method for high resolution imaging of upper mantle anisotropy, Geophys. J. Int., 165, 641–657. Chevrot, S., and V. Monteiller (2009), Principles of vectorial tomography- the effects of model parametrization and regularization in tomographic imaging of seismic anisotropy, Geophys. J. Int., 179, 1726–1736. Chiao, L.-Y., Y.-N. Chen, and Y.-C. Gung (2014), Constructing empirical resolution diagnostics for kriging and minimum curvature gridding, J. Geophys. Res., 119, 3939-3954, doi: 10.1002/2013JB0010364. Chiao, L.-Y., H.-Y. Fang, Y.-C. Gung, Y.-H. Chang, and S.-H. Hung (2010), Comparative appraisal of linear inverse models constructed via distinctive parameterizations (comparing distinctly inverted models), J. Geophys. Res., 115, B07305, doi: 10.1029/2009JB006867. Chiao, L.-Y., and B.-Y. Kuo (2001), Multiscale seismic tomography, Geophys. J. Int., 145, 517–527, doi:10.1046/j.0956-540x.2001.01403.x. Chiao, L.-Y., and W.-Z. Liang (2003), Multiresolution parameterization for geophysical inverse problems, Geophysics, 68, 199–209, doi:10.1190/1.1543207. Crotwell, H. P., T. J. Owens, and J. Ritsema (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, Seismol. Res. Lett., 70, 154–160. Dahlen, F. A., S.-H. Hung, and G. Nolet (2000), Frechet kernels for finite-frequency traveltimes—I. Theory, Geophys. J. Int., 141, 157–174. Denison, D. G. T., C. C. Holmes, B. K. Mallick, and A. F. M. Smith (2002), Bayesian Methods for Nonlinear Classification and Regression, Wiley. Dettmer, J., S. E. Dosso, and C. W. Holland (2010), Trans-dimensional geoacoustic inversion, J. acoust. Soc. Am., 128, 3393-3405. Dziewonski, A. M. and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Int., 25, 297–356. Favier, N., and S. Chevrot (2003), Sensitivity kernels for shear wave splitting in transverse isotropic media, Geophys. J. Int., 153, 213–228. Favier, N., S. Chevrot, and D. Komatitsch (2004), Near-field influences on shear wave splitting and traveltime sensitivity kernels, Geophys. J. Int., 156, 467–482. Fay, N. P., R. A. Bennett, J. C. Spinler, and E.D. Humphreys (2008), Small-scale upper mantle convection and crustal dynamics in southern California, Geochem. Geophys. Geosyst., 9, Q08006, doi:10.1029/2008GC001988. Ford, Heather A., K. M. Fischer, and V. Lekic (2014), Localized shear in the deep lithosphere beneath the San Andreas fault system, Geology, v. 42, p. 295-298, doi:10.1130/G35128.1. Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996), Markov chain Monte Carlo in Practice, Chapman and Hall, London, UK. Graves, Robert W. (1996), Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seism. Soc. Am., 86, No. 4, 1091-1106. Green, P. (1995), Reversible jump MCMC computation and Bayesian model selection, Biometrika, 82, 711–732. Ho, C. S. (1988), An introduction to the geology of Taiwan: Explanatory text of the geologic map of Taiwan, Central Geological Survey, Ministry of Economic Affairs, Taipei, R. O. C., 192pp. Humphreys, E. D., and R. W. Clayton (1990), Tomographic image of the southern California mantle, J. Geophys. Res., 95, 19,725 – 19,746. International Conference of Building Officials (ICBO) (1997). Uniform Building Code, Whittier, California, 492 pp. Julian, B. R., and D. Gubbins (1977), Three-dimensional seismic ray tracing, J. Geophys. Res., 43, 95-114. Kim, K. H., J. M. Chiu, J., Pujol, K.-C. Chen, B.-S. Huang, Y.-H. Yeh, and P. Shen (2005), Three-dimensional Vp and Vs structural model associated with the active subduction and collision tectonics in the Taiwan region, Geophys. J. Int., 162, 204-220. Kohler, M.D., H. Magistrale, and R.W. Clayton (2003), Mantle heterogeneities and the SCEC reference three-dimensional Seismic Velocity Model Version 3, Bull. seism. Soc. Am., 93, 757–774. Komatitsch, D., and J. Tromp (1999), Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int., 139, 806-822. Komatitsch, D., and J. Tromp (2002), Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation, Geophys. J. Int., 150, 303–318. Kosarian, M., P. M. Davis, T. Tanimoto, and R. W. Clayton (2011), The relationship between upper mantle anisotropic structures beneath California, transpression, and absolute plate motions, J. Geophys. Res., 116, B08307, doi:10.1029/2010JB007742. Kuo-Chen, H., F. Wu, and S. Roecker (2012), Three-Dimensional P Velocity Structures of the Lithosphere Beneath Taiwan from the Analysis of TAIGER and Related Seismic Datasets, J. Geophys. Res., 117, B06306, doi:10.1029/2011JB009108. Lee, C.-T., C.-T. Cheng, C.-W. Liao, and Y.-B. Tsai (2001), Site Classification of Taiwan Free-Field Strong-Motion Stations, Bull. Seism. Soc. Am., 91, 1283-1297. Lee, C. T., and B. R. Tsai (2008), Mapping Vs30 in Taiwan, Terr. Atmos. Ocean. Sci., 19, 671-682. Lee, E.-J., P. Chen, T. H. Jordan, P. B. Maechling, M. A. M. Denolle, and G. C. Beroza (2014), Full-3-D tomography for crustal structure in Southern California based on the scattering-integral and the adjoint-wavefield methods, J. Geophys. Res. Solid Earth, 119, doi:10.1002/2014JB011346. Lee, S.-J., H.-W. Chen, Q. Liu, D. Komatitsch, B.-S. Huang, and J. Tromp (2008), Three-dimensional simulations of seismic wave propagation in the Taipei basin with realistic topography based upon the spectral-element method, Bull. Seism. Soc. Am., 98, 253-264. Legendre, C. P., T. Meier, S. Lebedev, W. Friederich, and L. Viereck-Gotte (2012), A shear wave velocity model of the European upper mantle from automated inversion of seismic shear and surface waves, Geophys. J. Int., 191, 282-304, doi: 10.1111/j.1365-246X.2012.05613.x. Lin, C. J., C. C. Liu, and W. H. K. Lee (2009), Recording Rotational and Translational Ground Motions of Two TAIGER Explosions in Northeastern Taiwan on 4 March 2008, Bull. Seism. Soc. Am., 99, No. 2B, 1237-1250. Lin, F.-C., M. H. Ritzwoller, Y. Yang, M.P. Moschetti, and M. J. Fouch (2011), Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States, Nature Geoscience, 4, 55–61. Lin, Y.-P., L. Zhao, and S.-H. Hung (2011), Assessment of tomography models of Taiwan using first-arrival times from TAIGER active-source experiment, Bull. seism. Soc. Am., 101, 866-880, doi: 10.1785/0120100244. Lin, Y.-P., L. Zhao, and S.-H. Hung (2014), Full-wave effects on shear wave splitting, Geophys. Res. Lett., 41, 799–804, doi:10.1002/2013GL058742. Liu, Q., and J. Tromp (2006), Finite-frequency kernels based upon adjoint methods, Bull. seism. Soc. Am., 96, 2383-2397. Long, M. D. (2009), Complex anisotropy in D〃 beneath the eastern Pacific from SKS–SKKS splitting discrepancies, Earth Planet. Sci. Lett., 283, 181-189. Ma, K.-F., J.-H. Wang, and D. Zhao (1996), Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J. Phys. Earth,44, 85-105. Meier, T., S. Lebedev, G. Nolet, and F. A. Dahlen (1997), Diffraction tomography using multimode surface waves, J. Geophys. Res.,102, 8255– 8267. Mensch, T. and P. Rasolofosaon (1997), Elastic-wave velocities in anisotropic media of arbitrary symmetry-generalization of Thomsen's parameters ε, δ and γ, Geophys. J. Int., 128, 43–64, doi: 10.1111/j.1365-246X.1997.tb04070.x. Molnar, P., and K.E. Dayem (2010), Major intracontinental strike-slip faults and contrasts in lithospheric strength: Geosphere, 6, 444–467. Monteiller, V., and S. Chevrot (2011), High-resolution imaging of the deep anisotropic structure of the San Andreas Fault system beneath southern California, Geophys. J. Int., 186, 418-446. Moser, T. J. (1991), Shortest path calculation of seismic rays, Geophysics, 56, 59-67. Nolet, G. (1990), Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs, J. Geophys. Res., 95, 8499– 8512. Okabe, A., B. Boots, K. Sugihara, and S. N. Chiu (2000), Spatial Tessellations – Concepts and Applications of Voronoi Diagrams, 2nd edition, John Wiley, 2000, 671 pages, ISBN 0-471-98635-6. Okaya, D., F. Wu, C.-Y. Wang, H.-Y. Yen, B.-S. Huang, L. Brown, and W.-T. Liang (2009), Joint passive/controlled source seismic experiment across Taiwan. Eos Trans. AGU 90 (34), doi: 10.1029/2009EO340001. Olsen, K. B. (1994), Simulation of three-dimensional wave propagation in the Salt Lake Basin, Ph.D. Thesis, University of Utah, Salt Lake City, Utah, 157pp. Paige, C. C., and M. A. Saunders (1982a), Algorithm 583, LSQR: sparse linear equations and least squares problems, ACM Trans. Math. Softw., 8(2), 195–209. Paige, C. C., and M. A. Saunders (1982b), LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw., 8(2), 43–71. Plesch, A., J. H. Shaw, and C. Benson (2007), Community Fault Model (CFM) for Southern California, Bull. seism. Soc. Am., 97, 1793–1802. Podvin, P., and I. Lecomte (1991), Finite difference computation of travel times in very contrasted velocity models: a massively parallel approach and its associated tools, Geophys. J. Int., 105, 271-284. Polet, J., and H. Kanamori (1997), Upper-mantle shear velocities beneath Southern California determined from Long-period surface waves, Bull. seism. Soc. Am., 87, 200–209. Press, F. (1956), Determination of crustal structure from phase velocity of Rayleigh waves part I: southern California, Bull. Geol. soc. Am., 67, 1647. Rau, R.-J., and F. T. Wu (1995), Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett., 133, 517-532. Roecker, S. W., Y. H. Yeh, and Y.-B. Tsai (1987), Three-dimensional P and S wave velocity structures beneath Taiwan–deep structure beneath an arc-continent collision, J. Geophys. Res., 92, 10, 547–10,570. Savage, M. K. (1999), Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev. Geophys., 37, 65–106. Shapiro, N. M., M. Campillo, L. Stehly, and M. H. Ritzwoller (2005), High-resolution surface-wave tomography from ambient seismic noise, Science 307, 16151618. Shin, T.-C., and Y.-L. Chen (1998), Study on the earthquake location of 3-D velocity structure in the Taiwan area, Metoerol. Bull., 42, 135-169. Sieminski, A., Q. Liu, J. Trampert, and J. Tromp (2007), Finite-frequency sensitivity of body waves to anisotropy based upon adjoint methods, Geophys. J. Int., 171, 368-389. Sieminski, A., H. Paulssen, J. Trampert, and J. Tromp (2008), Finite-frequency SKS splitting: measurement and sensitivity kernels, Bull. seism. Soc. Am., 98, 1797–1810. Silver, P. G. (1996), Seismic anisotropy beneath the continents: Probing the depths of geology, Ann. Rev. Earth Planet. Sci., 24, 385–432. Silver, P. G., and W. W. Chan (1988), Implications for continental structure and evolution from seismic anisotropy. Nature, 335, 34–39. Silver, P.G., and W.E. Holt (2002), The mantle flow field beneath Western North America, Science, 295, 1054–1057. Simons, F. J., A. Zielhuis, and R. D. Van der Hilst (1999), The deep structure of the Australian continent from surface wave tomography, Lithos, 48, 17-43. Song, S. R., S. T. Tsao, and H. J. Lo (2000), Characteristics of the Tatun Volcanic eruptions, northern Taiwan: Implications for a cauldron formation and volcanic evolution, J. Geol. Soc. China, 43, 361-378 Stephenson, J., K. Gallagher, and C. Holmes (2006), Low temperature thermochronology and strategies for multiple samples 2: Partition modelling for 2D/3D distributions with discontinuities, Earth Planet. Sci. Lett., 241, 557–70. Suppe, J. (1984), Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan, Mem. Geol. Soc. China, 6, 21–33. Tanimoto, T., and K. Prindle Sheldrake (2002), Three-dimensional S-wave velocity structure in Southern California, Geophys. Res. Lett., 29, 64-1-64-4, doi:1029/2001GL013486. Tape, C., Q. Liu, A. Maggi, and J. Tromp (2009), Adjoint tomography of the Southern California crust, Science, 325, 988–991, doi:10.1126/science.1175298. Teng, L. S. (1990), Geotectonic evolution of Late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57–76. Teng, L. S. (1996), Extensional collapse of the northern Taiwan mountain belt, Geology, 24, 949-952. Teng, L. S., C. T. Lee, C. H. Peng, W. F. Chen, and C. J. Chu (2001), Origin and geological evolution of the Taipei basin, northern Taiwan, Western. Pac. Earth Sci., 1, 115–142. Tromp, J., C. Tape, and Q. Liu (2005), Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels, Geophys. J. Int., 160, 195-216. Um, J., and C. H. Thurber (1987), A fast algorithm for two-point seismic ray tracing, Bull. seism. Soc. Am., 77, 972-986. Vidale, J. E. (1990), Finite-difference calculation of traveltimes in three dimensions, Geophysics, 55, 521-526. Vinnik, L., G. L. Kosarev, and L. I. Makeyeva (1984), Anisotropy of the lithosphere from the observation of SKS and, SKKS, Proc. Acad. Sci. USSR, 278, 1335–1339. Wang, C.-Y., and T.-C. Shin (1998), Illustrating 100 years of Taiwan seismicity, Terr. Atmos. Ocean. Sci., 9, 589-614. Wang, J.-H. (1998), Studies of earthquake seismology in Taiwan during the 1897-1996 period, J. Geol. Soc. Chin, 41, 291-336. Wang, Z., D. Zhao, J. Wang, and H. Kao (2006), Tomographic evidence for the Eurasian lithosphere subducting beneath south Taiwan, Geophys. Res. Lett., 33, L18306, doi: 10.1029/2006GL027166. Wessel, P. and W. H. F. Smith (1998). New, improved version of the Generic Mapping Tools Released, EOS Trans. Am. Geophys.Un., 79, 579. Wu F. T., H. Kuo-Chen, and K.D. McIntosh (2014), Subsurface imaging, TAIGER experiments and tectonic models of Taiwan, J. Asian Earth Sci., 90, 173-208. Wu, Y.-M., C.-H. Chang, L. Zhao, J. B. H. Shyu, Y.-G. Chen, K. Sieh, and J.-P. Avouac (2007), Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations, J. Geophys. Res., 112, B08312, doi: 10.1029/2007JB004983. Wustefeld, A., G. Bokelmann, C. Zaroli, and G. Barruol (2008), SplitLab: A shear-wave splitting environment in Matlab, Computers & Geosciences, 34, 515-528. Yang, Y., and D. W. Forsyth (2006), Rayleigh wave phase velocities, small-scale convection, and azimuthal anisotropy beneath southern California, J. Geophys. Res., 111, B07306, doi:10.1029/2005JB004180. Yang, Y., M. H. Ritzwoller, F.-C. Lin, M. P. Moschetti, and N. M. Shapiro (2008), Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography, J. Geophys. Res., 113, B12310, doi:10.1029/2008JB005833. Yu, H.-S., and Y.-W. Chou (2001), Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin, Tectonophysics, 333, 277-291. Yu, S. B., H. Y. Chen, L. C. Kuo, S. E. Lallemand, and H. H. Tsien (1997), Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59. Yuan, H., and B. Romanowicz (2010), Depth dependent azimuthal anisotropy in the western US upper mantle, Earth planet. Sci. Lett., 300, 385–394, doi:10.1016/j.epsl.2010.10.020. Yuan, H., B. Romanowicz, K.M. Fischer, and D. Abt (2011) 3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle, Geophys. J. Int., 184, 1237–1260. Yui, T.-F., T.-W. Wu, and B. M. Jahn (1990), Geochemistry and plate-tectonic significance of the metabasites from the Tananao Schist Complex of Taiwan, J. Southeast Asian Earth Sci., 4, 357–368. Zelt, C. A., and R. M. Ellis (1988), Practical and efficient ray tracing in two-dimensional media for rapid traveltime and amplitude forward modeling, Can. J. Geophys., 24, 16-31. Zelt, C. A., and R. B. Smith (1992), Seismic traveltime inversion for 2D crustal velocity structure , Geophys. J. Int., 108, 16– 34. Zhao, L., and S. Chevrot (2011a), An efficient and flexible approach to the calculation of three-dimensional full-wave Frechet kernels for seismic tomography: I–Theory, Geophys. J. Int., 185, 922-938. Zhao, L., and S. Chevrot (2011b), An efficient and flexible approach to the calculation of three-dimensional full-wave Frechet kernels for seismic tomography: II–Numerical results, Geophys. J. Int., 185, 939-954. Zhao, L., and T. H. Jordan (1998), Sensitivity of frequency-dependent traveltimes to laterally heterogeneous, anisotropic Earth structure, Geophys. J. Int., 133, 683-704. Zhao, L., T. H. Jordan, and C. H. Chapman (2000), Three-dimensional Frechet differential kernels for seismic delay times, Geophys. J. Int., 141, 558-576. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55441 | - |
| dc.description.abstract | 本論文包含兩個區域地震層析成像的研究:其中一個是利用人工震源的初動到時探討台灣下方地殼之P波均向性速度構造,另一個則是利用SKS分離強度的資料探討南加州下方剪力波非均向性構造。針對台灣下方的均向性層析成像,我們利用臺灣地體動力整合研究計畫 (TAiwan Integrated GEodynamics Research,簡稱TAIGER) 中所提供的資料進行分析,此研究計畫涵蓋一系列地球物理探勘實驗,其中包含了於2008年實施的陸地人工震源實驗,此實驗於南臺灣和北臺灣的東西向橫貫公路上施放了各五個爆破源,該測線上約每兩百公尺設置一地震儀,因此透過此實驗可獲得大量高品質的地震紀錄,能夠非常精確的解析出台灣下方的地殼速度。本研究一開始先以這些高品質的資料探討臺灣現有速度模型的精確程度及不足之處,其結果顯示三維速度模型所解析出的速度擾動強度仍然不足,因此我們利用這些炸測資料的初達波去推求四個橫跨臺灣的測線下方以及測站分布較密的北臺灣下方的地殼速度構造,利用試誤法的概念,不斷的去改變速度模型,並且透過波線追跡計算估計的到時再與觀測資料的初動到時比對,以找到最佳的二維模型。在測線較為密集的北臺灣,我們利用Partition Modelling 將二維模型外差為三維模型,此結果也和前人研究所得到的三維速度層析成像模型做比較,我們的結果改善了速度擾動強度的不足,其中較細微的速度分層及變化也是前人研究中因逆推方法的限制而無法得到的結果,除此之外側向上的速度變化也和地表的地質特徵極為相關。此研究提供了一個更貼近於真實構造的速度模型,在未來的研究中,可以將此模型當作參考模型,進而推測出更為精確的三維速度構造。
針對南加州非均向性層析成像的研究,我們的目的是解析出在上部地函非均向性的側向變化,可以幫助我們了解地球內部的地幔流場。本研究將我們發展的全波形方法應用到南加州地區,由於南加州地震中心 (Southern California Earthquake Center, SCEC) 擁有包覆性相當完整的地震測站,可提供高品質地震資料,非常適合進行三維非均向性結構的解析與探討。SKS剪力波分離是證實介質非均向性最有利的觀測,目前為止大部分解釋剪力波分離的結果都是基於波線理論,將SKS或 SKKS波視為一垂直入射的平面剪力波,但真實地震訊號與此假設並不一致,因此我們能夠使用的資料將會有所限制,也將我們能夠解析的非均向性結構局限為均勻分佈。而本研究採用近期發展的全波形三維非均向性逆推方法,以高效率且高靈活度的算法計算逆推中的敏感度積分核 (sensitivity kernel),這種積分核可以精確的考慮到所有波相之間互相干擾的影響,因此對於剪力波分離的測量將不再受限於特定的震央距範圍 (如90°-120°),我們則可以使用更多的剪力波分離資料進行精確的模型逆推。本研究針對震央距90°-130°的SKS訊號進行測量,並且採用多重尺度逆推 (multi-scale inversion),其做法是利用小波轉換對模型進行多重尺度參數化,模型在空間的變化透過小波轉換拆解成不同尺度以進行逆推,由觀測資料自行決定在空間中的解析度,因此在波線覆蓋較差的地方仍然可以解出大尺度的構造。另外我們利用統計解析度矩陣 (statistical resolution matrix) 的方法去評估側向的解析度,結果顯示能夠解析的長度大約為25公里。三維非均向性模型於岩石圈中所顯示的快軸方向皆與地表的地質構造相關,如Salton Trough,Transvers Ranges和San Andreas Fault,而深度上的快方向變化則說明岩石圈和軟流圈並沒有明顯裂解的現象,長波長的構造顯示了其非均向性的快軸方向大致與太平洋板塊和北美板塊的絕對板塊運動方向一致。 | zh_TW |
| dc.description.abstract | This thesis involves two regional seismic tomography studies: One for the isotropic P-wave velocity in the upper crust beneath Taiwan using first-arrival times from active sources; the other for the shear-wave anisotropy structure under Southern California using SKS splitting intensity measurements. In the isotropic tomography for Taiwan, we use waveform records from the 10 explosions in 2008 conducted by the TAiwan Integrated GEodynamics Research (TAIGER) project. A large dataset of high-quality ground-truth first-arrival times are hand-picked from the active-source records at ~1400 sites throughout Taiwan, which greatly enhance our capability to determine the crustal velocity beneath Taiwan with unprecedented accuracy and resolution., especially along the two north-south and two east-west island-wide linear transects with densely-deployed receivers. At first, these first-arrival times are used to evaluate the existing tomography models for Taiwan. Results show that tomography models obtained from traditional travel time inversions provide consistent and qualitatively correct locations of larger-scale velocity perturbations. However, small-scale features are inconsistent among different models, and their velocity perturbations are mostly underestimated. Then we use our ground-truth first-arrival times to refine the P-wave velocity model. With a trial-and-error procedure, we acquire the best 2D models along a number of shot-to-station profiles by fitting the first-arrival times. Finally a partition modelling approach is employed to invert for a 3D model in northern Taiwan based on a collection of the crisscrossing 2D models that densely transect across the region. The resulting structural variations in our 3D model correlate remarkably well with the surface geological features that are distinctly shaped by the orogenic and tectonic history in Taiwan.
In the anisotropic tomography for Southern California, our purpose is to resolve the spatial variation of anisotropy in the upper mantle which plays an important role in our understanding of the Earth’s internal dynamics. Shear-wave splitting has always been a key observable in the investigation of upper-mantle anisotropy. However, the interpretation of shear-wave splitting in terms of anisotropy has been largely based on the ray-theoretical modelling of a single vertically incident plane SKS or SKKS wave. In our study, we use sensitivity kernels of shear-wave splitting to anisotropic parameters calculated by the normal-mode theory, which automatically accounts for the full-wave effects including the interference of SKS with other phases of similar arrival times, the near-field effect, and multiple reflections in the crust. These full-wave effects can lead to significant variations of SKS splitting with epicentral distance and are neglected in ray theory. We image the upper-mantle anisotropy in Southern California using nearly 6000 SKS splitting data and their 3D full-wave sensitivity kernels in a multiscale inversion enabled by a wavelet-based model parameterization. We also appraise our inversion by estimating the spatial resolution lengths using a statistical resolution matrix approach, which shows the finest resolution length of ~25 km in regions with better path coverage. The anisotropic model we obtain displays the structural fabrics in relation to surface geologic features such as the Salton Trough, the Transverse Ranges and the San Andreas Fault. The depth variation of anisotropy does not suggest a strong decoupling between the lithosphere and asthenosphere. At long-wavelengths, the orientations of the fast axis of anisotropy are consistent with the absolute plate motion in the interiors of the Pacific and North American plates. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:02:39Z (GMT). No. of bitstreams: 1 ntu-103-F97224204-1.pdf: 12455379 bytes, checksum: f5719201b676362c60d4212a0a1d3711 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 1 中文摘要 2 Abstract 4 Table of Contents 6 List of Figures 9 List of Tables 11 Chapter 1 Introduction 12 Chapter 2 Assessment of Tomography Models of Taiwan Using First-arrival Times from the TAIGER Active-source Experiment 15 2.1 Introduction 15 2.2 Observations of First-arrival Times 19 2.2.1 Picking Onset Times from Waveform Records and Removing Elevation Effect 21 2.2.2 Elevation-adjusted First-arrival Times 31 2.3 Model Predictions of First-arrival Times 34 2.3.1 Regional Models for Taiwan 34 2.3.2 Numerical Simulations 37 2.4 Comparisons between Observed and Model-predicted First-arrival Times 40 2.5 Summary 49 Chapter 3 Crustal Velocity Variations in Taiwan Revealed by Active-source Seismic Observations 51 3.1 Introduction 51 3.2 Data: Active-source First-arrival Times 54 3.3 2D Profiles of P-wave Velocity Structure 57 3.3.1 Ray Tracing Modelling for Constructing 2D Models 57 3.3.2 2D P-wave Velocity Profiles across Taiwan 61 3.3.3 2D P-wave Velocity Profiles in Northern Taiwan 68 3.4 3D Model of Northern Taiwan 73 3.4.1 Partition Modelling Tomography 74 3.4.2 Stabilization of the Ensemble Average Model 76 3.4.3 Resolution Tests 78 3.4.4 3D Model for Northern Taiwan 79 3.4.5 Correlation with Tectonic Provinces 81 3.4.6 Comparisons with Three Recent Tomography Models 82 3.5 Conclusion 84 Chapter 4 Full-wave Effects on Shear-wave Splitting 85 4.1 Introduction 85 4.2 Full-wave Sensitivity of Splitting Intensity to Anisotropy 87 4.3 Full-wave Effects on SKS Splitting Intensity 91 4.4 Conclusion 96 Chapter 5 Full-wave Multiscale Anisotropy Tomography in Southern California 98 5.1 Introduction 98 5.2 Splitting Intensity Measurements and Full-wave Sensitivity Kernels 101 5.3 Multiscale Inversion 106 5.4 Result and Discussion 113 5.5 Conclusion 117 Chapter 6 Concluding Remarks 119 References 123 | |
| dc.language.iso | en | |
| dc.subject | 非均向性 | zh_TW |
| dc.subject | 多重尺度層析成像 | zh_TW |
| dc.subject | 全波形敏感積分核 | zh_TW |
| dc.subject | 南加州 | zh_TW |
| dc.subject | 臺灣 | zh_TW |
| dc.subject | 初達波 | zh_TW |
| dc.subject | 人工震源 | zh_TW |
| dc.subject | TAIGER計畫 | zh_TW |
| dc.subject | 地震層析成像 | zh_TW |
| dc.subject | 剪力波分離 | zh_TW |
| dc.subject | multi-scale tomography | en |
| dc.subject | active sources | en |
| dc.subject | first-arrival times | en |
| dc.subject | seismic tomography | en |
| dc.subject | Taiwan | en |
| dc.subject | shear-wave splitting | en |
| dc.subject | anisotropy | en |
| dc.subject | TAIGER project | en |
| dc.subject | full-wave sensitivity kernels | en |
| dc.subject | Southern California | en |
| dc.title | 利用人工震源與地震資料探究震波均向性與非均向性之層析成像 | zh_TW |
| dc.title | Isotropic and Anisotropic Seismic Tomography Using Active Source and Earthquake Records | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 洪淑蕙(Shu-Huei Hung) | |
| dc.contributor.oralexamcommittee | 喬凌雲,龔源成,郭本垣,梁文宗 | |
| dc.subject.keyword | TAIGER計畫,人工震源,初達波,地震層析成像,臺灣,剪力波分離,非均向性,多重尺度層析成像,全波形敏感積分核,南加州, | zh_TW |
| dc.subject.keyword | TAIGER project,active sources,first-arrival times,seismic tomography,Taiwan,shear-wave splitting,anisotropy,multi-scale tomography,full-wave sensitivity kernels,Southern California, | en |
| dc.relation.page | 134 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-10-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 12.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
