Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55422
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林法勤(Far-Ching Lin)
dc.contributor.authorShiou-Hung Linen
dc.contributor.author林修弘zh_TW
dc.date.accessioned2021-06-16T04:01:37Z-
dc.date.available2017-11-01
dc.date.copyright2014-10-28
dc.date.issued2014
dc.date.submitted2014-10-22
dc.identifier.citation王松永(2000)商用木材。中華林產事業協會,377 頁。
行政院環境保護署環境檢驗所(2003)NIEA R205.01C 廢棄物中灰分、可燃分測
定方法。
行政院環境保護署環境檢驗所(2004)NIEA R214.01C 廢棄物熱值檢測方法-燃
燒彈熱卡計法。
行政院(2009)再生能源發展條例。
李樹其、程俊龍、吳珍瑗、劉兆宏(1995)油脂中矽樹脂(silicone resin)檢驗方法
之探討。行政院衛生署藥物食品檢驗局。
吳耿東、李宏台(2004)生質能源化腐朽為能源。科學發展 383:21-27。
吳耿東(2010)流體化床與生質能。科學發展 450: 20-25
胡博誠(2009)生質物氣化程序去除焦油之研究。國立中興大學森林學系碩士論
文,台中。
經濟部標準檢驗局(2004)CNS 3084 木材灰分試驗法。
經濟部標準檢驗局(2005)CNS 452 木材含水率試驗法。
劉榮厚、牛衛生、張大雷(2005)生物質熱化學轉換技術。化學工業出版社。76-
95。
謝明桓(2012)木質材料與微藻於流體化床進行混合氣化之研究。國立中興大學
森林學系碩士論文,台中。
Abbadi, A., and van Bekkum, H. (1995). Highly selective oxidation of aldonic acids to
2-keto-aldonic acids over Pt-Bi and Pt-Pb catalysts. Appl. Catal. Gen. 124, 409–
417.
Ahmed, I.I., Nipattummakul, N., and Gupta, A.K. (2011). Characteristics of syngas
from co-gasification of polyethylene and woodchips. Appl. Energy 88, 165–174.
Andre, R.N., Pinto, F., Franco, C., Dias, M., Gulyurtlu, I., Matos, M.A.A., and Cabrita, 84
I. (2005). Fluidised bed co-gasification of coal and olive oil industry wastes. Fuel
84, 1635–1644.
Andrejko, D., and Grochowicz, J. (2007). Effect of the moisture content on
compression energy and strength characteristic of lupine briquettes. J. Food Eng.
83, 116–120.
Bhattacharya, S.C., Saunier, G.Y., Shah, N., and Islam, N. (1984). Densification of
biomass residues in Asia. (Elsevier Applied Science Publishers), pp. 559–563.
Bhattacharya, S.C., Sett, S., and Shrestha, R.M. (1989). State of the Art for Biomass
Densification. Energy Sources 11, 161–182.
Bohon, M.D., Metzger, B.A., Linak, W.P., King, C.J., and Roberts, W.L. (2011).
Glycerol combustion and emissions. Proc. Combust. Inst. 33, 2717–2724.
Carone, M.T., Pantaleo, A., and Pellerano, A. (2011). Influence of process parameters
and biomass characteristics on the durability of pellets from the pruning residues
of Olea europaea L. Biomass Bioenergy 35, 402–410.
Ciriminna, R., Palmisano, G., Pina, C.D., Rossi, M., and Pagliaro, M. (2006). One-pot
electrocatalytic oxidation of glycerol to DHA. Tetrahedron Lett. 47, 6993–6995.
Clacens, J.-M., Pouilloux, Y., and Barrault, J. (2002). Selective etherification of
glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous
catalysts. Appl. Catal. Gen. 227, 181–190.
Cleveland Jr., C.J., and Costanza, R. (1984). Net energy analysis of geopressured gas
resources in the U.S. Gulf Coast Region. Energy 9, 35–51.
Coll, R., Salvado, J., Farriol, X., and Montane, D. (2001). Steam reforming model
compounds of biomass gasification tars: conversion at different operating
conditions and tendency towards coke formation. Fuel Process. Technol. 74, 19–
31.
Corella, J., and Sanz, A. (2005). Modeling circulating fluidized bed biomass gasifiers. 85
A pseudo-rigorous model for stationary state. Fuel Process. Technol. 86, 1021–
1053.
Corella, J., Toledo, J.M., and Aznar, M.-P. (2002). Improving the Modeling of the
Kinetics of the Catalytic Tar Elimination in Biomass Gasification. Ind. Eng. Chem.
Res. 41, 3351–3356.
Davis, W.R., Tomsho, J., Nikam, S., Cook, E.M., Somand, D., and Peliska, J.A. (2000).
Inhibition of HIV-1 reverse transcriptase-catalyzed DNA strand transfer reactions
by 4-chlorophenylhydrazone of mesoxalic acid. Biochemistry (Mosc.) 39, 14279–
14291.
Della Casa, G., Bochicchio, D., Faeti, V., Marchetto, G., Poletti, E., Rossi, A., Garavaldi,
A., Panciroli, A., and Brogna, N. (2009). Use of pure glycerol in fattening heavy
pigs. Meat Sci. 81, 238–244.
Delmotte, L., Mansouri, H.R., Omrani, P., and Pizzi, A. (2009). Influence of Wood
Welding Frequency on Wood Constituents Chemical Modifications. J. Adhes. Sci.
Technol. 23, 1271–1279.
Devi, L. (2005). Catalytic removal of biomass tars; olivine as prospective in-bed
catalyst for fluidized-bed biomass gasifiers (India: Eindhoven university).
Devi, L., Ptasinski, K.J., Janssen, F.J.J.G., van Paasen, S.V.B., Bergman, P.C.A., and
Kiel, J.H.A. (2005). Catalytic decomposition of biomass tars: use of dolomite and
untreated olivine. Renew. Energy 30, 565–587.
Dieuzeide, M.L., and Amadeo, N. (2010). Thermodynamic Analysis of Glycerol Steam
Reforming. Chem. Eng. Technol. 33, 89–96.
Dupont, C., Boissonnet, G., Seiler, J.-M., Gauthier, P., and Schweich, D. (2007). Study
about the kinetic processes of biomass steam gasification. Fuel 86, 32–40.
Van Dyk, J.C., Keyser, M.J., and Coertzen, M. (2006). Syngas production from South
African coal sources using Sasol–Lurgi gasifiers. Int. J. Coal Geol. 65, 243–253. 86
Fan, X., Burton, R., and Zhou, Y. (2010). Glycerol (byproduct of biodiesel production)
as a source for fuels and chemicals - Mini review. Open Fuels Energy Sci. J. 3,
17–22.
Fischer, F. (1925). Liquid fuels from water gas. Ind. Eng. Chem. 17, 574–576.
Garcia-Maraver, A., Popov, V., and Zamorano, M. (2011). A review of European
standards for pellet quality. Renew. Energy 36, 3537–3540.
Gfeller, B., Zanetti, M., Properzi, M., Pizzi, A., Pichelin, F., Lehmann, M., and
Delmotte, L. (2003). Wood bonding by vibrational welding. J. Adhes. Sci. Technol.
17, 1573–1589.
Gilbert, P., Ryu, C., Sharifi, V., and Swithenbank, J. (2009). Effect of process
parameters on pelletisation of herbaceous crops. Fuel 88, 1491–1497.
Grover, P.D., and Mishra, S.K. (1996). Biomass briquetting: technology and practices
(Food and Agriculture Organization of the United Nations).
Gu, Y., Azzouzi, A., Pouilloux, Y., Jerome, F., and Barrault, J. (2008). Heterogeneously
catalyzed etherification of glycerol: New pathways for transformation of glycerol
to more valuable chemicals. Green Chem. 10, 164–167.
Hernandez, J.J., Aranda, G., Barba, J., and Mendoza, J.M. (2012). Effect of steam
content in the air–steam flow on biomass entrained flow gasification. Fuel Process.
Technol. 99, 43–55.
Holm, J.K., Henriksen, U.B., Hustad, J.E., and Sorensen, L.H. (2006). Toward an
Understanding of Controlling Parameters in Softwood and Hardwood Pellets
Production. Energy Fuels 20, 2686–2694.
Holm, J.K., Henriksen, U.B., Wand, K., Hustad, J.E., and Posselt, D. (2007).
Experimental Verification of Novel Pellet Model Using a Single Pelleter Unit.
Energy Fuels 21, 2446–2449.
Holm, J.K., Stelte, W., Posselt, D., Ahrenfeldt, J., and Henriksen, U.B. (2011). 87
Optimization of a Multiparameter Model for Biomass Pelletization to Investigate
Temperature Dependence and to Facilitate Fast Testing of Pelletization Behavior.
Energy Fuels 25, 3706–3711.
Hosseini, M., Dincer, I., and Rosen, M.A. (2012). Steam and air fed biomass
gasification: Comparisons based on energy and exergy. Int. J. Hydrog. Energy 37,
16446–16452.
Isahak, W.N.R.W., Ismail, M., Yarmo, M.A., Jahim, J.M., and Salimon, J. (2010).
Purification of crude glycerol from transesterification rbd palm oil over
homogeneous and heterogeneous catalysts for the biolubricant preparation. J. Appl.
Sci. 10, 2590–2595.
Jaecker-Voirol, A., Durand, I., Hillion, G., Delfort, B., and Montagne, X. (2008).
Glycerin for New Biodiesel Formulation. Oil Gas Sci. Technol. - Rev. IFP 63, 395–
404.
Kaliyan, N. (2008). Densification of biomass (University of Minnesota).
Kaliyan, N., and Morey, R.V. (2009). Densification characteristics of corn stover and
switchgrass. In ASABE Annual International Meeting, pp. 49085–49659.
Kaliyan, N., and Morey, R.V. (2010). Natural binders and solid bridge type binding
mechanisms in briquettes and pellets made from corn stover and switchgrass.
Bioresour. Technol. 101, 1082–1090.
Kaliyan, N., and Vance Morey, R. (2009). Factors affecting strength and durability of
densified biomass products. Biomass Bioenergy 33, 337–359.
Kirkels, A.F., and Verbong, G.P.J. (2011). Biomass gasification: Still promising? A 30-
year global overview. Renew. Sustain. Energy Rev. 15, 471–481.
Kong, L., Tian, S., He, C., Du, C., Tu, Y., and Xiong, Y. (2012). Effect of waste
wrapping paper fiber as a “solid bridge” on physical characteristics of biomass
pellets made from wood sawdust. Appl. Energy 98, 33–39. 88
Kosminski, A., Ross, D.P., and Agnew, J.B. (2006). Reactions between sodium and
silica during gasification of a low-rank coal. Fuel Process. Technol. 87, 1037–1049.
Kumabe, K., Hanaoka, T., Fujimoto, S., Minowa, T., and Sakanishi, K. (2007). Co-
gasification of woody biomass and coal with air and steam. Fuel 86, 684–689.
Kumar, R., Chandrashekar, N., and Pandey, K.K. (2009). Fuel properties and
combustion characteristics of Lantana camara and Eupatorium spp. Curr. Sci. 97,
930–935.
Kunieda, H., Akahane, A., Jin-Feng, and Ishitobi, M. (2002). Phase behavior of
polyglycerol didodecanoates in water. J. Colloid Interface Sci. 245, 365–370.
Liu, Z., Liu, X., Fei, B., Jiang, Z., Cai, Z., and Yu, Y. (2013). The properties of pellets
from mixing bamboo and rice straw. Renew. Energy 55, 1–5.
Loha, C., Chatterjee, P.K., and Chattopadhyay, H. (2011). Performance of fluidized bed
steam gasification of biomass – Modeling and experiment. Energy Convers.
Manag. 52, 1583–1588.
Mani, S., Tabil, L.G., and Sokhansanj, S. (2002). Compaction behavior of some
biomass grinds. AIC Pap.
Mani, S., Tabil, L.G., and Sokhansanj, S. (2006). Effects of compressive force, particle
size and moisture content on mechanical properties of biomass pellets from
grasses. Biomass Bioenergy 30, 648–654.
Mansouri, H.R., Pizzi, A., and Leban, J.-M. (2010). End-grain butt joints obtained by
friction welding of high density eucalyptus wood. Wood Sci. Technol. 44, 399–
406.
Melero, J.A., Vicente, G., Morales, G., Paniagua, M., Moreno, J.M., Roldan, R.,
Ezquerro, A., and Perez, C. (2008). Acid-catalyzed etherification of bio-glycerol
and isobutylene over sulfonic mesostructured silicas. Appl. Catal. Gen. 346, 44–
51. 89
Metzger, B. (2007). Glycerol combustion. Mechanical Engineering. North Carolina
State University.
Miao, Z., Grift, T.E., Hansen, A.C., and Ting, K.C. (2013). Energy Requirement for
Lignocellulosic Feedstock Densifications in Relation to Particle Physical
Properties, Preheating, and Binding Agents. Energy Fuels 27, 588–595.
Mitsuoka, K., Hayashi, S., Amano, H., Kayahara, K., Sasaoaka, E., and Uddin, M.A.
(2011). Gasification of woody biomass char with CO2: The catalytic effects of K
and Ca species on char gasification reactivity. Fuel Process. Technol. 92, 26–31.
Narvaez, I., Orio, A., Aznar, M.P., and Corella, J. (1996). Biomass Gasification with
Air in an Atmospheric Bubbling Fluidized Bed. Effect of Six Operational
Variables on the Quality of the Produced Raw Gas. Ind. Eng. Chem. Res. 35, 2110–
2120.
Nielsen, N.P.K., Gardner, D.J., Poulsen, T., and Felby, C. (2009). Importance of
temperature, moisture content, and species for the conversion process of wood
residues into fuel pellets. Wood Fiber Sci. 41, 414–425.
O’Dogherty, M.J., and Wheeler, J.A. (1984). Compression of straw to high densities in
closed cylindrical dies. J. Agric. Eng. Res. 29, 61–72.
Ooi, T.L., Yong, K.L., Dzulkefly, K., Wan Yunus, W.M.Z., and Hazimah, A.H. (2001).
Crude glycerine recovery from glycerol residue waste from a palm kernel oil
methyl ester plant. J Oil Palm Res 13, 16–22.
Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., and Della Pina, C. (2007). From
Glycerol to Value-Added Products. Angew. Chem. Int. Ed. 46, 4434–4440.
Perez, P., Aznar, P.M., Caballero, M.A., Gil, J., Martin, J.A., and Corella, J. (1997). Hot
gas cleaning and upgrading with a calcined dolomite located downstream a
biomass fluidized bed gasifier operating with steam-oxygen mixtures. Energy
Fuels 11, 1194–1203. 90
Pietsch, W. (2008). Agglomeration Technologies. In Agglomeration Processes, (Wiley-
VCH Verlag GmbH), pp. 133–138.
Pinto, F., Lopes, H., Andre, R.N., Gulyurtlu, I., and Cabrita, I. (2007). Effect of catalysts
in the quality of syngas and by-products obtained by co-gasification of coal and
wastes. 1. Tars and nitrogen compounds abatement. Fuel 86, 2052–2063.
Pizzi, A., Despres, A., Mansouri, H.R., Leban, J.-M., and Rigolet, S. (2006). Wood
joints by through-dowel rotation welding: microstructure, 13C-NMR and water
resistance. J. Adhes. Sci. Technol. 20, 427–436.
Quispe, C.A.G., Coronado, C.J.R., and Carvalho Jr., J.A. (2013). Glycerol: Production,
consumption, prices, characterization and new trends in combustion. Renew.
Sustain. Energy Rev. 27, 475–493.
Reed, T.B., and Bryant, B. (1979). Densified biomass: a new form of solid fuel
(Washington: Office of Energy Technology).
Reed T. B., TREZEK G., and DIAZ L. (1980). Biomass Densification Energy
Requirements. In Thermal Conversion of Solid Wastes and Biomass, (American
Chemical Society), pp. 169–177.
Rhen, C., Gref, R., Sjostrom, M., and Wasterlund, I. (2005). Effects of raw material
moisture content, densification pressure and temperature on some properties of
Norway spruce pellets. Fuel Process. Technol. 87, 11–16.
Roddy, D.J., and Manson-Whitton, C. (2012). 5.10 - Biomass Gasification and
Pyrolysis. In Comprehensive Renewable Energy, Ali Sayigh, ed. (Oxford:
Elsevier), pp. 133–153.
Samson, R., Drisdelle, M., Mulkins, L., Lapointe, C., and Duxbury, P. (2000). The use
of switchgrass biofuel pellets as a greenhouse gas offset strategy. pp. 1–11.
Samson, R., Mani, S., Boddey, R., Sokhansanj, S., Quesada, D., Urquiaga, S., Reis, V.,
and Ho Lem, C. (2005). The Potential of C4 Perennial Grasses for Developing a 91
Global BIOHEAT Industry. Crit. Rev. Plant Sci. 24, 461–495.
Samuelsson, R., Thyrel, M., Sjostrom, M., and Lestander, T.A. (2009). Effect of
biomaterial characteristics on pelletizing properties and biofuel pellet quality. Fuel
Process. Technol. 90, 1129–1134.
Santibanez, C., Varnero, M.T., and Bustamante, M. (2011). Residual glycerol from
biodiesel Manufacturing, waste or potential source of Bioenergy: A review. Chil.
J. Agric. Res. 71, 469–475.
Serrano, C., Monedero, E., Lapuerta, M., and Portero, H. (2011). Effect of moisture
content, particle size and pine addition on quality parameters of barley straw
pellets. Fuel Process. Technol. 92, 699–706.
Shen, K.C. (1987). Development of a waterproof densified solid fuel pellet from
forestry residues. (Elsevier Applied Science), pp. 209–213.
Skoulou, V.K., and Zabaniotou, A.A. (2013). Co-gasification of crude glycerol with
lignocellulosic biomass for enhanced syngas production. J. Anal. Appl. Pyrolysis
99, 110–116.
Smith, I.E., Probert, S.D., Stokes, R.E., and Hansford, R.J. (1977). The briquetting of
wheat straw. J. Agric. Eng. Res. 22, 105–111.
Stahl, M., and Berghel, J. (2011). Energy efficient pilot-scale production of wood fuel
pellets made from a raw material mix including sawdust and rapeseed cake.
Biomass Bioenergy 35, 4849–4854.
Stelte, W., Holm, J.K., Sanadi, A.R., Barsberg, S., Ahrenfeldt, J., and Henriksen, U.B.
(2011a). Fuel pellets from biomass: The importance of the pelletizing pressure and
its dependency on the processing conditions. Fuel 90, 3285–3290.
Stelte, W., Holm, J.K., Sanadi, A.R., Barsberg, S., Ahrenfeldt, J., and Henriksen, U.B.
(2011b). A study of bonding and failure mechanisms in fuel pellets from different
biomass resources. Biomass Bioenergy 35, 910–918. 92
Stelte, W., Clemons, C., Holm, J.K., Ahrenfeldt, J., Henriksen, U.B., and Sanadi, A.R.
(2011c). Thermal transitions of the amorphous polymers in wheat straw. Ind.
Crops Prod. 34, 1053–1056.
Stelte, W., Sanadi, A.R., Shang, L., Holm, J.K., Ahrenfeldt, J., and Henriksen, U.B.
(2012a). Recent developments in biomass pelletization–a review. BioResources 7,
4451–4490.
Stelte, W., Clemons, C., Holm, J.K., Ahrenfeldt, J., Henriksen, U.B., and Sanadi, A.R.
(2012b). Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition
and Surface Waxes on Pelletizing Properties. BioEnergy Res. 5, 450–458.
Tan, H.W., Abdul Aziz, A.R., and Aroua, M.K. (2013). Glycerol production and its
applications as a raw material: A review. Renew. Sustain. Energy Rev. 27, 118–
127.
Thek, G., and Obernberger, I. (2004). Wood pellet production costs under Austrian and
in comparison to Swedish framework conditions. Biomass Bioenergy 27, 671–693.
Thompson, J.C., and He, B.B. (2006). Characterization of crude glycerol from biodiesel
production from multiple feedstocks. Appl. Eng. Agric. 22, 261.
Tumuluru, J.S., Wright, C.T., Kenny, K.L., and Hess, J.R. (2010). A review on biomass
densification technologies for energy application. Ida. Natl Lab Ida. Falls ID.
Wang, L., Weller, C.L., Jones, D.D., and Hanna, M.A. (2008). Contemporary issues in
thermal gasification of biomass and its application to electricity and fuel
production. Biomass Bioenergy 32, 573–581.
Weerachanchai, P., Horio, M., and Tangsathitkulchai, C. (2009). Effects of gasifying
conditions and bed materials on fluidized bed steam gasification of wood biomass.
Bioresour. Technol. 100, 1419–1427.
Wei, L., Pordesimo, L.O., Haryanto, A., and Wooten, J. (2011). Co-gasification of
hardwood chips and crude glycerol in a pilot scale downdraft gasifier. Bioresour. Technol. 102, 6266–6272.
Wu, C., Yin, X., Ma, L., Zhou, Z., and Chen, H. (2009). Operational characteristics of
a 1.2-MW biomass gasification and power generation plant. Biotechnol. Adv. 27,
588–592.
Wu, S.-J., Pan, W.-H., Yeh, N.-H., and Chang, H.-Y. (2011). Trends in nutrient and
dietary intake among adults and the elderly: from NAHSIT 1993-1996 to 2005-
2008. Asia Pac. J. Clin. Nutr. 20, 251.
Yang, K.-C., Wu, K.-T., Hsieh, M.-H., Hsu, H.-T., Chen, C.-S., and Chen, H.-W. (2013).
Co-gasification of woody biomass and microalgae in a fluidized bed. J. Taiwan
Inst. Chem. Eng. 44, 1027–1033.
Zheng, Y., Chen, X., and Shen, Y. (2008). Commodity chemicals derived from glycerol,
an important biorefinery feedstock. Chem. Rev. 108, 5253–5277.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55422-
dc.description.abstract生質柴油轉酯化製程中會伴隨產生大量之粗甘油,因此如何提高粗甘油副產
物利用價值,並減少對環境的衝擊,乃成為近幾年來重要之研究課題。本研究主要分為 2 個部份,先以環模造粒機對以不同比例粗甘油混合柳杉造粒並探討柳杉顆粒、粗甘油與混合顆粒如熱值、整體密度、顆粒堅牢指數等基本性質。再於30 kWth氣泡式流體化床氣化試驗系統進行混合氣化,以探討氣化溫度、空氣等值比、混合比例及注入蒸氣對混合氣化之合成氣組成、合成氣低熱值及合成氣中焦油含量的影響。

造粒結果顯示隨粗甘油混合比例增加,顆粒熱值上升。此外,添加粗甘油造粒更可使顆粒之容積密度些微提升,但添加比例超過15%後,容積密度有下降的趨勢。混入粗甘油造粒可使原料與模孔間摩擦力降低,故加入粗甘油可降低造粒耗能。添加粗甘油增加氫鍵量,使顆粒堅牢指數及產率大幅提升,其中以添加比例10%為最佳,但混合粗甘油超過15%後,顆粒堅牢指數及產率明顯下降,主因為粗甘油使木屑表面鈍化,並使混合木料與環模之摩擦力下降,而阻礙木屑間的固體架橋所致。

混合氣化結果顯示,隨著粗甘油比例的增加,合成氣中、CH4、H2、焦油皆有上升的趨勢,CO與低位熱值有先增後減的趨勢,CO2則有相反的現象發生。此外,在有添加20%粗甘油的條件下,有發生燒結現象,這是因為Na+含量過高,造成床區燒結及去流體化等問題。綜合實驗結果,最適之柳杉混合粗甘油造粒比例為10%。
zh_TW
dc.description.abstractCrude glycerol is the principal by-product of biodiesel production. About 10% crude glycerol will be produced during the production of biodiesel. Therefore, it’s very important to utilize crude glycerol for increasing the economic viability and decreasing environmental impacts. This study provides a considerable way to utilize crude glycerol, and investigates ring-die pelletizer to densification of sawdust mixed with crude glycerol in various adding levels. Gasification also present on this study. A 30 kWth bubbling fluidized bed gasifier to investigate the effect of using different crude glycerol mixed ratios pellet to co-gasified on syngas compositions, the lower heating value, and tar content, etc.

The mixed pellets results showed that increase higher heating value increased with crude glycerol ratio, and crude glycerol also benefit to pellets bulk density, but decrease
after loading 15(wt%). Crude glycerol can reduce the friction between the press channel and raw materials, so adding crude glycerol can reduce pellets energy consumption granulation. It is possible that crude glycerol provides many hydrogen bonds between the wood polymers are substituted with bonds to fatty acid molecules, thereby reducing the strength of the pellet. However, a required amount of crude glycerol could improve inter-particular attraction. The pellet durability index (PDI) and productivity increase in adding crude glycerol ratio of 10(wt%), but decreased after adding 15 (wt%).

After gasification of above pellets, the CH4, H2, tar content and lower heating value of syngas decrease with increasing the crude glycerol ratio, but CO and lower heating value content of syngas increased firstly then decreased with increasing the mixed ratio.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:01:37Z (GMT). No. of bitstreams: 1
ntu-103-R99625044-1.pdf: 7519759 bytes, checksum: da569ae0d7ac25423ec35fcb247e7e9a (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 ......................................................................................................................................... i
摘要 ........................................................................................................................................ ii
Abstract .................................................................................................................................. iii
目錄 ......................................................................................................................................... v
圖目錄 .................................................................................................................................. viii
表目錄 .....................................................................................................................................xi
第一章 前言 ............................................................................................................................ 1
第二章 文獻回顧 .................................................................................................................... 1
2.1 生質物造粒技術 ............................................................................................................. 1
2.1.1 活塞式擠壓成型機 ................................................................................................. 2
2.1.2 螺桿擠壓成型機 ..................................................................................................... 3
2.1.3 環模和平模造粒機 ................................................................................................. 4
2.1.4 滾輪式擠壓成型機 ................................................................................................. 5
2.2 生質物造粒的主要影響因素 ......................................................................................... 6
2.2.1 耗能 ........................................................................................................................ 6
2.2.2 壓力 ........................................................................................................................ 9
2.2.3 含水率 .................................................................................................................. 10
2.2.4 溫度 ...................................................................................................................... 12
2.2.5 顆粒結合機制 ........................................................................................................ 15
2.3 粗甘油發展現況 .......................................................................................................... 19
2.4 氣化發展 ..................................................................................................................... 22
2.3.1 生質物氣化 ........................................................................................................... 23
2.3.2 氣化介質................................................................................................................ 25
2.3.3 空氣等值比 ............................................................................................................ 27
2.3.4 氣化溫度............................................................................................................... 28
2.3.5 焦油 ...................................................................................................................... 29
2.3.6 混合氣化............................................................................................................... 32
第三章 實驗設備與材料方法 ............................................................................................... 33
3.1 試驗材料 ..................................................................................................................... 33
3.2 混合造粒試驗 .............................................................................................................. 34
3.2.1 造粒機械............................................................................................................... 34
3.2.2 混料 ...................................................................................................................... 35
3.3 性質測定 ..................................................................................................................... 36
3.3.1 熱值 ...................................................................................................................... 36
3.3.2 灰分 ...................................................................................................................... 37
3.3.3 含水率 .................................................................................................................. 37
3.3.4 熱重分析............................................................................................................... 37
3.3.5 容積密度............................................................................................................... 38
3.3.6 顆粒堅牢指數 ....................................................................................................... 39
3.3.7 造粒溫度試驗 ....................................................................................................... 41
3.3.8 顆粒成型率試驗 ................................................................................................... 41
3.3.9 顆粒耗能測試 ....................................................................................................... 41
3.3.10 造粒產率測試 ..................................................................................................... 41
3.3.10 掃描式電子顯微鏡 ............................................................................................. 42
3.4 混合氣化試驗 .............................................................................................................. 43
3.4.1 氣化設備............................................................................................................... 46
3.4.2 混合氣化................................................................................................................ 51
3.4.3 元素分析............................................................................................................... 51
3.5 氣化實驗操作條件 ...................................................................................................... 53
3.5.1 ER 值 ..................................................................................................................... 53
3.5.2 氣化溫度............................................................................................................... 53
第四章 結果與討論............................................................................................................... 54
4.1 原料與顆粒性質 .......................................................................................................... 54
4.1.1 元素分析............................................................................................................... 54
4.1.2 近似分析............................................................................................................... 55 4.1.3 造粒溫度............................................................................................................... 57
4.1.4 混合顆粒熱值 ....................................................................................................... 59
4.1.5 容積密度............................................................................................................... 61
4.1.6 顆粒堅牢指數 ....................................................................................................... 63
4.1.7 顆粒成型率 ........................................................................................................... 65
4.1.8 造粒耗能分析 ....................................................................................................... 68
4.1.9 造粒產率分析 ....................................................................................................... 70
4.1.10 能源投資報酬率 .................................................................................................. 71
4.2 混合顆粒氣化............................................................................................................... 73
4.2.1 混合顆粒對氣化合成氣組成之影響..................................................................... 73
4.2.2 合成氣熱值 ........................................................................................................... 75
4.2.3 混合顆粒對焦油含量之影響 ................................................................................ 78
第五章 結論與建議............................................................................................................... 80
5.1 結論 ............................................................................................................................. 80
5.2 建議 ............................................................................................................................. 82
參考文獻 ................................................................................................................................ 83
dc.language.isozh-TW
dc.subject混合氣化zh_TW
dc.subject成型顆粒zh_TW
dc.subject生質能源zh_TW
dc.subject粗甘油zh_TW
dc.subject柳杉zh_TW
dc.subjectCo-gasificationen
dc.subjectBioenergyen
dc.subjectCrude glycerolen
dc.subjectCryptomeria Japonicaen
dc.subjectPelleten
dc.title柳杉與粗甘油之混合造粒及氣化研究zh_TW
dc.titleThe Study on Co-pelletization and Co-gasification of
Japanese Cedar Sawdust and Crude Glycerol
en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張慶源(Ching-Yuan Chang),吳耿東(Keng-Tung Wu),謝哲隆(Je-Lueng Shie)
dc.subject.keyword生質能源,粗甘油,柳杉,成型顆粒,混合氣化,zh_TW
dc.subject.keywordBioenergy,Crude glycerol,Cryptomeria Japonica,Pellet,Co-gasification,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2014-10-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
7.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved