請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5541
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴喜美 | |
dc.contributor.author | Wai Ian Lai | en |
dc.contributor.author | 黎韋欣 | zh_TW |
dc.date.accessioned | 2021-05-15T18:02:14Z | - |
dc.date.available | 2019-08-25 | |
dc.date.available | 2021-05-15T18:02:14Z | - |
dc.date.copyright | 2014-08-25 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-20 | |
dc.identifier.citation | 李佳珍。2010。韃靼蕎麥抗氧化及護肝功效評估。國立嘉義大學食品科學系研究所碩士論文。
林汝法、王瑞、周運寧。2001。苦蕎提取物的毒理學安全性。華北農學報16:116-121。 林鈺珊。2011。紅心番石榴茶製程開發中抗氧化與抑制α-葡萄糖苷酶活性之探討。國立宜蘭大學食品科學系研究所碩士論文。 凃淑茹。2011。不同生長期韃靼蕎麥葉機能性成分及抗氧化活性之研究。國立嘉義大學食品科學系研究所碩士論文。 曾勝雄。2009。蕎麥新品種「台中5號」簡介。農政與農情:202。 曾勝雄、陳裕星。2007。蕎麥臺中 2 號之育成。臺中區農業改良場研究彙報 95: 49-59。 黃宏隆、謝玉坤、蔡育仁。1989。蕎麥、蕎麥粉與蕎麥麵製法研究。烘焙工業 25:53-60。 曾正雄、張正英、蘇慧美。2004。蕎麥組成分及保健成分分析。臺中區農業改良場研究彙報 82:61-69。 廖宜倫、林汶鑫、林訓仕、陳鐶斌、陳裕星。2011。蕎麥芸香苷及槲皮素含量之研究。臺中區農業改良場一○○年度科技計畫研究成果發表會論文輯114-117。 AACC 2000. Approved Method of the American Association of Cereal Chemists. AACC Inc., MN. USA. Adom, K. K. & Liu, R. H. 2002. Antioxidant activity of grains. Journal of Agricultural and Food Chemistry 50: 6182-6187. Afanas' ev, I. B., Dcrozhko, A. I., Brodskii, A. V., Kostyuk, V. A., & Potapovitch, A. I. 1989. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochemical Pharmacology 38:1763-1769. Agullo, G., Gamet, L., Besson, C., Demigne, C. & Remesy, C. 1994. Quercetin exerts a preferential cytotoxic effect on active dividing colon carcinoma HT29 and Caco-2 cells. Cancer Lett 87: 55-63. Ahmad, M., Gilani, A. U. H., Aftab, K. & Ahmad, V. U. 1993. Effects of kaempferol‐3‐O‐rutinoside on rat blood pressure. Phytotherapy Research 7:314-316. Baron, A. D. 1998. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Research and Clinical Practice 40:51-55. Berliner, J. A., & Heinecke, J. W. 1996. The role of oxidized lipoproteins in atherogenesis. Free Radical Biology and Medicine 20:707-727. Bonafaccia, G., Gambelli, L., Fabjan, N., & Kreft, I. 2003a. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry 80:9-15. Bonafaccia, G., Gambelli, L., Fabjan, N., & Kreft, I. 2003b. Trace elements in flour and bran from common and tartary buckwheat. Food Chemistry 83:1-5. Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft und Technologie 28:25-30. Bravo, L. 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56:317-333. Burns, J., Gardner, P. T., O’Neil, J., Crawford, S., Morecroft, I., McPhail, D. B., Lister, C., Matthews, D., MacLean, M. R., Lean, M. E. J., Duthie, G. & Crozier, A. 2000. Relationship among antioxidant activity, vasodilation capacity and phenolic content of red wines. Journal of Agricultural Food Chemistry 48:220-230. Cao, G., Sofic, E., & Prior, R. L. 1997. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radical Biology and Medicine, 22:749-760. Choi, J. Y., Cho, E. J., Lee, H. S., Lee, J. M., Yoon, Y. H., & Lee, S. 2013. Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model. Food and Chemical Toxicology 53:105-111. Comission of the European Communities. 1993. Nutrient and energy, reports of the scientific committee for food (Thirty-first series). Luxemburg: Office for Official Publications of the European Communities. Cook, N. C., & Samman, S. 1996. Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. Journal of Nutritional Biochemistry 7:66-76. Cui, X. D., & Wang, Z. H. 2012. Preparation and properties of rutin-hydrolyzing enzyme from tartary buckwheat seeds. Food Chemistry 132:60-66. Decker, E. A. & B, Welch. 1990. Role of ferritin as lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry 38:674-677. Deschner, E. E., Ruperto, J., Wong, G. & Newmark, H. L. 1991. Quercetin and rutin as inhvibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis 12: 1193-1196. Edwards, R. L., Lyon, T., Litwin, S. E., Rabovsky, A., Symons, J. D., & Jalili, T. 2007. Quercetin reduces blood pressure in hypertensive subjects. Journal of Nutrition 137:2405–2411. Erlejman, A. G., Verstraeten, S. V., Fraga, C. G., & Oteiza, P. I. 2004. The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects. Free radical research 38:1311-1320. Fabjan, N., Rode, J., Košir, I. J., Wang, Z., Zhang, Z., & Kreft, I. 2003. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. Journal of Agricultural and Food Chemistry 51:6452-6455. Ferruzzi, M. G., Bohm, V., Courtney, P. D., & Schwartz, S. J. 2002. Antioxidant and antimutagenic activity of dietary chlorophyll derivatives determined by radical scavenging and bacterial reverse mutagenesis assays. Journal of Food Science 67:2589-2595. Fujisawa, T., Ikegami, H., Inoue, K., Kawabata, Y. & Ogihara, T. 2005. Effect of two α-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdominal symptoms. Metabolism-Clinical and Experimental 54: 387-390. Gao, H., Huang, Y. N., Xu, P. Y. & Kawabata, J. 2007. Inhibitory effect on α-glucosidase by the fruits of Terminalia chebula Retz. Food chemistry 105: 628-634. Guardia, T., Rotelli, A. E., Juarez, A. O., & Pelzer, L. E. 2001. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il Farmaco 56:683-687. Guo, X., & Yao, H. 2006. Fractionation and characterization of tartary buckwheat flour proteins. Food chemistry 98:90-94. Guo, X., Zhu, K., Zhang, H., & Yao, H. 2007. Purification and characterization of the antitumor protein from Chinese tartary buckwheat (Fagopyrum tataricum Gaertn.) water-soluble extracts. Journal of Agricultural and food chemistry 55:6958-6961. Guo, X., Zhu, K., Zhang, H., & Yao, H. 2010. Anti-tumor activity of a novel protein obtained from tartary buckwheat. International Journal of Molecular Sciences 11:5201-5211. Guo, X. D., Wu, C. S., Ma, Y. J., Parry, J., Xu, Y. Y., Liu, H., & Wang, M. 2012. Comparison of milling fractions of tartary buckwheat for their phenolics and antioxidant properties. Food Research International 49:53-59. Habtemariam, S. 2011. α-glucosidase inhibitory activity of kaempferol-3-O-rutinoside. Natural Product Communications 6:201-203. Hansawasdi, C. & Kawabata, J. 2006. α-Glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia 77:568-573. Harborne, J. B. & Baxter, H. 1999. The handbook of natural flavonoids, Vols 1 & 2. John Wiley and Sons: Chichester, UK. Heim, K.E., Tagliaferro, A.R., Bobilya, D.J., 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationship. Journal of Nutritional Biochemistry 13:572-584. Holasova, M., Fiedlerova, V., Smrcinova, H., Orsak, M., Lachman, J., & Vavreinova, S. 2002. Buckwheat-the source of antioxidant activity in functional foods. Food Research International 35:207-211. Iacopini, P., Baldi, M., Storchi, P., & Sebastiani, L. 2008. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. Journal of Food Composition and Analysis 21:589-598. Jung, S. H., Kim, B. J., Lee, E. H., & Osborne, N. N. 2010. Isoquercitrin is the most effective antioxidant in the plant Thuja orientalis and able to counteract oxidative-induced damage to a transformed cell line (RGC-5 cells). Neurochemistry international 57:713-721. Kaul, T. N., Middleton, E., & Ogra, P.L. 1985. Antiviral effect of flavonoids on human viruses. Journal Medicine Virol 15:71-79. Kawaii, S., Tomono, Y., Katase, E., Ogawa, K. & Yano, M. 1999. Antiproliferative activity of flavonoids on several cancer cell lines. Bioscience Biotechnology and Biochemistry 63: 896-899. Kawakmi, A., Kayahara, H., & Ujihara, A. 1995. Properties and elimination of bitter components derived from tartary buckwheat (Fagopyrum tataricum) flour. Journal of Japanese Society of Food Science and Technology 42:892-898. Kim, S. J., Zaidul, I. S. M., Suzuki, T., Mukasa, Y., Hashimoto, N., Takigawa, S., ... & Yamauchi, H. 2008. Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food chemistry 110: 814-820. Kim, Y., Narayanan, S., & Chang, K. O. 2010. Inhibition of influenza virus replication by plant-derived isoquercetin. Antiviral Research 88:227-235. Kim, Y. M., Wang, M. H., Rhee, H. I. 2004. A novel α-glucosidase inhibitor from pine bark. Carbohydrate Research 339: 715-717. Knekt, P., Kumpulainen, J., Jarvinen, R., Rissanen, H., Heliovaara, M., Reunanen, A., Hakulinen, T., & Aromaa, A. 2002. Flavonoid intake and risk of chronic diseases. American Society for Clinical Nutrition 76:560-568. Koda, T., Kuroda, Y., Imai, H. 2008. Protective effect of rutin against spatial memory impairment induced by trimethyltin in rats. Nutrition Research 28:629-634. Kreft, I., Fabjan, N., & Yasumoto, K. 2006. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry 98:508-512. Kumamoto, H., Matsubara, Y., Iizuka, Y., Okamoto, K., & Yokoi, K. 1985. Structure and hypotensive effect of flavonoid glycosides in Kinkan (fortunella japonica) peelings. Agricultural and Biological Chemistry 49:2613–2618. Kuo, S.M. 1996. Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Lett 110: 41-48. Kuwabara, T., Han, K. H., Hashimoto, N., Yamauchi, H., Shimada, K. I., Sekikawa, M., & Fukushima, M. 2007. Tartary buckwheat sprout powder lowers plasma cholesterol level in rats. Journal of Nutritional Science and Vitaminology 53:501-507. Lee, K. W., Kim, Y. J., Lee, H. J. & Lee, C. Y. 2003. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. Journal of Agriculture and Food Chemistry 51:7292-7295. Lee, J. S. 2000. Effects of germinated-buckwheat on blood pressure, plasma glucose and lipid levels of spontaneously hypertensive rats. Korean Journal of Food Science and Technology 32:206-211. Lee, J. S., Son, H. S., Maeng, Y. S., Chang, Y. K., & Ju, J. S. 1994. Effects of buckwheat on organ weight, glucose and lipid metabolism in streptozotocin-induced diabetic rats. Korean Journal of Nutrition 27:819-827. Li, C. H., Matsui, T., Matsumoto, K., Yamasaki, R., & Kawasaki, T. 2002. Latent production of angiotensin I‐converting enzyme inhibitors from buckwheat protein. Journal of Peptide Science 8:267-274. Li, D., Li, X., & Ding, X. 2010. Composition and antioxidative properties of the flavonoid-rich fractions from tartary buckwheat grains. Food Science and Biotechnology 19:711-716. Li, D., Li, X., Ding, X., & Park, K. 2008. A process for preventing enzymatic degradation of rutin in tartary buckwheat (Fagopyrum tataricum Gaertn) flour. Food Science and Biotechnology 17:118-122. Li, Y., Gao, F., Shan, F., Bian, J., & Zhao, C. 2009a. Study on the Interaction between 3 Flavonoid Compounds and α‐Amylase by Fluorescence Spectroscopy and Enzymatic Kinetics. Journal of Food Science 74:199-203. Li, Y. Q., Zhou, F. C., Gao, F., Bian, J. S., & Shan, F. 2009b. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. Journal of Agricultural and Food Chemistry 57:11463-11468. Liu, Z., Ishikawa, W., Huang, X., Tomotake, H., Kayashita, J., Watanabe, H., Nakajoh, M. & Kato, N. 2001. A buckwheat protein product suppresses 1,2-dimethyhydrazine-induced colon carcinogenesisin rats by reducing cell proliferation. Journal of Nutrition 131:1850-1853. Liyana-Pathirana, C. M., & Shahidi, F. 2006. Importance of insoluble-bound phenolics to antioxidant properties of wheat. Journal of Agricultural and Food Chemistry 54:1256-1264. Manach, C., Morand, C., Demigne, C., Texier, O., Regerat, F., & Remesy, C. 1997. Bioavailability of rutin and quercetin in rats. FEBS letters 409:12-16. Matsui, T., Yoshimoto, C., Osajima, K., Oki, T. & Osajima, Y. 1996. In vitro survey of α-glucosidase inhibitory food components. Bioscience Biotechnology and Biochemistry 60:2019-2022. Mbaze, L.M., Poumale, H.M.P., Wansi, J.P., Lado, J.A., Khan, S.N., Iqbal, M.C., Ngadjui, B.T. & Laatsch, H. 2007. α-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae). Phytochemistry 68: 591-595. Montoro, P., Braca, A., Pizza, C., & De-Tommasi, N. 2005. Structure–antioxidant activity relationships of flavonoids isolated from different plant species. Food Chemistry 92:349-355. Morishita, T., Yamaguchi, H., & Degi, K. 2007. The contribution of polyphenols to antioxidative activity in common buckwheat and tartary buckwheat grain. Plant Production Science 10:99-104. Navarro-Nunez, L., Lozano, M. L., Palomo, M., Martinez, C., Vicente, V., Castillo, J., & Rivera, J. 2008. Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway. Journal of Agricultural and Food Chemistry 56:2970-2976. Palikova, I., Valentova, K., Oborna, I. & Ulrichova, J. 2009. Protectivity of blue honeysuckle extract against oxidative human endothelial cells and rat hepatocyte damage. Journal of Agricultural Food Chemistry 57: 6584-6589. Park, B. J., Park, J. I., Chang, K. J., & Park, C. H. 2004. Comparison in rutin content in seed and plant of tartary buckwheat (Fagopyrum tataricum). In Proceedings of the 9th International Symposium on Buckwheat: Advances in Buckwheat Research, RICP, Prague, Czech Republic, August18-22: 626-629. Parkar, S. G., Stevenson, D. E., & Skinner, M. A. 2008. The potential influence of fruit polyphenols on colonic microflora and human gut health. International Journal of Food Microbiology 124:295-298. Pryor, W. A. 2000. Oxidation and arthreosclerosis. Free Radical Biology and Medicine 28:1681-1682. Qin, P., Ma, T., Wu, L., Shan, F., & Ren, G. 2011. Identification of Tartary buckwheat tea aroma compounds with gas chromatography‐mass spectrometry. Journal of Food Science 76:S401-S407. Qin, P., Wu, L., Yao, Y., & Ren, G. 2013. Changes in phytochemical compositions, antioxidant and α-glucosidase inhibitory activities during the processing of tartary buckwheat tea. Food Research International 50:562-567. Rice-Evans, C. A., Miller, N. J., & Paganga, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 20:933-956. Rogerio, A. P., Kanashiro, A., Fontanari, C., Da Silva, E. V. G., Lucisano-Valim, Y. M., Soares, E. G., & Faccioli, L. H. 2007. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflammation Research 56:402-408. Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry 40:945-948. Shobana, S., Sreerama, Y. N. & Malleshi, N. G. 2009. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chemistry 115: 1268-1273. Smith, T. J., & Yang, C. S. 1994. Phenolic compounds in food and their effects on health I: Fruits and vegetables. American Chemical Society Washington. Sosulski, F., Krygier, K., & Hogge, L. 1982. Free, esterified and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. Journal of Agricultural and Food Chemistry 30:337–340. Stewart, L. K., Soileau, J. L., Ribnicky, D., Wang, Z. Q., Raskin, I., Poulev, A., Majewski, M., Cefalu W. T., & Gettys, T. W. 2008. Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet. Metabolism 57:S39-S46. Stuart, A. R., Gulve, E. A., & Wang, M. 2004. Chemistry and biochemistry of type 2 diabetes. Chemical Reviews 104:1255-1282. Suzuki, T., Honda, Y., Funatsuki, W., & Nakatsuka, K. 2002. Purification and characterization of flavonol 3-glucosidase, and its activity during ripening in tartary buckwheat seeds. Plant Science 163:417-423. Tadera, K., Minami, Y., Takamatsu, K., & Matsuoka, T. 2006. Inhibition of α-Glucosidase and α-Amylase by flavonoids. Journal of Nutritional Science and Vitaminology 52:149-153. Taga, M.S., Miller, E. E. & Pratt, D.E.1984. Chia seeds as a source of natural antioxidants. Journal of the American Oil Chemists' Society 61:928-931. Tomotake, H., Yamamoto, N., Kitabayashi, H., Kawakami, A., Kayashita, J., Ohinata, H., ... & Kato, N. 2007. Preparation of Tartary Buckwheat Protein Product and Its Improving Effect on Cholesterol Metabolism in Rats and Mice Fed Cholesterol‐Enriched Diet. Journal of Food Science 72: S528-S533. Trnovsky, J., Letourneau, R., Haggag, E., Boucher, W., & Theoharides T. C. 1993. Quercetin-induced expression of rat mast cell protease II and accumulation of secretory granules in rat basophilic leukemia cells. Biochem Pharmacol 46:2315-2326. Wang, L., Yang, X., Qin, P., Shan, F., & Ren, G. 2013. Flavonoid composition, antibacterial and antioxidant properties of tartary buckwheat bran extract. Industrial Crops and Products 49:312-317. Wang, S. Y. & Lin, H. S. 2000. Antioxidant activity in fruits and leaves of blackberry, raspberry and strawberry varies with cultivar and developmental stage. Journal of Agricultural Food Chemistry 48: 140-146. Wei, Y. Q., Zhao, X., Kariya, Y., Fukata, H. Teshigawara, K. & Uchida, A. 1994. Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Research 54:4952-4957. Yang, J., Guo, J., & Yuan, J. 2008. In vitro antioxidant properties of rutin. LWT-Food Science and Technology 41:1060-1066. Yasuda, T. 2001. Development of tartary buckwheat noodles through research on rutin-degrading enzymes and its effect on blood fluidity. In The proceeding of the 8th international symposium on buckwheat :488-502. Chunchon, Korea. Yasuda, T., & Nakagawa, H. 1994. Purification and characterization of the rutin-degrading enzymes in tartary buckwheat seeds. Phytochemistry 37:133-136. Yasuda, T., & Shinoyama, H. 1996. The synthesis of ethyl beta-rutinoside with rutin-degrading enzyme from tartary buckwheat seeds. Journal of the Japanese Society for Food Science and Technology 43:1299-1304. Yoo, J., Kim, Y., Yoo, S. H., Inglett, G. E., & Lee, S. 2012. Reduction of rutin loss in buckwheat noodles and their physicochemical characterisation. Food Chemistry 132:2107-2111. Zhang, R., Yao, Y., Wang, Y., & Ren, G. 2011. Antidiabetic activity of isoquercetin in diabetic KK-A y mice. Nutrition and Metabolism 8:1-6. Zhang, Z. L., Zhou, M. L., Tang, Y., Li, F. L., Tang, Y. X., Shao, J. R., Xue, W. T., & Wu, Y. M. 2012. Bioactive compounds in functional buckwheat food. Food Research International 49:389-395. Zhou, Z., Robards, K., Helliwell, S., & Blanchard, C. 2004. The distribution of phenolic acids in rice. Food Chemistry 87:401-406. Zielińska, D., Turemko, M., Kwiatkowski, J., & Zieliński, H. 2012. Evaluation of flavonoid contents and antioxidant capacity of the aerial parts of common and tartary buckwheat plants. Molecules 17:9668-9682. Zielinski, H., & Kozlowska, H. 2000. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. Journal of Agricultural and Food Chemistry 48:2008-2016. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5541 | - |
dc.description.abstract | 韃靼蕎麥(Fagopyrum tataricum (L.) Gaertn)於台灣屬小量栽種的類穀物(pseudo-cereal),全植株均含有豐富的類黃酮成分,如蘆丁(rutin)、檞皮素(quercetin)、山柰酚(kaempferol)等。本試驗中擬以國產韃靼蕎麥為試驗材料,分別於幼苗期(seedling)、莖生長期(stem elongation)、乳熟期(milky)、開花期(flowering)及成熟期(matured)採收,並依植株部位分為葉、莖、花、種實(成熟或未熟)作樣本。清潔後,進行熱風乾燥(60℃)和凍乾處理並磨碎成粉末,以80%乙醇萃取後測定其總類黃酮與總酚含量。結果顯示,韃靼蕎麥開花期之花以熱風乾燥後有最高的總類黃酮含量(157.27±3.01 mg rutin eq./g powder, d.b.)及總酚含量(121.60±3.20 mg gallic acid eq./g powder, d.b.),其次為成熟期的葉子;而各個時期中均以莖部位的總酚和總類黃酮含量為最低。花雖然含有豐富的機能性成分,但其僅占新鮮植株之重量百分比0.3%,且樣品收集困難,故後續機能成分分析及應用之樣品以成熟期的葉子及日常用作糧食之成熟期種實為主。韃靼蕎麥熱風乾燥的成熟期葉子與種實之80%乙醇粗萃取液,以HPLC-PDA分析後得知,葉子和種實乙醇粗萃取液之主要成分為蘆丁,其次為山奈酚-3-O-芸香糖苷(kaempferol-3-O- rutioside),再者為檞皮素、異檞皮素(isoquercetin)和山奈酚。韃靼蕎麥葉子和種實之乙醇粗萃取液於1000 μg/mL亞鐵離子螯合能力分別為40%和89%,而清除DPPH自由基的IC50分別為63.51±2.15和85.73±4.60 μg/mL。韃靼蕎麥葉子和種實粗萃液之醣類消化酵素α-葡萄糖苷酶(α-glucosidase)活性抑制試驗結果得知,其IC50分別為283.38±10.62和180.63±13.52 μg/mL,與正控制組阿卡波糖(acarbose,為目前治療第二型糖尿病藥物)之IC50 (670.78±66.29 μg/mL)相較,有較佳的效果。本試驗研究結果顯示,韃靼蕎麥植株與種實具有良好抗氧化力以及抑制α-葡萄糖苷酶的活性,甚至比市售藥物阿卡波糖效果更佳,應可作多方面的生產利用。 | zh_TW |
dc.description.abstract | Tartary buckwheat (Fagopyrum tataricum Gaertn) is a pseudo-cereal which are planted with a small area in Taiwan. It has been reported that the whole plant of Tartary buckwheat contains abundant flavonoids, such as rutin, quercetin, kaempferol, etc. In this study the contents of total flavonoids and total phenolics at different growth stages of Tartary buckwheat plant were determined. The growth stages of Tartary buckwheat plant for investigation includes seedling, stem elongation, milky, flowering and matured stages. Each stage, the plant was separated into four parts, including leaf, stem, flower and grain (immature and matured). After sample collecting, hot-air drying (60℃) and lyophilized were applied to dry the sample. The dried sample was then milled into fine powders. The flower part contained the highest amount of total flavonoids and total phenolics than other parts, which were 157.27±3.01 mg rutin eq./g powder, d.b. and 121.60±3.20 mg gallic acid eq./g powder, d.b., respectively. Following the flower, high amount of total flavonoids and total phenolics could be found in leaf. The stem contained the lowest amount of total flavonoids and total phenolics compared to other parts at all growth stages. Although the flower had the highest amount of bioactive compounds, it is impractical to use the flower due little amount of flower (0.3 w/w% of whole plant) and difficulty of sample collection. Therefore, the matured seed and its plant parts were chosen as the samples for this study. Tartary buckwheat leaf and grain at matured stage were dried by hot-air (60℃) and then extracted with 80% ethanol. The major components of 80% ethanol crude extraction included rutin, followed by kaempferol-3-O-rutinoside, quercetin, isoquercetin and kaempferol analyzed by HPLC-PDA. The chelated ferrous ion ability of ethanol crude extraction from leaf and grain were 40% and 89% at 1000 μg/mL, respectively. The IC50 of scavenging DPPH radicals were 63.51±2.15 and 85.73±4.60 μg/mL for the ethanol crude extraction from leaf and grain, respectively. The inhibition of α-glucosidase activity expressed as IC50 were 283.38±10.62 and 180.63±13.52 μg/mL for the ethanol crude extraction from leaf and grain, respectively. However, the IC50 of the inhibition of α-glucosidase activity of acarbose, a medical for type II diabetes, was 670.78±66.29 μg/mL. The ethanol crude extraction from matured Tartary buckwheat shows a better inhibition effect than acarbose. The ethanol crude extraction of Tartary buckwheat leaf and grain at matured stage had good antioxidative ability and superior α-glucosidase activity inhibition with great potential for the prevention of type II diabetes. | en |
dc.description.provenance | Made available in DSpace on 2021-05-15T18:02:14Z (GMT). No. of bitstreams: 1 ntu-103-R01623030-1.pdf: 1941766 bytes, checksum: 93b4e86814918171595993e2fc728290 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………Ⅰ
誌謝……………………………………………………………………………………Ⅱ 中文摘要………………………………………………………………………………Ⅲ 英文摘要………………………………………………………………………………Ⅳ 目錄……………………………………………………………………………………Ⅵ 圖目錄…………………………………………………………………………………Ⅷ 表目錄…………………………………………………………………………………Ⅸ 第一章、前言……………………………………………………………………………1 第二章、文獻回顧………………………………………………………………………3 一、韃靼蕎麥之簡介……………………………………………………………3 二、韃靼蕎麥之化學組成………………………………………………………5 三、韃靼蕎麥之安全評估……………………………………………………14 四、韃靼蕎麥之生理活性……………………………………………………15 五、韃靼蕎麥之藥理活性……………………………………………………17 第三章、材料與方法…………………………………………………………………24 一、試驗架構…………………………………………………………………24 二、試驗材料…………………………………………………………………25 三、試驗方法…………………………………………………………………27 第四章、結果與討論…………………………………………………………………32 一、不同生長時期韃靼蕎麥植株之變化……………………………………32 1. 不同生長時期各部位之水分含量……………………………………32 2. 乾燥方式對植株粉末色澤之影響……………………………………34 3. 植株不同生長時期熱風乾燥和凍乾各部位之機能性成分…………35 二、韃靼蕎麥之一般成分分析………………………………………………38 三、韃靼蕎麥粗萃取液之化學成分分析……………………………………39 1. 韃靼蕎麥葉和種實之萃取率…………………………………………39 2. 韃靼蕎麥葉和種實乙醇粗萃取液之主要機能性成分………………40 四、韃靼蕎麥粗萃取液之抗氧化能力分析…………………………………44 1. 清除DPPH自由基能力………………………………………………44 2. 亞鐵離子螯合能力……………………………………………………46 五、韃靼蕎麥粗萃取液抑制醣解酵素活性之分析…………………………47 第五章、結論…………………………………………………………………………52 第六章、參考文獻……………………………………………………………………53 | |
dc.language.iso | zh-TW | |
dc.title | 韃靼蕎麥粗萃取液機能成分之研究 | zh_TW |
dc.title | Study of bioactive compounds in crude extracts of Tartary buckwheat | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張永和,邵貽沅,呂廷璋 | |
dc.subject.keyword | 韃靼蕎麥粗萃取液,機能性成分,抗氧化,抑制α-葡萄糖??, | zh_TW |
dc.subject.keyword | Tartary buckwheat crude extraction,functional compounds,antioxidant,inhibit α-glucosidase, | en |
dc.relation.page | 62 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2014-08-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf | 1.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。