Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55352
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor鄭淑芬(Soofin Cheng)
dc.contributor.authorYu-Wei Huangen
dc.contributor.author黃郁崴zh_TW
dc.date.accessioned2021-06-16T03:58:02Z-
dc.date.available2016-02-04
dc.date.copyright2015-02-04
dc.date.issued2014
dc.date.submitted2014-12-01
dc.identifier.citation1. (a) Liu, Y.; Lotero, E.; Goodwin, J. G., Jr.; Mo, X., Transesterification of poultry fat with methanol using Mg-A1 hydrotalcite derived catalysts. Applied Catalysis a-General 2007, 331, 138-148; (b) Lotero, E.; Liu, Y. J.; Lopez, D. E.; Suwannakarn, K.; Bruce, D. A.; Goodwin, J. G., Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 2005, 44 (14), 5353-5363.
2. (a) Helwani, Z.; Othman, M. R.; Aziz, N.; Kim, J.; Fernando, W. J. N., Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Applied Catalysis a-General 2009, 363 (1-2), 1-10; (b) Zabeti, M.; Daud, W. M. A. W.; Aroua, M. K., Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology 2009, 90 (6), 770-777.
3. Zeng, H. Y.; Feng, Z.; Deng, X.; Li, Y. Q., Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil. Fuel 2008, 87 (13-14), 3071-3076.
4. J. Link Shumaker, C. C., S. Adam Tackett , Eduardo Santillan-Jimenez ,; Tonya Morgan , Y. J., Mark Crocker, Todd J. Toops Biodiesel synthesis using calcined layered double hydroxide catalysts. Applied Catalysis B: Environmental 2008, 82, 120-130.
5. Castro, C. S.; Cardoso, D.; Nascente, P. A. P.; Assaf, J. M., MgAlLi Mixed Oxides Derived from Hydrotalcite for Catalytic Transesterification. Catalysis Letters 2011, 141 (9), 1316-1323.
6. Jimenez, V.; Sanchez, P.; Diaz, J. A.; Valverde, J. L.; Romero, A., Hydrogen storage capacity on different carbon materials. Chem. Phys. Lett. 2010, 485 (1-3), 152-155.
7. (a) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W., Hydrogen Storage in Metal-Organic Frameworks. Chem. Rev. 2012, 112 (2), 782-835; (b) Hu, Y. H.; Zhang, L., Hydrogen Storage in Metal-Organic Frameworks. Adv. Mater. 2010, 22 (20), E117-E130; (c) Murray, L. J.; Dinca, M.; Long, J. R., Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38 (5), 1294-1314; (d) Collins, D. J.; Zhou, H. C., Hydrogen storage in metal-organic frameworks. J. Mater. Chem. 2007, 17 (30), 3154-3160; (e) Hirscher, M.; Panella, B., Hydrogen storage in metal-organic frameworks. Scr. Mater. 2007, 56 (10), 809-812; (f) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M., Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300 (5622), 1127-1129.
8. (a) Zecchina, A.; Bordiga, S.; Vitillo, J. G.; Ricchiardi, G.; Lamberti, C.; Spoto, G.; Bjorgen, M.; Lillerud, K. P., Liquid hydrogen in protonic chabazite. J. Am. Chem. Soc. 2005, 127 (17), 6361-6366; (b) Chung, K. H., High-pressure hydrogen storage on microporous zeolites with varying pore properties. Energy 2010, 35 (5), 2235-2241; (c) Prasanth, K. P.; Raj, M. C.; Bajaj, H. C.; Kim, T. H.; Jasra, R. V., Hydrogen sorption in transition metal modified mesoporous materials. Int. J. Hydrog. Energy 2010, 35 (6), 2351-2360; (d) Regli, L.; Zecchina, A.; Vitillo, J. G.; Cocina, D.; Spoto, G.; Lamberti, C.; Lillerud, K. P.; Olsbye, U.; Bordiga, S., Hydrogen storage in chabazite zeolite frameworks. Phys. Chem. Chem. Phys. 2005, 7 (17), 3197-3203.
9. Li, Y.; Yang, R. T., Gas adsorption and storage in metal-organic framework MOF-177. Langmuir 2007, 23 (26), 12937-12944.
10. (a) Xu, Z. P.; Zhang, J.; Adebajo, M. O.; Zhang, H.; Zhou, C. H., Catalytic applications of layered double hydroxides and derivatives. Appl. Clay Sci. 2011, 53 (2), 139-150; (b) Newman, S. P.; Jones, W., Synthesis, characterization and applications of layered double hydroxides containing organic guests. New J. Chem. 1998, 22 (2), 105-115.
11. Cavani, F.; Trifiro, F.; Vaccari, A., Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11 (2), 173-301.
12. Constantino, V. R. L.; Pinnavaia, T. J., Basic properties of Mg1-x2+Alx3+ layered double hydroxide chlopide and sulfate anions. Inorganic Chemistry 1995, 34 (4), 883-892.
13. (a) Sideris, P. J.; Nielsen, U. G.; Gan, Z. H.; Grey, C. P., Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science 2008, 321 (5885), 113-117; (b) Goh, K.-H.; Lim, T.-T.; Dong, Z., Application of layered double hydroxides for removal of oxyanions: A review. Water Research 2008, 42 (6–7), 1343-1368.
14. Jones, W.; Rao, C. N. R., Supramolecular Organization and Materials Design. Cambridge University Press: 2008.
15. Besserguenev, A. V.; Fogg, A. M.; Francis, R. J.; Price, S. J.; Ohare, D.; Isupov, V. P.; Tolochko, B. P., Synthesis and structure of the gibbsite intercalation compounds LiAl2(OH)6 X {X=Cl, Br, NO3} and LiAl2(OH)6 Cl center dot H2O using synchrotron X-ray and neutron powder diffraction. Chem. Mat. 1997, 9 (1), 241-247.
16. Serna, C. J.; Rendon, J. L.; Iglesias, J. E., Crystal-chemical study of layered Al2Li(OH)6+X-nH2O. Clays and Clay Minerals 1982, 30 (3), 180-184.
17. Kang, H.; Leoni, M.; He, H.; Huang, G.; Yang, X., Well-Crystallized CO32–-Type LiAl–LDH from Urea Hydrolysis of an Aqueous Chloride Solution. European Journal of Inorganic Chemistry 2012, 2012 (24), 3859-3865.
18. Zhang, T.; Li, Q.; Xiao, H.; Lu, H.; Zhou, Y., Synthesis of Li-Al Layered Double Hydroxides (LDHs) for Efficient Fluoride Removal. Ind. Eng. Chem. Res. 2012, 51 (35), 11490-11498.
19. (a) He, J.; Wei, M.; Li, B.; Kang, Y.; Evans, D. G.; Duan, X., Preparation of layered double hydroxides. In Layered Double Hydroxides, Duan, X. E. D. G., Ed. 2006; Vol. 119, pp 89-119; (b) Carlino, S., The intercalation of carboxylic acids into layered double hydroxides: A critical evaluation and review of the different methods. Solid State Ion. 1997, 98 (1-2), 73-84.
20. Drezdzon, M. A., Synthesis of isopolymetalate-pillared hydrotalcite via organic-anion-pillared precursors. Inorganic Chemistry 1988, 27 (25), 4628-4632.
21. Vaccari, A., Layered double hydroxides: present and future: V. Rives (Ed.), Nova Science Publishers, Inc., New York, 2001, IX+439 pp., ISBN 1-59033-060-9. Appl. Clay Sci. 2002, 22 (1–2), 75-76.
22. Shannon, R. D., Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32 (SEP1), 751-767.
23. Borja, M.; Dutta, P. K., Fatty-acids in laered metal-hydroxides-membrane-like structure and dynamics.. J. Phys. Chem. 1992, 96 (13), 5434-5444.
24. Miyata, S., Anion-exchange properties of hydrotalcite-like compounds. Clays and Clay Minerals 1983, 31 (4), 305-311.
25. Hibino, T.; Tsunashima, A., Characterization of repeatedly reconstructed Mg-Al hydrotalcite-like compounds: Gradual segregation of aluminum from the structure. Chem. Mat. 1998, 10 (12), 4055-4061.
26. Yang, W. S.; Kim, Y.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T., A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide. Chemical Engineering Science 2002, 57 (15), 2945-2953.
27. Perez-Ramirez, J.; Abello, S.; van der Pers, N. M., Memory effect of activated Mg-Al hydrotalcite: In situ XRD studies during decomposition and gas-phase reconstruction. Chemistry-a European Journal 2007, 13 (3), 870-878.
28. Ferretti, C. A.; Fuente, S.; Ferullo, R.; Castellani, N.; Apesteguia, C. R.; Di Cosimo, J. I., Monoglyceride synthesis by glycerolysis of methyl oleate on MgO: Catalytic and DFT study of the active site. Applied Catalysis a-General 2012, 413, 322-331.
29. Ma, F. R.; Hanna, M. A., Biodiesel production: a review. Bioresource Technology 1999, 70 (1), 1-15.
30. (a) Kim, M. J.; Park, S. M.; Chang, D. R.; Seo, G., Transesterification of triacetin, tributyrin, and soybean oil with methanol over hydrotalcites with different water contents. Fuel Processing Technology 2010, 91 (6), 618-624; (b) Capek, L.; Kutalek, P.; Smolakova, L.; Hajek, M.; Troppova, I.; Kubicka, D., The Effect of Thermal Pre-Treatment on Structure, Composition, Basicity and Catalytic Activity of Mg/Al Mixed Oxides. Topics in Catalysis 2013, 56 (9-10), 586-593; (c) Castro, C. S.; Ferreti, C.; Isabel Di Cosimo, J.; Assaf, J. M., Support influence on the basicity promotion of lithium-based mixed oxides for transesterification reaction. Fuel 2013, 103, 632-638.
31. Corma, A.; Abd Hamid, S. B.; Iborra, S.; Velty, A., Lewis and Bronsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. Journal of Catalysis 2005, 234 (2), 340-347.
32. Roeffaers, M. B. J.; Sels, B. F.; Uji-i, H.; De Schryver, F. C.; Jacobs, P. A.; De Vos, D. E.; Hofkens, J., Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 2006, 439 (7076), 572-575.
33. Xie, W. L.; Peng, H.; Chen, L. G., Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis a-Chemical 2006, 246 (1-2), 24-32.
34. Barakos, N.; Pasias, S.; Papayannakos, N., Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst. Bioresource Technology 2008, 99 (11), 5037-5042.
35. Trakarnpruk, W.; Porntangjitlikit, S., Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties. Renewable Energy 2008, 33 (7), 1558-1563.
36. Lv, L.; Wang, W.; Wei, M.; Cheng, H., Bromide ion removal from contaminated water by calcined and uncalcined MgAl-CO3 layered double hydroxides. Journal of Hazardous Materials 2008, 152 (3), 1130-1137.
37. Mandal, S.; Mayadevi, S., Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution. Chemosphere 2008, 72 (6), 995-998.
38. Reddy, M. K. R.; Xu, Z. P.; Lu, G. Q.; da Costa, J. C. D., Effect of SOx adsorption on layered double hydroxides for CO2 capture. Ind. Eng. Chem. Res. 2008, 47 (19), 7357-7360.
39. Qiang Wanga, Z. W., b, Hui Huang Taya, Luwei Chena, Yan Liua, Jie Changa, Ziyi Zhonga,; Jizhong Luoa, Armando Borgnaa, High temperature adsorption of CO2 on Mg–Al hydrotalcite: Effect of the charge
compensating anions and the synthesis pH. Catal. Today 2011, 164.
40. Wang, Q.; Tay, H. H.; Guo, Z.; Chen, L.; Liu, Y.; Chang, J.; Zhong, Z.; Luo, J.; Borgna, A., Morphology and composition controllable synthesis of Mg-Al-CO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity. Appl. Clay Sci. 2012, 55, 18-26.
41. Zeng, S.; Xu, X.; Wang, S.; Gong, Q.; Liu, R.; Yu, Y., Sand flower layered double hydroxides synthesized by co-precipitation for CO2 capture: Morphology evolution mechanism, agitation effect and stability. Mater. Chem. Phys. 2013, 140 (1), 159-167.
42. Schlapbach, L.; Zuttel, A., Hydrogen-storage materials for mobile applications. Nature 2001, 414 (6861), 353-358.
43. Lim, K. L.; Kazemian, H.; Yaakob, Z.; Daud, W. R. W., Solid-state Materials and Methods for Hydrogen Storage: A Critical Review. Chem. Eng. Technol. 2010, 33 (2), 213-226.
44. Zuttel, A., Materials for hydrogen storage. Materials Today 2003, 6 (9), 24-33.
45. Kubas, G. J., Fundamentals of H-2 binding and reactivity on transition metals underlying hydrogenase function and H-2 production and storage. Chem. Rev. 2007, 107 (10), 4152-4205.
46. Jiang, H.-L.; Xu, Q., Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 2011, 170 (1), 56-63.
47. Niemann, M. U.; Srinivasan, S. S.; Phani, A. R.; Kumar, A.; Goswami, D. Y.; Stefanakos, E. K., Nanomaterials for Hydrogen Storage Applications: A Review. Journal of Nanomaterials 2008.
48. Orimo, S. I.; Nakamori, Y.; Eliseo, J. R.; Zuttel, A.; Jensen, C. M., Complex hydrides for hydrogen storage. Chem. Rev. 2007, 107 (10), 4111-4132.
49. Dornheim, M.; Doppiu, S.; Barkhordarian, G.; Boesenberg, U.; Klassen, T.; Gutfleisch, O.; Bormann, R., Hydrogen storage in magnesium-based hydrides and hydride composites. Scr. Mater. 2007, 56 (10), 841-846.
50. Graetz, J., New approaches to hydrogen storage. Chem. Soc. Rev. 2009, 38 (1), 73-82.
51. Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J., Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386 (6623), 377-379.
52. Chambers, A.; Park, C.; Baker, R. T. K.; Rodriguez, N. M., Hydrogen storage in graphite nanofibers. J. Phys. Chem. B 1998, 102 (22), 4253-4256.
53. Wang, L.; Stuckert, N. R.; Yang, R. T., Unique Hydrogen Adsorption Properties of Graphene. Aiche Journal 2011, 57 (10), 2902-2908.
54. Jin, H.; Lee, Y. S.; Hong, I., Hydrogen adsorption characteristics of activated carbon. Catal. Today 2007, 120 (3-4), 399-406.
55. Rowsell, J. L. C.; Yaghi, O. M., Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 2006, 128 (4), 1304-1315.
56. Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M., Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc. 2006, 128 (11), 3494-3495.
57. Han, S. S.; Kim, H. S.; Han, K. S.; Lee, J. Y.; Lee, H. M.; Kang, J. K.; Woo, S. I.; van Duin, A. C. T.; Goddard, W. A., Nanopores of carbon nanotubes as practical hydrogen storage media. Applied Physics Letters 2005, 87 (21).
58. Lin, X.; Jia, J.; Zhao, X.; Thomas, K. M.; Blake, A. J.; Walker, G. S.; Champness, N. R.; Hubberstey, P.; Schroeder, M., High H-2 adsorption by coordination-framework materials. Angewandte Chemie-International Edition 2006, 45 (44), 7358-7364.
59. Lachawiec, A. J.; Qi, G. S.; Yang, R. T., Hydrogen storage in nanostructured carbons by spillover: Bridge-building enhancement. Langmuir 2005, 21 (24), 11418-11424.
60. (a) Li, Y. W.; Yang, R. T., Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. J. Am. Chem. Soc. 2006, 128 (3), 726-727; (b) Yang*, Y. L. a. R. T., Hydrogen Storage in Metal-Organic Frameworks by Bridged Hydrogen Spillover. J. Am. Chem. Soc. 2006, 128, 3.
61. (a) Wu, C.; Gao, Q.; Hu, J.; Chen, Z.; Shi, W., Rapid preparation, characterization and hydrogen storage properties of pure and metal ions doped mesoporous MCM-41. Microporous Mesoporous Mat. 2009, 117 (1-2), 165-169; (b) Ramachandran, S.; Ha, J.-H.; Kim, D. K., Hydrogen storage characteristics of metal oxide doped Al-MCM-41 mesoporous materials. Catalysis Communications 2007, 8 (12), 1934-1938.
62. (a) Gareth, R. W.; Aamir, I. K.; O'Hare, D., Mechanistic and kinetic studies of guest ion intercalation into layered double hydroxides using time-resolved, in-situ x-ray powder diffraction. In Layered Double Hydroxides, Duan, X. E. D. G., Ed. 2006; Vol. 119, pp 161-192; (b) Kooli, F.; Chisem, I. C.; Vucelic, M.; Jones, W., Synthesis and properties of terephthalate and benzoate intercalates of Mg-Al layered double hydroxides possessing varying layer charge. Chem. Mat. 1996, 8 (8), 1969-1977; (c) Newman, S. P.; Williams, S. J.; Coveney, P. V.; Jones, W., Interlayer arrangement of hydrated MgAl layered double hydroxides containing guest terephthalate anions: Comparison of simulation and measurement. J. Phys. Chem. B 1998, 102 (35), 6710-6719.
63. Wang, S.-H.; Wang, Y.-B.; Dai, Y.-M.; Jehng, J.-M., Preparation and characterization of hydrotalcite-like compounds containing transition metal as a solid base catalyst for the transesterification. Applied Catalysis a-General 2012, 439, 135-141.
64. Chen, S.-Y.; Tang, C.-Y.; Chuang, W.-T.; Lee, J.-J.; Tsai, Y.-L.; Chan, J. C. C.; Lin, C.-Y.; Liu, Y.-C.; Cheng, S., A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels. Chem. Mat. 2008, 20 (12), 3906-3916.
65. (a) Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meier, W. M., Crystal-structure and structure-related properties of ZSM-5. J. Phys. Chem. 1981, 85 (15), 2238-2243; (b) Bennett, J. M.; Cohen, J. P.; Flanigen, E. M.; Pluth, J. J.; Smith, J. V., Crystal-struvture of tetrapropylammonium hydroxide-aluminum phosphate number-5. Acs Symposium Series 1983, 218, 109-118.
66. Huo, Q. S.; Margolese, D. I.; Stucky, G. D., Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mat. 1996, 8 (5), 1147-1160.
67. Seftel, E. M.; Popovici, E.; Mertens, M.; Witte, K.; Tendeloo, G.; Cool, P.; Vansant, E. F., Zn-Al layered double hydroxides: Synthesis, characterization and photocatalytic application. Microporous Mesoporous Mat. 2008, 113 (1-3), 296-304.
68. Costa, F. R.; Leuteritz, A.; Wagenknecht, U.; Jehnichen, D.; Haussler, L.; Heinrich, G., Intercalation of Mg-Al layered double hydroxide by anionic surfactants: Preparation and characterization. Appl. Clay Sci. 2008, 38 (3-4), 153-164.
69. Nylund, A.; Olefjord, I., Surface-analysis of oxidized aluminum. 1.Hydration of Al2O3 and decomposition of Al(OH)3 in a vacuum as studied by ESCA. Surface and Interface Analysis 1994, 21 (5), 283-289.
70. Olefjord, I.; Nylund, A., Surface-analysis of oxidized aluminum. 2. Oxidation of aluminum in dry and humid atmosphere studied by ESCA, SEM, SAM AND EDX. Surface and Interface Analysis 1994, 21 (5), 290-297.
71. Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R., Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)(3) (MOF-5). J. Am. Chem. Soc. 2007, 129 (46), 14176-+.
72. Mavrandonakis, A.; Klopper, W., Kinetics and mechanistic model for hydrogen spillover on bridged metal-organic frameworks. Journal of Physical Chemistry C 2008, 112 (8), 3152-3154.
73. Bhatia, S. K.; Myers, A. L., Optimum conditions for adsorptive storage. Langmuir 2006, 22 (4), 1688-1700.
74. Miller, M. A.; Wang, C. Y.; Merrill, G. N., Experimental and Theoretical Investigation Into Hydrogen Storage via Spillover in IRMOF-8. Journal of Physical Chemistry C 2009, 113 (8), 3222-3231.
75. (a) Sokolowski, K.; Bury, W.; Justyniak, I.; Fairen-Jimenez, D.; Soltys, K.; Prochowicz, D.; Yang, S. H.; Schroder, M.; Lewinski, J., Permanent Porosity Derived From the Self-Assembly of Highly Luminescent Molecular Zinc Carbonate Nanoclusters. Angewandte Chemie-International Edition 2013, 52 (50), 13414-13418; (b) Sava, D. F.; Kravtsov, V. C.; Nouar, F.; Wojtas, L.; Eubank, J. F.; Eddaoudi, M., Quest for zeolite-like metal-organic frameworks: On pyrimidinecarboxylate bis-chelating bridging ligands. J. Am. Chem. Soc. 2008, 130 (12), 3768-+.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55352-
dc.description.abstract本博士論文以共沉澱法製備出鎂鋁和鋰鋁層狀雙氫氧化物,其中崁入層間的陰離子為下列羧酸,例如:碳酸、醋酸、對苯二甲酸、對甲基苯甲酸。層狀雙氫氧化物燃燒後會形成混和金屬氧化物,將混和金屬氧化物分散於水溶液中,混和金屬氧化物會重新排列成層狀雙氫氧化物,為記憶效應。為了瞭解記憶效應的過程,針對崁入碳酸層狀雙氫氧化物,利用同步輻射原位X-ray繞射觀察結構變化,發現鎂鋁層狀雙氫氧化物,當溫度上升到350 oC,層狀結構就會坍塌,往大角度偏移,並且在450 oC生成氧化物;而鋰鋁層狀雙氫氧化物,則是在200 oC層狀結構發生偏移,直到500 oC才生成氧化物。另外,比較鍛燒到400 oC和600 oC混和金屬氧化物的水合現象,鍛燒溫度越高會越難恢復成層狀結構。將水合後的樣品再次升溫,並不會影響轉相的溫度,但是可以看到層狀坍塌的過程變慢。
層狀雙氫氧化物常被用來製備高表面積混和金屬氧化物,本論文以崁入碳酸層狀雙氫氧化物鍛燒到不同溫度的混和金屬氧化物為觸媒,探討應用於三棕櫚酸與甲醇生成棕櫚酸甲酯和甘油的轉酯化反應,並且調整醇油比以及觸媒含量,找到最佳化條件測試重覆使用。發現當醇油比越高,反應速率越快。當固定醇油比為60:1的條件下反應三小時,改變觸媒用含量(1~9 wt%),發現產隨著觸媒含量增加而增加,直到觸媒含量為6 wt%時,產率達到99%,然後下降。在迴流的溫度下、醇油比為90:1、觸媒量為3 wt%,以崁入碳酸根鋰鋁層狀雙氫氧化物鍛燒400 oC的觸媒具有最佳活性,可以達到95%的產率,並且將使用過的觸媒,直接放入200 oC烘箱數小時,可以重複使用三次還維持87%產率。
此外,將層狀雙氫氧化物崁入各種有機酸(醋酸、對苯二甲酸、對甲基苯甲酸),以製備出高表面積且含有苯環的結構,應用於氫氣吸附反應。發現當醋酸和含有苯環的有機酸同時崁入的層狀氫氧化物與只有崁入純有機酸的樣品比較會有較大的表面積,導致有較高的氫氣吸附量。其中,以鎂鋁層狀雙氫氧化物系列,對甲基苯甲酸和醋酸以三比四的比例崁入鎂鋁層狀雙氫氧化物,在-196 oC和一大氣壓下,可以吸附0.42 wt%;在室溫和約10 MPa氣壓下,可以吸附0.08 wt%。以鋰鋁層狀雙氫氧化物系列,則是對苯二甲酸和醋酸以一比四的比例崁入鋰鋁層狀雙氫氧化物,則在低溫常壓可以吸附0.67 wt%氫氣,並且在常溫高壓有0.10 wt%氫氣吸附量。
zh_TW
dc.description.abstractThis thesis focused on the preparation and applications of layered double hydroxides (LDHs) intercalated with carbonate, acetate, terephthalate, and p-toluate by one-pot coprecipitation method. During the calcination, LDHs were transformed mixed metal oxides (MMOs). The MMOs were resolved in an aqueous solution, and the MMOs would be rearranged in the form of layer structure. On the other hand, when MMOs dissolved into the anionic solution, the structure of MMOs would recover that of LDHs. This special phenomenon is called “Memory Effect”. In order to study the memory effect, synchrotron radiation in-situ X-ray diffraction was utilized to monitor the phase transformation during the calcinations and rehydration process.
When temperature rised to 350 oC, the MgAl layered structure started to collapse and the (003) diffraction of LDHs obviously shifted to the higher angle. Subsequently, its corresponding MMO was formed, i.e.: MgO and/or Al2O3, when temperature reached to 450 oC. In contrast to MgAl-LDH, the layer structure of LiAl-LDH would destroy at 200oC, and its derived MMO was appeared when the temperature achieved to 500 oC. The LDH calcined at 600 oC is more difficult to recover back to the layered structure than that calcined at 400 oC. After rehydration, the sample was heated again. The phase-transformation of LDHs to MMOs still observed at the same temperature. However, the recovery rate is slower than as-synthesized sample.
Layered double hydroxides are used to prepare various mixed metal oxides with high surface area. In this thesis, layered double hydroxides intercalated with carbonate are calcined around 300-500 oC, and the hydroxides decompose to form mixed metal oxides. Both of LDHs and MMOs are used as the heterogeneous catalysts in the transesterification of tripalmitin and methanol at reflux temperature. Methanol to tripalmitin molar ratio is among 30-90:1; the catalyst amount is based on the amount of used tripalmitin in the range of 1 to 9 wt%. The reaction becomes faster with increasing the ratio of methanol to tripalmitin. When the ratio of methanol to tripalmitin fixed at 60:1 for 3 h, the content of the catalyst amount changed, it is found that the yield is increased with increasing the content until upon to 6 wt%. However, the yield is decreased, when the catalyst amount is above 6 wt%. The yield of LiAl-CO3-LDH- C400 can achieve 99% methyl palmitate when the ratio of methanol to tripalmitin of 60:1 and 6 wt% catalyst at reflux temperature for 3 h. For reused measurement, the LiAl-CO3-C400 dried at 200 oC for several hours after the reaction can be repeatedly used for three times, and the yield still can maintain 87%.
In addition, the thesis contains a new approach to measure hydrogen adsorption for layered double hydroxides intercalated with various organic acids, e.g.: carbonate, acetate, terephthalate, p-toluate. In order to synthesize the materials which have high surface area and π-π interaction, the acetate and arylate are added in the precursor solution with the varied molar ratio of acetate and arylate. The surface area and pore volume of the LDHs increase when a portion of the arylate anions are replaced by acetate ions; as a result, their hydrogen uptakes are also increased. The hydrogen adsorption capacities of LDHs are proportional to the surface area. For MgAl-LDHs, the hydrogen adsorption uptake of MgAl-3pTA+4aa-LDH is 0.42 wt% at -196 oC and 1 atm; 0.08 wt% at room temperature and 10 atm. Compared with MgAl-LDHs, LiAl-LDHs have higher hydrogen storage capacities. The hydrogen capacity of LiAl-LDH intercalated with TA;aa in 1:4 ratio under nitrogen is 0.69 wt% at -196 oC and 1atm; 0.10 wt% at room temperature and 10 atm.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:58:02Z (GMT). No. of bitstreams: 1
ntu-103-F96223176-1.pdf: 9266286 bytes, checksum: e907eab68845daa60f24be3833ce92fc (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Layered Double Hydroxides (LDHs) 3
1.2.1 Preparation of Layered Double Hydroxides 7
1.2.2 Application of Layered Double Hydroxides 10
1.3 System of Hydrogen Storage 17
1.3.1 High-pressure and liquefied hydrogen tank 18
1.3.2 Metal hydrides[60] or Chemical hydrides[61] 19
1.3.3 Porous materials 19
Chaper 2 Experimental Sections and Characterizations 34
2.1 Materials 34
2.2 Experimental methods 35
2.2.1 Preparation 35
2.2.2 Memory effect measurement 41
2.2.3 Transesterification procedure 43
2.3 Instruments 45
2.3.1 Powder X-Ray Diffraction (XRD) 45
2.3.2 Fourier-transform Infrared (FT-IR) 45
2.3.3 Scanning Electron Microscope (SEM) 45
2.3.4 Thermo-Gravimetric Analysis (TGA) and DTA-TG-Mass 45
2.3.5 Inductive-Coupled Plasma-Mass Spectroscopy (ICP-MS) 45
2.3.6 Elemental Analyses (EA) 46
2.3.7 Gas chromatograph 46
2.3.8 N2 adsorption/desorption and Hydrogen adsorption 46
2.3.9 In-situ XRD NSRRC 17A 46
2.3.10 Density Measurement 47
Chapter 3 Memory Effect of Layered Double Hydroxides in different rehydrated solutions 48
3.1 Results and Discussion 48
3.2 Summaries 65
Chapter 4 Layered Double Hydroxides as basic catalysts in Transesterification 66
4.1 Results and Discussion 66
4.1.1 Characterization of calcined and rehydrated MgAl and LiAl-LDH catalysts 66
4.1.2 Transesterification over calcined and rehydrated MgAl- and LiAl-LDH catalysts 71
4.1.3 Characterization of mixed LiMgAl-LDH catalysts 73
4.1.4 Transterification over mixed LiMgAl-LDH catalysts 78
4.2 Summaries 87
Chapter 5 Hydrogen Storage of Layered Double Hydroxides and porous materials 88
5.1 Results and Discussion 88
5.1.1 Hygrogen adsorption on porous silica materials 88
5.1.2 Hydrogen adsorption of layered double hydroxides 98
5.1.3 Carbon dioxide adsorption for layered double hydroxides 150
5.2 Summaries 151
Chapter 6 Conclusions 155
Publications 157
References 157
Appendix 163
dc.language.isoen
dc.title鎂鋁和鋰鋁層狀雙氫氧化物的合成與鑑定以及應用於氫氣吸附和轉酯化催化反應zh_TW
dc.titleSynthesis and Characterizations of MgAl and LiAl Layered Double Hydroxides and Their Application for Hydrogen Storage and Transesterificationen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee牟中原(Chung-Yuan Mou),邱靜雯(Ching-Wen Chiu),萬本儒(Ben-Zu Wan),林錕松(Kuen-Song Lin)
dc.subject.keyword鎂鋁層狀雙氫氧化物,鋰鋁層狀雙氫氧化物,記憶效應,氫氣吸附,轉酯化,zh_TW
dc.subject.keywordMgAl-LDH,LiAl-LDH,Memory Effect,Hydrogen Adsorption,Transesterification,en
dc.relation.page171
dc.rights.note有償授權
dc.date.accepted2014-12-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
dc.date.embargo-lift2300-01-01-
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
9.05 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved