Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55349
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝松蒼(Sung-Tsang Hsieh)
dc.contributor.authorHao Chiangen
dc.contributor.author姜昊zh_TW
dc.date.accessioned2021-06-16T03:57:53Z-
dc.date.available2019-12-31
dc.date.copyright2015-03-12
dc.date.issued2014
dc.date.submitted2014-12-01
dc.identifier.citationReferences
1. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26 (2):211-215. doi:10.1038/79944
2. Amiri M, Hollenbeck PJ (2008) Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev Neurobiol 68 (11):1348-1361. doi:10.1002/dneu.20668
3. Anand P, Bley K (2011) Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br J Anaesth 107 (4):490-502. doi:10.1093/bja/aer260
4. Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Graber S, Kovacs I, Lee WD, Waggoner J, Cui J, White AD, Bossy B, Martinou JC, Youle RJ, Lipton SA, Ellisman MH, Perkins GA, Bossy-Wetzel E (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25 (16):3900-3911. doi:10.1038/sj.emboj.7601253
5. Beirowski B, Nogradi A, Babetto E, Garcia-Alias G, Coleman MP (2010) Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration. J Neuropathol Exp Neurol 69 (5):455-472. doi:10.1097/NEN.0b013e3181da84db
6. Blackstone C (2012) Cellular pathways of hereditary spastic paraplegia. Annu Rev Neurosci 35:25-47. doi:10.1146/annurev-neuro-062111-150400
7. Bril V, England J, Franklin GM, Backonja M, Cohen J, Del Toro D, Feldman E, Iverson DJ, Perkins B, Russell JW, Zochodne D, American Academy of N, American Association of N, Electrodiagnostic M, American Academy of Physical M, Rehabilitation (2011) Evidence-based guideline: Treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 76 (20):1758-1765. doi:10.1212/WNL.0b013e3182166ebe
8. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389 (6653):816-824. doi:10.1038/39807
9. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105 (41):15803-15808. doi:10.1073/pnas.0808249105
10. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125 (7):1241-1252. doi:10.1016/j.cell.2006.06.010
11. Chang CR, Blackstone C (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 1201:34-39. doi:10.1111/j.1749-6632.2010.05629.x
12. Chen H, Chan DC (2009) Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet 18 (R2):R169-176. doi:10.1093/hmg/ddp326
13. Cho B, Choi SY, Cho HM, Kim HJ, Sun W (2013) Physiological and Pathological Significance of Dynamin-Related Protein 1 (Drp1)-Dependent Mitochondrial Fission in the Nervous System. Exp Neurobiol 22 (3):149-157. doi:10.5607/en.2013.22.3.149
14. Chowdhury SK, Smith DR, Fernyhough P (2013) The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 51:56-65. doi:10.1016/j.nbd.2012.03.016
15. Davies JW, Hainsworth AH, Guerin CJ, Lambert DG (2010) Pharmacology of capsaicin-, anandamide-, and N-arachidonoyl-dopamine-evoked cell death in a homogeneous transient receptor potential vanilloid subtype 1 receptor population. Br J Anaesth 104 (5):596-602. doi:10.1093/bja/aeq067
16. Deluca GC, Ebers GC, Esiri MM (2004) The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 30 (6):576-584. doi:10.1111/j.1365-2990.2004.00587.x
17. Derry S, Sven-Rice A, Cole P, Tan T, Moore RA (2013) Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst Rev 2:CD007393. doi:10.1002/14651858.CD007393.pub3
18. Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM (1988) Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J 53 (5):785-794. doi:10.1016/S0006-3495(88)83158-8
19. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1 (4):515-525. doi:10.1016/S1534-5807(01)00055-7
20. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126 (1):177-189. doi:10.1016/j.cell.2006.06.025
21. Germain M, Mathai JP, McBride HM, Shore GC (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 24 (8):1546-1556. doi:10.1038/sj.emboj.7600592
22. Gibbons CH, Wang N, Freeman R (2010) Capsaicin induces degeneration of cutaneous autonomic nerve fibers. Ann Neurol 68 (6):888-898. doi:10.1002/ana.22126
23. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13 (5):589-598. doi:10.1038/ncb2220
24. Grohm J, Kim SW, Mamrak U, Tobaben S, Cassidy-Stone A, Nunnari J, Plesnila N, Culmsee C (2012) Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ 19 (9):1446-1458. doi:10.1038/cdd.2012.18
25. Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M (2008) CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182 (3):573-585. doi:10.1083/jcb.200802164
26. Harti G, Sharkey KA, Pierau FK (1989) Effects of capsaicin in rat and pigeon on peripheral nerves containing substance P and calcitonin gene-related peptide. Cell Tissue Res 256 (3):465-474
27. Hattori N, Yamamoto M, Yoshihara T, Koike H, Nakagawa M, Yoshikawa H, Ohnishi A, Hayasaka K, Onodera O, Baba M, Yasuda H, Saito T, Nakashima K, Kira J, Kaji R, Oka N, Sobue G, Study Group for Hereditary Neuropathy in J (2003) Demyelinating and axonal features of Charcot-Marie-Tooth disease with mutations of myelin-related proteins (PMP22, MPZ and Cx32): a clinicopathological study of 205 Japanese patients. Brain 126 (Pt 1):134-151. doi:10.1093/brain/awg012
28. Ho SY, Chao CY, Huang HL, Chiu TW, Charoenkwan P, Hwang E (2011) NeurphologyJ: an automatic neuronal morphology quantification method and its application in pharmacological discovery. BMC Bioinformatics 12:230. doi:10.1186/1471-2105-12-230
29. Hoeijmakers JG, Faber CG, Lauria G, Merkies IS, Waxman SG (2012) Small-fibre neuropathies--advances in diagnosis, pathophysiology and management. Nat Rev Neurol 8 (7):369-379. doi:10.1038/nrneurol.2012.97
30. Hsieh ST, Chiang HY, Lin WM (2000) Pathology of nerve terminal degeneration in the skin. J Neuropathol Exp Neurol 59 (4):297-307
31. Hsieh YL, Chiang H, Tseng TJ, Hsieh ST (2008) Enhancement of cutaneous nerve regeneration by 4-methylcatechol in resiniferatoxin-induced neuropathy. J Neuropathol Exp Neurol 67 (2):93-104. doi:10.1097/nen.0b013e3181630bb8
32. Ikegami K, Koike T (2003) Non-apoptotic neurite degeneration in apoptotic neuronal death: pivotal role of mitochondrial function in neurites. Neuroscience 122 (3):617-626. doi:10.1016/j.neuroscience.2003.08.057
33. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y, Taguchi N, Morinaga H, Maeda M, Takayanagi R, Yokota S, Mihara K (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11 (8):958-966. doi:10.1038/ncb1907
34. Jahani-Asl A, Pilon-Larose K, Xu W, MacLaurin JG, Park DS, McBride HM, Slack RS (2011) The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J Biol Chem 286 (6):4772-4782. doi:10.1074/jbc.M110.167155
35. Kennedy WR, Wendelschafer-Crabb G, Johnson T (1996) Quantitation of epidermal nerves in diabetic neuropathy. Neurology 47 (4):1042-1048
36. Kim SR, Lee DY, Chung ES, Oh UT, Kim SU, Jin BK (2005) Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. J Neurosci 25 (3):662-671. doi:10.1523/JNEUROSCI.4166-04.2005
37. Kiryu-Seo S, Ohno N, Kidd GJ, Komuro H, Trapp BD (2010) Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J Neurosci 30 (19):6658-6666. doi:10.1523/JNEUROSCI.5265-09.2010
38. Knott AB, Bossy-Wetzel E (2008) Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Ann N Y Acad Sci 1147:283-292. doi:10.1196/annals.1427.030
39. Ko MH, Chen WP, Hsieh ST (2002) Neuropathology of skin denervation in acrylamide-induced neuropathy. Neurobiol Dis 11 (1):155-165. doi:10.1006/nbdi.2002.0537
40. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4 (5):815-826. doi:10.1016/S1097-2765(00)80391-3
41. Lackner LL, Nunnari JM (2009) The molecular mechanism and cellular functions of mitochondrial division. Biochim Biophys Acta 1792 (12):1138-1144. doi:10.1016/j.bbadis.2008.11.011
42. Lauria G, Morbin M, Lombardi R, Borgna M, Mazzoleni G, Sghirlanzoni A, Pareyson D (2003) Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology 61 (5):631-636. doi:10.1212/01.WNL.0000070781.92512.A4
43. Lauria G, Morbin M, Lombardi R, Borgna M, Mazzoleni G, Sghirlanzoni A, Pareyson D (2003) Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology 61 (5):631-636. doi:10.1212/01.wnl.0000070781.92512.a4
44. Lauria G, Morbin M, Lombardi R, Capobianco R, Camozzi F, Pareyson D, Manconi M, Geppetti P (2006) Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies. J Peripher Nerv Syst 11 (3):262-271. doi:10.1111/j.1529-8027.2006.0097.x
45. Legros F, Lombes A, Frachon P, Rojo M (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13 (12):4343-4354. doi:10.1091/mbc.E02-06-0330
46. Loew LM, Tuft RA, Carrington W, Fay FS (1993) Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys J 65 (6):2396-2407. doi:10.1016/S0006-3495(93)81318-3
47. Lynn B (1990) Capsaicin: actions on nociceptive C-fibres and therapeutic potential. Pain 41 (1):61-69
48. Marsh SJ, Stansfeld CE, Brown DA, Davey R, McCarthy D (1987) The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro. Neuroscience 23 (1):275-289
49. Miller KE, Sheetz MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117 (Pt 13):2791-2804. doi:10.1242/jcs.01130
50. Misko AL, Sasaki Y, Tuck E, Milbrandt J, Baloh RH (2012) Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J Neurosci 32 (12):4145-4155. doi:10.1523/JNEUROSCI.6338-11.2012
51. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19 (2):137-141. doi:10.1038/84397
52. Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Bruck W, Bishop D, Misgeld T, Kerschensteiner M (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17 (4):495-499. doi:10.1038/nm.2324
53. Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama JY, Abdel-Salam GM, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud IG, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L, Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu PS, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa MY, Schroth J, Spencer EG, Rosti RO, Akizu N, Vaux KK, Johansen A, Koh AA, Megahed H, Durr A, Brice A, Stevanin G, Gabriel SB, Ideker T, Gleeson JG (2014) Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343 (6170):506-511. doi:10.1126/science.1247363
54. Ohno N, Kidd GJ, Mahad D, Kiryu-Seo S, Avishai A, Komuro H, Trapp BD (2011) Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J Neurosci 31 (20):7249-7258. doi:10.1523/JNEUROSCI.0095-11.2011
55. Pareyson D (2004) Differential diagnosis of Charcot-Marie-Tooth disease and related neuropathies. Neurol Sci 25 (2):72-82. doi:10.1007/s10072-004-0233-4
56. Perkins GA, Ellisman MH (2011) Mitochondrial configurations in peripheral nerve suggest differential ATP production. J Struct Biol 173 (1):117-127. doi:10.1016/j.jsb.2010.06.017
57. Qi X, Disatnik MH, Shen N, Sobel RA, Mochly-Rosen D (2011) Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell 22 (2):256-265. doi:10.1091/mbc.E10-06-0551
58. Raff MC, Whitmore AV, Finn JT (2002) Axonal self-destruction and neurodegeneration. Science 296 (5569):868-871. doi:10.1126/science.1068613
59. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A 108 (25):10190-10195. doi:10.1073/pnas.1107402108
60. Rugarli EI, Langer T (2012) Mitochondrial quality control: a matter of life and death for neurons. EMBO J 31 (6):1336-1349. doi:10.1038/emboj.2012.38
61. Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, Hajnoczky G (2008) Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci U S A 105 (52):20728-20733. doi:10.1073/pnas.0808953105
62. Saxton WM, Hollenbeck PJ (2012) The axonal transport of mitochondria. J Cell Sci 125 (Pt 9):2095-2104. doi:10.1242/jcs.053850
63. Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5 (6). doi:10.1101/cshperspect.a011304
64. Sheng ZH, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13 (2):77-93. doi:10.1038/nrn3156
65. Simone DA, Nolano M, Johnson T, Wendelschafer-Crabb G, Kennedy WR (1998) Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J Neurosci 18 (21):8947-8959
66. Sivitz WI, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12 (4):537-577. doi:10.1089/ars.2009.2531
67. Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143 (2):351-358. doi:10.1083/jcb.143.2.351
68. Stys PK (2005) General mechanisms of axonal damage and its prevention. J Neurol Sci 233 (1-2):3-13. doi:10.1016/j.jns.2005.03.031
69. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16 (1):59-68. doi:10.1016/j.molcel.2004.09.026
70. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2 (8):599-605. doi:10.1038/nmeth777
71. Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J (1983) PGP 9.5--a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 278 (1-2):224-228. doi:10.1016/0006-8993(83)90241-X
72. Thresh JC (1876) Capsaicin, the active principle in Capsicum fruits. The Pharmaceutical Journal and Transactions 3 (315)
73. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6 (12):875-881. doi:10.1038/nmeth.1398
74. Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke I, Merkwirth C, Ehses S, Krause F, Chan DC, Alexander C, Bauer C, Youle R, Langer T, Martinou JC (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28 (11):1589-1600. doi:10.1038/emboj.2009.89
75. Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8 (3):280-291. doi:10.1016/S1474-4422(09)70043-2
76. Tschachler E, Reinisch CM, Mayer C, Paiha K, Lassmann H, Weninger W (2004) Sheet preparations expose the dermal nerve plexus of human skin and render the dermal nerve end organ accessible to extensive analysis. J Invest Dermatol 122 (1):177-182. doi:10.1046/j.0022-202X.2003.22102.x
77. van der Bliek AM, Redelmeier TE, Damke H, Tisdale EJ, Meyerowitz EM, Schmid SL (1993) Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol 122 (3):553-563
78. Verburg J, Hollenbeck PJ (2008) Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. J Neurosci 28 (33):8306-8315. doi:10.1523/JNEUROSCI.2614-08.2008
79. Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW, Iijima M, Sesaki H (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186 (6):805-816. doi:10.1083/jcb.200903065
80. Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196 (1):7-18. doi:10.1083/jcb.201108111
81. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 105 (49):19318-19323. doi:10.1073/pnas.0804871105
82. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schroder JM, Vance JM (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36 (5):449-451. doi:10.1038/ng1341
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55349-
dc.description.abstract神經軸突功能及型態的完整對神經元的存活十分重要,在神經的退化過程中粒線體功能損害扮演了重要的角色,但文獻上對於粒線體型態改變對神經的影響缺少完整的研究。本研究中,我們希望透過辣椒素導致的神經退化模式了解粒線體型態變化在神經退化過程中的重要性。辣椒素在臨床上廣泛用以治療週邊神經病變引致之疼痛,其作用機制是透過活化神經細胞膜上的TRPV1蛋白引起神經退化。本研究首先建立動物模式。於小鼠腳底接受連續3日辣椒素皮下注射後以免疫組織染色方式發現皮膚末梢的表皮及真皮神經出現神經腫大(axonal swelling),注射7日後,以電子顯微鏡觀察,發現有神經退化,並且真皮神經末梢的粒線體型態出現縮短的現象。接著以背根神經節(dorsal root ganglia)細胞培養方式進一步觀察粒線體。背根神經元的軸突在辣椒素處理後經由TRPV1活化同樣出現神經腫大及神經退化的病理現象。接著使用慢病毒(lentivirus)感染使神經元粒線體表現帶有粒線體目標序列(mitochondria-targeting sequence)的螢光蛋白作為標記,並以免疫細胞染色及活細胞觀察的方式追蹤粒線體的動態變化。於辣椒素處理後,神經軸突中靜止粒線體的長度顯著縮短。此一現象與軸突內鈣離子含量上升有關,當神經元以鈣離子螯合劑BAPTA-AM 及EDTA前處理後,粒線體的長度就不受到辣椒素處理的影響。我們進一步剖析粒線體的長度能否影響神經軸突。若讓神經元過量表現促使粒線體分裂(mitochondrial fission)的蛋白質dynamin-related protein 1 (Drp1WT)或是會抑制粒線體分離的突變蛋白Drp1K38A,軸突中的靜止粒線體會隨之減短或增加長度。於辣椒素處理後,粒線體的長短與神經腫大的嚴重程度成反比,粒線體長度越長,神經退化情況越和緩。粒線體的長短可能反映其功能缺損,因此使用TMRM染劑觀察神經軸突內粒線體的膜電位。與對照組相比,過度表現Drp1K38A的神經軸突其粒線體膜電位在辣椒素處理後仍能維持。這些研究結果顯示粒線體長度是辣椒素引致之陽離子負荷過量(cationic overload)產生神經退化的重要指標,本研究結果也建立了一個探討神經腫大及退化的模式,希冀能對臨床上常見之神經退化疾病的機制與治療提供新的方向。zh_TW
dc.description.abstractAxonal degeneration is characteristics of neurodegenerative diseases and often precedes the onset of neurodegeneration. Mitochondrial function is essential for axonal integrity however it remains elusive whether and how mitochondria are actively involved in axonal degeneration by changing their sizes. In this study, we examined the role of mitochondrial dynamics in axonal degeneration induced by capsaicin, a widely used local analgesic to reduce pain sensation by activating transient receptor potential vanilloid receptor 1 (TRPV1). An intradermal capsaicin injection in vivo model and rodent dorsal root ganglia (DRG) culture in vitro model were established in the study. Axonal swellings, decreased mitochondrial stationary site length preceding axonal degeneration were manifest in rodent sensory axons upon capsaicin treatment. TRPV1-mediated axoplasmic Ca2+ increase was responsible for the alterations in mitochondrial fusion and fission. Preventing mitochondrial fission by overexpression of mutant dynamin-related protein 1 (Drp1) increased mitochondrial length, retained mitochondrial membrane potentials and reduced axonal loss upon capsaicin treatment. These results show that mitochondrial stationary site size significantly affects axonal integrity and suggest that inhibition of mitochondrial fission facilitates mitochondrial function and axonal survival following cationic overload.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:57:53Z (GMT). No. of bitstreams: 1
ntu-103-D98446007-1.pdf: 4381289 bytes, checksum: 4f4dbdb26521bb441cf5be5124d323b4 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
Table of Contents ii
Acknowledgement iv
中文摘要 v
Abstract vii
Chapter 1. Introduction 1
Chapter 2. Materials and Methods 3
Intradermal injections of capsaicin 3
Embryonic primary DRG culture and drug treatment 3
Lentiviral transfection 4
Time-lapse imaging and analysis of mitochondrial dynamics 5
Time-lapse imaging and analysis of GCaMP3 intensities as axoplasmic Ca2+ indicator 6
Time-lapse imaging and analysis of mitochondrial membrane potentials 7
Axonal pathology 8
Transmission electron microscopy 9
Experimental design and statistical analysis 10
Chapter 3. Establishment of Capsaicin-induced Axonal Degeneration in vivo and in vitro 11
Capsaicin induces axonal ovoid formation and axonal loss in vivo 11
Capsaicin induces axonal ovoid formation and axonal loss in vitro 12
Chapter 4. Capsaicin Induces Ca2+-mediated Alterations of Mitochondrial Dynamics 14
Capsaicin induces mitochondrial fission 14
Increase of axoplasmic Ca2+ by capsaicin is involved with altered mitochondrial dynamics 15
Chapter 5. Inhibition of Mitochondrial Fission Rescues Capsaicin-induced Axonal Degeneration 17
Inhibition of mitochondrial fission reduces axonal swellings and axonal degeneration by capsaicin 17
Inhibited fission of axonal mitochondria retains mitochondrial membrane potential upon capsaicin treatment 18
Chapter 6. Discussion 20
References 25
Figures and Figure legends 33
Figure 1 The ratio of axonal to mitochondrial diameter is close to 3 in embryonic rat dorsal root ganglion cultures (DRGs) 33
Figure 2 Capsaicin treatment induces axonal degeneration in vivo 35
Figure 3 Capsaicin induces unmyelinated axonal degeneration in medial plantar nerves 37
Figure 4 Capsaicin shortens mitochondria and induces axonal degeneration 39
Figure 5 Capsaicin treatment causes axonal swelling formation and axonal degeneration in vitro 41
Figure 6 The capsaicin antagonist capsazepine (CZP) reduces the formation of axonal swellings and axonal loss caused by capsaicin treatment 43
Figure 7 Capsaicin causes fragmentation of axonal mitochondria 45
Figure 8 Capsaicin treatment increases axoplasmic Ca2+ and fragments axonal mitochondria 47
Figure 9 Overexpression of mutant Drp1K38A reduces axonal swelling formation following capsaicin treatment 49
Figure 10 Drp1K38A mutant overexpression improves axonal survival following capsaicin treatment in vitro 51
Figure 11 Mutant Drp1K38A overexpression retains mitochondrial membrane potential upon capsaicin treatment 53
Figure 12 Proposed model for the role of mitochondrial fission in capsaicin-induced axonal degeneration 55
dc.language.isoen
dc.subject神經退化zh_TW
dc.subject粒線體zh_TW
dc.subject辣椒素zh_TW
dc.subjectDrp1zh_TW
dc.subjectaxonal swellingsen
dc.subjectcapsaicinen
dc.subjectDrp1en
dc.subjectmitochondriaen
dc.title粒線體分裂對於辣椒素引致之神經退化之影響zh_TW
dc.titleInfluence of Mitochondrial Fission on Capsaicin-induced Axonal Degenerationen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee潘俊良,吳君泰,趙啟超,謝侑霖,江浩郁
dc.subject.keyword粒線體,神經退化,辣椒素,Drp1,zh_TW
dc.subject.keywordmitochondria,axonal swellings,capsaicin,Drp1,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2014-12-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved