請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55299完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃良得(Lean-Teik Ng) | |
| dc.contributor.author | Tsu-Chi Lin | en |
| dc.contributor.author | 林祖祺 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:55:30Z | - |
| dc.date.available | 2017-02-04 | |
| dc.date.copyright | 2015-02-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-12-22 | |
| dc.identifier.citation | 高景輝。2005。植物生理分析技術。五南圖書出版股份有限公司,臺北,臺灣
Abbasi A, Saur A, Hennig P, Tschiersch H, Hajirezaei M, Hofius D, Sonnewald U, Voll LM. 2009. Tocopherol deficiency in transgenic tobacco (Nicotiana tabacum L.) plants leads to accelerated senescence. Plant Cell Environ. 32: 144–157. Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM. 2007. Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol. 143: 1720–1738. Andarwulan N, Fardiaz D, Wattimena GA, Shetty K. 1999. Antioxidant activity associated with lipid and phenolic mobilization during seed germination of Pangium edule Reinw. J Agric Food Chem. 47: 3158–3163. Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 55: 373–399. Azzi A, Gysin R, Kempna P, Munteanu A, Negis Y, Villacorta L. 2004. Vitamin E mediates cell signaling and regulation of gene expression. Ann N Y Acad Sci. 1031: 86–95. Bailly C, El-Maarouf-Bouteau H, Corbineau F. 2008. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. CR Biol. 331: 806–814. Ball L, Accotto G, Bechtold U, Creissen G, Funck D, Jim’enez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM. 2004. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell. 16: 2448–2462. Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M, Perez-Alfocea F, Hernandez JA. 2010. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ. 33: 981–994. Beauchamp CO, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44: 276–87. Bewley JD. 1997. Seed germination and dormancy. Plant Cell. 9: 1055–1 066. Bhattachrjee S. 2005. Reactive oxygen species and oxidative burst: roles in stress. senescence and signal transduction in plant. Curr Sci. 89: 1113–1121. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP. 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem. 282: 1183–1192. Brigelius-Flohe R, Kelly FJ, Salonen JT, Neuzil J, Zingg J, Azzi A. 2002. The European perspective on vitamin E: current knowledge and future research. Am J Clin Nutr. 76: 703–716. Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ. 2003. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol. 21: 1082–1087. Cai F, Mei LJ, An XL, Gao S, Tang L, Chen F. 2011. Lipid Peroxidation and Antioxidant Responses during Seed Germination of Jatropha curcas. Int J Agric Biol. 13: 25–30. Chalapathi Rao ASV, Reddy AR (Eds). 2008. Glutathione reductase: a putative redox regulatory system in plant cells. Sulfur Assimilation and Abiotic Stresses in Plants. New York: Springer. Chen CW, Cheng HH. 2006. A rice bran oil diet increases LDL-receptor and HMG-CoA reductase mRNA expressions and insulin sensitivity in rats with streptozotocin/nicotinamide-induced type 2 diabetes. J Nutr. 136: 1472–1476. Chen Z, Gallie DR. 2004. The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell. 16: 1143–1162. Chiu KY, Chen CL, Sung JM. 2002. Effect of priming temperature on storability of primed sh-2-sweet corn seed. Crop Sci. 42: 1993–2003. Choudhury NH, Juliano BO. 1980. Lipids in developing and mature rice grain. Phytochemistry. 19: 1063–1069. Cicero AFG, Gaddi A. 2001. Rice bran oil and gamma-oryzanol in the treatment of hyperlipoproteinaemias and other conditions. Phytother Res. 15: 277–289. Coppini D, Paganizzi P, Santi P, Ghirardini A. 2001. Capacita protettiva nei confronti delle radiazioni solari di derivati di origine vegetale. Cosmetic News. 136: 15–20. Creissen GP, Broadbent P, Kular B, Reynolds H, Wellburn AR, Mullineaux PM. 1994. Manipulation of glutathione reductase in transgenic plants: implications for plant responses to environmental stress. Proc R Soc Edinb.102: 167–175. Das S, Lekli I, Das M, Szabo G, Varadi J, Juhasz B. 2008. Cardioprotection with palm oil tocotrienols: comparision of different isomers. Am J Physiol Heart Circ Physiol. 294: 970–978. Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci. 57: 779–795. Davies KJA. 2001. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life. 50: 279–289. De Gara L, de Pinto MC, Arrigoni O. 1997. Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plant. 100: 894–900 De Tullio MC, Arrigoni O. 2003. The ascorbic acid system in seeds: to protect and to serve. Seed Sci Res. 13: 249–260. Desel C, Hubbermann EM, Schwarz K, Krupinska K. 2007. Nitration of gamma-tocopherol in plant tissues. Planta. 226: 1311–1322. Desikan R, Mackerness SAH, Hancock JT, Neill SJ. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159–172. Diplock T, Machlin LJ, Packer L, Pryor WA. 1989. Vitamin E: biochemistry and health implications. Ann N Y Acad Sci. 570: 372–378. El-Maarouf-Bouteau H, Bailly C. 2008. Oxidative signaling in seed germination and dormancy. Plant Signal. 3: 175–182. Falk, J., Munne-Bosch, S. 2010. Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot. 61: 1549–1566. Fam SS, Morrow JD. 2003. The isoprostanes: unique products of arachidonic acid oxidation-a review. Curr Med Chem. 10: 1723–1740. Fernandez-Orozco R, Frias J, Zielinski H, Piskula MK, Kozlowska H, Vidal-Valverde C. 2008. Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. emmerald, Glycine max cv. jutro and Glycine max cv. merit. Food Chem. 111: 622–630. Fernandez-Orozco R, Piskula MK, Zielinski H, Kozlowska H, Frias J, Vidal-Valverde C. 2006. Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton. Eur Food Res Technol. 223: 495–502. Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plantarum. 100: 241–254. Foyer CH, Noctor G. 2005. Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 17: 1866–1875. Franzen J, Bausch J, Glatzle D, Wagner E. 1991. Distribution of vitamin E in spruce seedlings and mature tree organs, and within the genus. Phytochemistry. 30: 147–151. Fukuzawa K, Matsuura K, Tokumura A, Suzuki A, Terao J. 1997. Kinetics and dynamics of singlet oxygen scavenging by alpha-tocopherol in phospholipid model membranes. Free Radic Biol Med. 22: 923–930. Garg N, Manchanda G. 2009. ROS generation in plants: boon or bane? Plant Biosys. 143: 8–96. Gidrol X, Lin WS, Degousee N, YipSF, Kush A. 1994. Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. Eur J Biochem. 224: 21–28. Gill SS, Khan NA, Anjum NA, Tuteja N. 2011. Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress. 5: 1–23. Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 48: 909–930. Girotti AW. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. 39: 15–29. Gomez-Fernandez JC, Villalian J, Aranda FJ, Ortiz A, Micol V, Coutinho A, Berberan-Santos MN, Prieto MJE. 1989. Localisation of alpha-tocopherol in membranes. Ann N Y Acad Sci. 570: 109–120. Hall GS, Laidman DL. 1968. The pattern and control of isoprenoid quinone and tocopherol metabolism in the germinating grain of wheat (Triticum vulgare). Biochem J. 108: 475–482. Halliwell B, Gutteridge JMC. 1989. Free Radicals in Biology and Medicine. Oxford University Press. 2rd edition. Havaux M, Eymery F, Porfirova S, Rey P, Dormann P. 2005. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell. 17: 3451–3469. Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125: 180–198. Heinonen OP, Albanes D, Virtamo J, et al. 1998. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J Natl Cancer Inst. 90: 440–446. Henryk Z, Halina K, 2003. The content of tocopherols in Cruciferae sprouts. Pol J Food Nutr Sci. 12: 25–31. Hofius D, Hajirezaei M, Geiger M, Tschiersch H, Melzer M, Sonnewald U. 2004. RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol. 135: 1256–1268. Holasova M, Velišek J, Davidek J. 1995. Tocopherol and tocotrienol contents in cereal grains. Potrav Vedy. 13: 409–417. Hsu YT, Kao CH. 2008. Distinct roles of abscisic acid in rice seedlings during cadmium stress at high temperature. Bot Stud. 49: 335–342. Huang SH, Ng LT. 2011. An improved high-performance liquid chromatographic method for simultaneous determination of tocopherols, tocotrienols and g-oryzanol in rice. J Chromatogr A. 1218: 4709–4713. Hussein D, MoH. 2009. delta-delta-tocotrienol-mediated suppression of the proliferation of human PANC-1, MIA PaCa-2, and BxPC-3 pancreatic carcinoma cells. Pancreas. 38: 124–136. Ichimaru Y, Moriyama M, Ichimaru M, Gomita Y. 1984. Effects of gamma-oryzanol on gastric lesions and small intestinal propulsive activity in mice. Nihon Yakurigaku Zasshi. 84: 537–42. Ishihara M, Ito Y. 1982. Clinical effect of gamma-oryzanol on climacteric disturbance on serum lipid peroxides. Nippon Sanka Fujinka Gakkai Zasshi. 34: 243–251. Islam MS, Murata T, Fujisawa M, Nagasaka R, Ushio H, Bari AM, Hori M, Ozaki H. 2008. Anti-inflammatory effects of phytosteryl ferulates in colitis induced by dextran sulphate sodium in mice. Br J Pharmacol. 154: 812–824. Ivanov SA, Aitzetmuller K. 1995. Untersuchungen u ber die Tocopherol- und Tocotrienolzusammensetzung der Samenole einiger Vertreter der Familie Apiaceae. Fat Sci Technol. 97: 24–29. Ivanov SA, Aitzetmuller K. 1998. Untersuchungen uber die Tocopherol- und Tocotrienolzusammensetzung der Samenlipide einiger Arten der bulgarischen Flora. Fett/Lipid. 100: 348–352. Kagan VE, Fabisiak JP, Quinn PJ. 2000. Coenzyme Q and vitamin E need each other as antioxidants. Protoplasma. 214: 11–18. Kamal-Eldin A, Appelqvist L. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 31: 671–701. Kamat JP, Devasagayam TPA. 1995. Tocotrienols from palm oil as potent inhibitors of lipid peroxidation and protein oxidation in rat brain mitochondria. Neurosci Lett. 195: 179–182. Kasai H. 1997. Analysis of a form of oxidative DNA damage, 8-hydroxy-2’-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research. 387:147–163. Kato M, Shimizu S. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves phenolic-dependent peroxidative degradation. Can J Bot. 65: 729–735. Khanna S, Roy S, Slivka A, Craft TK, Chaki S, Rink C. 2005. Neuroprotective properties of the natural vitamin E alpha-tocotrienol. Stroke. 36: 2258–2264. Kim JS, Han D, Moon KD, Rhee JS. 1995. Measurement of superoxide dimutase-like activity of natural antioxidants. Biosci Biotechnol Biochem. 59: 822–826. Kranner I, Roach T, Beckett RP, Whitaker C, Minibayeva FV. 2010. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol. 167: 805–811. Kumar MS, Dahuja A, Rai RD, Walia S, Tyagi A. 2014. Role of gamma-oryzanol in drought-tolerant and susceptible cultivars of rice (Oryza sativa L.). Indian J Biochem Biophys. 51: 75–80. Kusmic C, Barsacchi R, Barsanti L, Gualtieri P, Passarelli V. 1999. Euglena gracilis as source of the antioxidant vitamin E. Effects of culture conditions in the wild strain and in the natural mutant WZSL. J Appl Phycol. 10: 555–559. Lehmann JW, Putnam DH, Qureshi AA. 1994. Vitamin E isomers ingrain amaranths (Amaranthus spp.). Lipids. 29: 177–181. Lerma-Garcia MJ, Herrero-Martinez JM, Simo-Alfonso EF, Mendonca CRB, Ramis-Ramos G. 2009. Composition, industrial processing and applications of rice bran gamma-oryzanol. Food Chem. 115: 389–404 Liu HK, Wang Q, Li Y, Sun WG, Liu JR, Yang YM, Xu WL, Sun XR, Chen BQ. 2010. Inhibitory effects of gamma-tocotrienol on invasion and metastasis of human gastric adenocarcinoma SGC-7901 cells. J Nutr Biochem. 21: 206–213. Matringe M, Ksas B, Rey P, Havaux M. 2008. Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves. Plant Physiol. 147: 764–778. Matsuzuka K, Kimura E, Nakagawa K, Murata K, Kimura T, Miyazawa T. 2013. Investigation of tocotrienol biosynthesis in rice (Oryza sativa L.). Food Chem. 140: 91-98. Matthaus B, Vosmann K, Quoc Pham L, Aitzetmuller K. 2003. Fatty acids and tocopherol composition of Vietnamese oilseeds. J Am Oil Chem. 80: 1013–1020. McCormick CC, Parker RS. 2004. The cytotoxicity of vitamin E is both vitamer- and cell-specific and involves a selectable trait. J Nutr. 134: 3335–3342. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490–498. Mittler R, Zilinskas BA. 1991. Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol. 97: 962–968. Montillet JL, Chamnongpol S, Rusterucci C, Dat J, van de Cotte B, Agnel JP, Battesti C, Inze D, Van Breusegem F, Triantaphylides C. 2005. Fatty acid hydro-peroxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol. 138: 1516–1526. Moongngarm A, Saetung N. 2010. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chem. 122: 782–788. Muller K, Linkies A, Vreeburg RAM, Fry SC. 2009. In vivo cell wall loosening by hydroxyl radicals during cross seed germination and elongation growth. Plant Physiol. 150: 1855–1865. Munne-Bosch S, Alegre L. 2002. Interplay between ascorbic acid and lipophilic antioxidant defences in chloroplasts of water-stressed Arabidopsis plants. FEBS Lett. 524: 145–148. Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867–880. Nanogaki H, Basel GW, Bewley JD. 2010. Germination-still a mystery. Plant Sci. 179: 574–581. Nanua, JU, Gregor MC, Godber JS. 2000. Influence of high-oryzanol rice bran oil on the oxidative stability of whole milk powder. J Dairy Sci. 83: 2426–2431. Neill S, Desikan R, Hancock J. 2002. Hydrogen peroxide signaling. Curr Opin Plant Biol. 5: 388–395. Noctor G, Foyer CH. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol. 49: 249–279. Ohara K, Kiyotani Y, Uchida A, Nagasaka R, Maehara H, Kanemoto S, Hori M, Ushio H. 2011. Oral administration of aminobutyric acid and γ-oryzanol prevents stress-induced hypoadiponectinemia. Phytomedicine. 18: 655–660. Ong ASH. 1993. Natural sources of tocotrienols. In: Packer L, Fuchs J, eds. Vitamin E in health and disease. New York: Dekker. Packer L, Weber SU, Rimbach G. 2001. Molecular aspects of alpha-tocotrienol antioxidant action and cell signaling. J Nutr. 131: 369–73. Peterson DM, Qureshi AA. 1993. Genotype and environment effects on tocols of barley and oats. Cereal Chem. 70: 157–162. Piironen V, Syvaoja EL, Varo P, Salminen K, Koivistoinen P. 1986. Tocopherols and tocotrienols in cereal products from Finland. Cereal Chem. 63: 78–81. Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P. 2003. Heavy metalinduced oxidative stress in algae. J Phycol. 39: 1008–1018. Posmyk MM, Corbineau F, Vinel D, Bailly C, Come D. 2001. Osmoconditioning reduces physiological and biochemical damage induced by chilling in soybean seeds. Physiol Plant. 111: 473–482. Puntarulo S, Galleano M, Sanchez RA, Boveris A. 1991. Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Biochem Biophys Acta. 1074: 277–283. Rautenkranz AAF, Li L, Machler F, Matinoia E, Oertli JJ. 1994. Transport of ascorbic acid and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel) leaves. Plant Physiol. 106: 187–193. Ricciarelli R, Zing JM, Nazi A. 2002. The 80th anniversary of vitamin E: beyond its antioxidant properties. Biol Chem. 383: 457–465. Sakai M, Okabe M, Tachibana H, Yamada K. 2006. Apoptosis induction by γ-tocotrienol in human hepatoma Hep3B cells. J Nutr Biochem. 17: 672–676. Sattler SE, Cahoon EB, Coughlan SJ, DellaPenna D. 2003. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol. 132: 2184–2195. Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D. 2004. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell. 16: 1419–1432. Sattler SE, Mene-Saffrane L, Farmer EE, Krischke M, Muller MJ, DellaPenna D. 2006. Non-enzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell. 18: 3706–3720. Schopfer P, Plachy C, Frahry G. 2001. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol. 125: 1591–1602. Sen CK, Khanna S, Roy S. 2004. Tocotrienol: the natural vitamin E to defend the nervous system? Ann NY Acad Sci. 1031: 127–142. Serbinova E, Kagan V, Han D, Packer L. 1991. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic Biol Med. 10: 263–275. Sgherri CLM, Loggini B, Puliga S, Navariizzo F. 1994. Antioxidant system in sporobolus stapfianus: changes in response to desiccation and rehydration phytochemistry. Phytochemistry. 35: 561–565. Sharma, P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 1–26. Shi H, Nam PK, Ma Y. 2010. Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination. J Agric Food Chem. 58: 4970–4976. Shigeoka S, Onishi T, Nakano Y, Kitaoka S. 1986. The contents and subcellular distribution of tocopherols in Euglena gracilis. Agric Biol Chem. 50: 1063–1065. Singh S, Anjum NA, Khan NA, Nazar R (Eds.). 2008. Metal-binding peptides and antioxidant defence system in plants: significance in cadmium tolerance. Abiotic Stress and Plant Responses. New Delhi: I K International Publishing House. Smirnoff N. 2000. Ascorbic acid: metabolism and functions of a multifaceted molecule. Curr Opin Plant Biol. 3: 229–235. Son MJ, Rico CW, Nam SH, Kang MY. 2011. Effect of oryzanol and ferulic acid on the glucose metabolism of mice fed with a high-fat diet. J Food Sci. 76: H7–H10. Son MJ, Rico CW, Nam SK, Kang MY. 2010. Influence of oryzanol and ferulic acid on the lipid metabolism and antioxidative status in high fat-fed mice. J Clin Biochem Nutr. 46: 150–156. Srivastava JK, Gupta S. 2006. Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells. Biochem Biophy. Res Commun. 346: 447–453. Suzuki Y, Tsuchiya M, Wassall SR, Choo YM, Govil G, Kagan VE, Packer L. 1993. Structural and dynamic membrane properties of alpha-tocopherol and alpha-tocotrienol. Implication to the molecular mechanism of the antioxidant potency. Biochemistry. 32: 10692–10699. Sylvester PW, Shah SJ. 2005. Mechanisms mediating the antiproliferative and apoptotic effects of vitamin E in mammary cancer cells. Front Biosci. 10: 699–709. Takao M, Akazawa T, Shikiko F. 1969. Enzymic mechanism of starch breakdown in germinating rice seeds I. An analytical study. Plant Physiol. 44: 765–769. Theriault A, Chao JT, Wang Q, Gapor A, Adeli K. 1999. Tocotrienol: a review of its therapeutic potential. Clin Biochem. 32: 309–319. Tokunaga T, Miyahara K, Tabata K, Esaka M. 2005. Generation and properties of ascorbic acid-overrproducing transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase. Planta. 220: 854–863. Tommasi F, Paciolla C, de Pinto MC, De Gara L. 2001. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot. 52: 1647–1654. Traber MG, Kayden HJ. 1989. Preferential incorporation of alpha-tocopherol vs gamma-tocopherol in human lipoproteins. Am J Clin Nutr. 49: 517–526. Traber MG, Rallis M, Podda M, Weber C, Maibach HI, Packer L. 1998. Penetration and distribution of alpha-tocopherol, alpha- or gamma-tocotrienols applied individually onto murine skin. Lipids. 33: 87–91. Traber MG, Stevens JF. 2011. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med. 51: 1000–1013. Valko M, Morris H, Cronin MTD. 2005. Metals, toxicity and oxidative stress. Curr Med Chem. 12:1161–1208. Wagner D, Przybyla D, Op den Camp R, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K. 2004. The genetic basis of singlet oxygen-induced stress response of Arabidopsis thaliana. Science. 306: 1183–1185. Wang J, Zhang H, Allen RD. 1999. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol. 40: 725–732. Wang M, van der Meulen RM, Visser K, Van Schaik HP, Van Duijn B, de Boer AH. 1998. Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci Res. 8: 129–137. Wang WQ, Moller IM, Song SQ. 2012. Proteomic analysis of embryogenic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteomics. 77: 68–86. Wang X, Quinn PJ. 2000. The location and function of vitamin E in membranes. Mol Membr Biol. 17: 143–156. White DA, Fisk ID, Gray DA. 2006. Characterisation of oat (Avena sativa L.) oil bodies and intrinsically associated E-vitamers. J Cereal Sci. 43: 244–249. Wojtyla L, Garnczarska M, Zalewski T, Bednarski W, Ratajczak L, Jurga S. 2006. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. J Plant Physiol. 163: 1207–1220. Yan J, Tsuichihara N, Etoh T, Iwai S. 2007. Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ. 30: 1320–1325. Yang F, Basu TK, Ooraikul B. 2001. Studies on germination conditions and antioxidant contents of wheat grain. Int J Food Sci Nutr. 52: 319–330. Yasukawa K, Akihisa T, Kimura Y, Tamura T, Takido M. 1998. Inhibitory effect of cycloartenol ferulate, a component of rice bran, on tumor promotion in two-stage carcinogenesis in mouse skin. Biol Pharm Bull. 21: 1072–1076. Yoshida S, Forno DA, Cook JH, Gomez KA. 1976. Routine procedure for growing rice plants in culture solution. Laboratory Manual for Physiological Studies of Rice. 61–66. Zingg JM, Azzi A. 2004. Non-antioxidant activities of vitamin E. Curr J Med Chem. 11: 113–1133. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55299 | - |
| dc.description.abstract | 維生素E包含生育醇 (tocopherol;Toc) 與生育三烯醇 (tocotrienol;T3),兩者亦可合稱為 tocochromanols,為脂溶性之抗氧化物,在人體中具有良好的生理活性。由於 T3 僅存在於少數植物的種子與果實中,且其在植物體中的功能與角色尚不明確,因此有必要深入了解。本研究目的為探討 Toc 及 T3 於兩水稻品種,台農71號 (TN71) 與高雄139號 (KS139) 種子中的功能及其扮演的角色。試驗於水稻穀粒浸潤前 (0 DAI) 及浸潤後的3、6、9、12、15 及 18 天 (DAI) 進行採樣,接著分析水稻之發芽與幼苗生長時期之氧化逆境指標、抗氧化化酵素活性與抗氧化物質含量,以了解 tocochromanols 於種子中之定位以及與種子抗氧化系統之關係,與 T3 存在於種子中之原因。研究結果顯示在水稻穀粒的萌發過程中,其氧化壓力指標濃度、抗氧化酵素活性及抗氧化物濃度在後期 (12 至 18 DAI) 具有較高值;以含量而言,H2O2 及 MDA 含量於穀粒萌發過程中並無明顯之變化,而 ascorbate (AsA) 含量於兩水稻品種穀粒萌發前期具有不同的變化趨勢,生育醇含量於萌發前期逐漸下降,而於中後期出現大量累積,此現象源於 alpha-Toc 於前期的大量消耗,以及 gamma-Toc 於 9 DAI 後的驟增。相較於生育醇,生育三烯醇含量在萌發過程中之變化趨勢較不明顯。然而 alpha-T3 及 gamma-T3 皆有逐漸累積而後消耗之情形,gamma-谷維素含量則於於穀粒萌發前期隨時間而上升,於中後期維持較高之含量。本研究說明,水稻穀粒於萌發過程中,由抗氧化酵素、AsA 及 tocochromanols 組成的抗氧化系統網絡能夠相互協調,維持氧化還原之恆定,而水稻穀粒於萌發之中後期可能進入不同的生長階段,需要較高的抗氧化酵素活性及抗氧化物含量,亦需產生不同型態的 tocochromanols 來滿足不同的生理需求,顯示不同型態的 tocochromanols 在植物體中可能具有不同的功能,而生育三烯醇亦有可能以抗氧化或其他功能參與種子之萌發,使其順利生長。 | zh_TW |
| dc.description.abstract | Tocopherols (Toc) and tocotrienols (T3), collectively known as tocochromanols, are lipid-soluble antioxidants that belong to the group of vitamin E compounds, and possess good physiological activities in human body. Because T3 only present in seeds and fruits of a limited number of plant species, and their functions in plants remain unclear, hence it is necessary to have an insight understanding of their roles. This study aimed to examine the functions of tocochromanols in two rice varieties, namely Tainung 71 (TN71) and Kaoshiung 139 (KS139). Samplings were conducted at 0, 3, 6, 9, 12, 15 and 18 days after imbibition (DAI). The rice grain samples were examined for oxidation stress markers, antioxidative enzyme activities and antioxidant contents, in view of understanding the relationship between the roles of tocochromanols and antioxidant network, and the reason for their T3 present in seeds. The results showed that during seedling emergence, the oxidative markers concentration, antioxidative enzyme activities and antioxidant concentration in late stage (12 to 18 DAI) were higher than early stage. In terms of content, H2O2 and MDA contents were not significantly change in rice seeds. The ascorbate (AsA) content changed in different trends in TN71 and KS139. The Toc content decreased in the early stage but increased significantly in mid-late stage; this situation could be resulted from the expense of alpha-Toc in the early stage and the large accumulation of gamma-Toc after 9 DAI. Unlike Toc, the change of T3 content was not obvious during the seedling emergence. Nevertheless, alpha-T3 and gamma-T3 appeared to increase in contents at 0 to 12 DAI and decrease at 15 to 18 DAI. The gamma-oryzanol content increased in the early stage and maintained of a high level in the late stage. This study indicates that the antioxidative enzymes and contents of ASA and tocochromanols play an important role in the axtioxidant system network, and coordinating with each other to maintain the redox homeostasis during seedling emergence. The rice seeds may enter a different growing phase in the mid-late stage of seedling emergence that may need potent anioxidative enzyme activities and high amount of antioxidant, as well as the different forms of tocochromanols for fulfilling the requirement of different metabolisms, suggesting that tocochromanols have different functions in plants. As for tocotrienols, they may involve in seedling emergence through functioning as antioxidants or providing other functions in assisting the growth of seedlings. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:55:30Z (GMT). No. of bitstreams: 1 ntu-103-R01623004-1.pdf: 3257581 bytes, checksum: 57aeccd7590d030c90922432bf48c77a (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 謝 誌 I
摘 要 III Abstract IV 目錄 VI 圖目錄 VIII 表目錄 X 縮寫對照表 XI 第一章 前言 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 生育醇與生育三烯醇 3 2.1.1 生育醇及生育三烯醇於植物體中之生合成情形 4 2.1.2 生育醇及生育三烯醇於植物體中之功能與角色 6 2.1.3 生育醇及生育三烯醇於人體中之生理活性 7 2.2 gamma谷維素 9 2.3 植物之氧化逆境與抗氧化系統 10 2.3.1 活性氧之種類 10 2.3.2 氧化壓力傷害之脂質過氧化 13 2.3.3 植物之抗氧化系統 14 2.3.3.1 酵素型抗氧化物 14 2.3.3.2 非酵素型抗氧化物 15 2.4 種子發芽時期之生理變化 19 第三章 材料與方法 20 3.1 研究架構 20 3.2 試驗材料 21 3.3 水稻催芽及育苗方法 22 3.4 氧化壓力指標分析 25 3.4.1 過氧化氫含量測定 25 3.4.2 MDA 含量分析 25 3.5 抗氧化酵素活性分析 27 3.5.1 超氧岐化酶活性分析 27 3.5.2 過氧化氫酶活性分析 28 3.5.3 抗壞血酸氧化酶活性分析 28 3.5.4 穀胱甘肽還原酶活性分析 29 3.6 抗壞血酸及脫氫抗壞血酸含量分析 30 3.6.1 檢量線 30 3.6.2 總抗壞血酸含量分析 30 3.6.3 抗壞血酸含量分析 30 3.6.4 脫氫抗壞血酸含量分析 31 3.7 生育醇、生育三烯醇及 gamma谷維素含量分析 32 3.7.1 萃取方法 32 3.7.2 HPLC 分析條件 32 3.8 統計分析 33 第四章 結果 34 4.1 穀粒萌發時期之重量變化 34 4.2 氧化壓力指標變化 36 4.2.1 過氧化氫 36 4.2.2 MDA 36 4.3 抗氧化酵素活性變化 41 4.3.1 超氧岐化酶活性 41 4.3.2 過氧化氫酶活性 41 4.3.3 抗壞血酸氧化酶活性 41 4.3.4 穀胱甘肽還原酶活性 41 4.4 抗壞血酸及脫氫抗壞血酸之變化 46 4.4.1 總抗壞血酸 46 4.4.2 抗壞血酸 46 4.4.3 脫氫抗壞血酸 46 4.5 生育醇、生育三烯醇及 gamma谷維素之變化 50 4.5.1 總維生素 E 50 4.5.2 總生育醇 50 4.5.3 總生育三烯醇 51 4.5.4 生育醇及生育三烯醇之類似物 51 4.5.5 gamma谷維素 52 第五章 討論 67 5.1 水稻穀粒萌發過程中之氧化壓力變化 67 5.2 水稻穀粒萌發過程中之抗氧化系統網絡運作 69 第六章 結論 73 第七章 參考文獻 74 附 錄 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水稻穀粒 | zh_TW |
| dc.subject | 幼苗萌發 | zh_TW |
| dc.subject | 生育醇 | zh_TW |
| dc.subject | 生育三烯醇 | zh_TW |
| dc.subject | 抗氧化系統 | zh_TW |
| dc.subject | Antioxidant system | en |
| dc.subject | Seedling emergence | en |
| dc.subject | Rice grain | en |
| dc.subject | Tocotrienols | en |
| dc.subject | Tocopherols | en |
| dc.title | Tocochromanols 於水稻穀粒萌發時期之功能研究 | zh_TW |
| dc.title | Functional Study of Tocochromanols in Rice Grain
during Seedling Emergence | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾仁賜(Ren-Shih Chung),陳仁炫(Jen-Hshuan Chen),張孟基(Men-Chi Chang) | |
| dc.subject.keyword | 水稻穀粒,幼苗萌發,生育醇,生育三烯醇,抗氧化系統, | zh_TW |
| dc.subject.keyword | Rice grain,Seedling emergence,Tocopherols,Tocotrienols,Antioxidant system, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-12-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
