請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55296完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏國彥(Kuo-Yen Wei) | |
| dc.contributor.author | Shun-Chung Yang | en |
| dc.contributor.author | 楊順中 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:55:21Z | - |
| dc.date.available | 2016-02-04 | |
| dc.date.copyright | 2015-02-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-12-23 | |
| dc.identifier.citation | Abouchami, W., Galer, S. J. G., de Baar, H. J. W., Alderkamp, A. C., Middag, R., and Laan, P. (2011) Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity. Earth and Planetary Science Letters, 305, 83-91.
Abouchami, W., Galer, S. J. G., Horner, T. J., Rehkamper, M., Wombacher, F., Xue, Z., Lambelet, M., Gault-Ringold, M., Stirling, C. H., Schonbachler, M., Shiel, A. E., Weis, D., and Holdship, P. F. (2012) A Common Reference Material for Cadmium Isotope Studies – NIST SRM 3108. Geostandards and Geoanalytical Research, 37, 5-17. Abouchami, W., Galer, S. J. G., de Baar, H. J. W., Middag, R., Vance, D., Zhao, Y., Klunder, M., Mezger, K., Feldmann, H., and Andreae, M. O. (2014). Biogeochemical cycling of cadmium isotopes in the Southern Ocean along the Zero Meridian. Geochimica et Cosmochimica Acta, 127, 348-367. Ahner, B.A., and Morel, F.M. (1995). Phytochelatin production in marine algae. 2. Induction by various metals. Limnology and Oceanography, 40, 658-658. Ahner, B.A., Wei, L., Oleson, J.R., and Ogura, N. (2002). Glutathione and other low molecular weight thiols in marine phytoplankton under metal stress. Marine Ecology Progress Series, 232, 93-103. Altabet, M.A. (1988). Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean. Deep-Sea Research, 35, 535-556. Altabet, M.A., Deuser, W.G., Honjo, S., and Stienen, C. (1991). Seasonal and depth-related changes in the source of sinking particles in the North Atlantic. Nature, 354, 136-139. Amiard, J.C., Amiard-Triquet, C., Barka, S., Pellerin, J., and Rainbow, P.S. (2006). Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquatic Toxicology, 76, 160-202. Balistrieri, L., Brewer, P. G. and Murray, J. W. (1981). Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean. Deep Sea Research, 28, 101-121. Berggreen, U., Hansen, B., and Kiorboe, T. (1988). Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: Implications for determination of copepod production. Marine Biology, 99, 341-352. Bidigare, R.R., and Ondrusek, M.E. (1996). Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean. Deep-Sea Research, 43, 809-833. Borrok, D. M., Gieré, R., Ren, M., and Landa, E. R. (2010). Zinc isotopic composition of particulate matter generated during the combustion of coal and coal+tire-derived fuels. Environmental Science & Technology, 44, 9219-9224. Boyd, P.W., and Trull, T.W. (2007). Understanding the export of biogenic particles in oceanic waters: Is there consensus? Progress in Oceanography, 72, 276-312. Boyle, E. A., Sclater, F., and Edmond, J. M. (1976). On the marine geochemistry of cadmium. Nature, 263, 42-44. Boyle, E. A. (1988) Cadmium: chemical tracer of deep-water paleoceanography. Paleoceanography, 3, 471-490. Brand, L. E., Sunda, W. G., and Guillard, R. R. (1986). Reduction of marine phytoplankton reproduction rates by copper and cadmium. Journal of Experimental Marine Biology and Ecology, 96, 225-250. Bruland, K. W., Knauer, G. A., and Martin, J. N. (1978). Cadmium in northeast Pacific waters. Limnology and Oceanography, 23, 618-625. Bruland, K. W. (1980) Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth and Planetary Science Letters, 47, 176-198. Bruland, K. W., and Franks, R. P. (1983). Mn, Ni, Cu, Zn and Cd in the western North Atlantic. In Trace metals in sea water (pp. 395-414). Springer US. Chao, S. Y., Shaw, P. T., and Wu, S. Y. (1996). Deep water ventilation in the South China Sea. Deep-Sea Research, 43, 445-466. Checkley, D.M., and Entzeroth, L.C. (1985). Elemental and isotopic fractionation of carbon and nitrogen by marine, planktonic copepods and implications to the marine nitrogen cycle. Journal of Plankton Research, 7, 553-568. Chen, C. T. A., Wang, S. L., Wang, B. J., and Pai, S. C. (2001). Nutrient budgets for the South China Sea basin. Marine Chemistry, 75, 281-300. Chen, Y. L. L. (2005). Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep-Sea Research, 52, 319-340. Cloquet, C., Carignan, J., Libourel, G., Sterckeman, T., and Perdrix, E. (2006). Tracing source pollution in soils using cadmium and lead isotopes. Environmental Science & Technology, 40, 2525–2530. Cloquet, C., Rouxel, O., Carignan, J., and Libourel, G. (2005). Natural Cadmium Isotopic Variations in Eight Geological Reference Materials (NIST SRM 2711, BCR 176, GSS‐1, GXR‐1, GXR‐2, GSD‐12, Nod‐P‐1, Nod‐A‐1) and Anthropogenic Samples, Measured by MC‐ICP‐MS. Geostandards and Geoanalytical Research, 29, 95-106. Collier, R. and Edmond, J. (1984). The trace element geochemistry of marine biogenic particulate matter. Progress in Oceanography, 13, 113–99. de Baar, H.J., Saager, P.M., Nolting, R.F., and van der Meer, J. (1994). Cadmium versus phosphate in the world ocean. Marine Chemistry, 46, 261-281. Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., Miller, J. M., Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W., Galloway, J. N., Hansen, L., Jickells, T. D., Knap, A. H., Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J., Tsunogai, S., Wollast, R., and Zhou, M. (1991). The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5, 193-259. Elderfield, H. and Rickaby, R. E. M. (2000). Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean. Nature, 405, 305-310. Finkel, Z. V., Quigg, A. S., Chiampi, R. K., Schofield, O. E., and Falkowski, P. G. (2007). Phylogenetic diversity in cadmium: phosphorus ratio regulation by marine phytoplankton. Limnology and oceanography, 52, 1131-1138. Fouskas, F., Ma, L., Engle, M.A., Ruppert, L. and Geboy, N.J. (2014). Using Novel Cd Isotopes to Trace Heavy Metal Pollution Related to Coal Combustion Products (abstract). Goldschmidt2014 conference. Fowler, S. W. and Knauer, G. A. (1986). Role of large particles in the transport of elements and organic compounds through the oceanic water column. Progress in Oceanography, 16, 147-194. Gao, B., Liu, Y., Sun, K., Liang, X., Peng, P., Sheng, G., and Fu, J. (2008). Precise determination of cadmium and lead isotopic compositions in river sediments. Analytica Chimica Acta, 612, 114–120. Gault-Ringold M. and Stirling C. H. (2012). Anomalous isotopic shifts associated with organic resin residues during cadmium isotopic analysis by double spike MC-ICPMS. Journal of Analytical Atomic Spectrometry, 27, 449-459. Gault-Ringold, M., Adu, T., Stirling, C. H., Frew, R. D., and Hunter, K. A. (2012). Anomalous biogeochemical behavior of cadmium in subantarctic surface waters: Mechanistic constraints from cadmium isotopes. Earth and Planetary Science Letters, 341, 94-103. Gong, G. C., Liu, K. K., Liu, C. T., and Pai, S. C. (1992). The Chemical Hydrography of the South china Sea West of Luzon and a Comparison with the West Philippine Sea. Terrestrial, Atmospheric and Oceanic Sciences, 3, 587-602. Ho, T. Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K., Falkowski, P. G., and Morel, F. M. M. (2003). The elemental composition of some marine phytoplankton. Journal of Phycology, 39, 1145-1159. Ho, T. Y. (2006). The trace metal composition of marine microalgae in cultures and natural assemblages. In Algal cultures: Analogues of blooms and applications (pp 271-299). Science Pub. Inc, New Hampshire, USA. Ho, T. Y., Wen, L. S., You, C. F., and Lee, D. C. (2007). The trace-metal composition of size-fractionated plankton in the South China Sea: Biotic versus abiotic sources. Limnology and Oceanography, 52, 1776-1788. Ho, T. Y., You, C. F., Chou, W. C., Pai, S. C., Wen, L. S., and Sheu, D. D. (2009). Cadmium and phosphorus cycling in the water column of the South China Sea: The roles of biotic and abiotic particles. Marine Chemistry, 115, 125-133. Ho, T. Y., Chou, W. C., Wei, C. L., Lin, F. J., Wong, G. T. F., and Lin, H. L. (2010). Trace metal cycling in the surface water of the South China Sea: Vertical fluxes, composition, and sources. Limnology and Oceanography, 55, 1807-1820. Ho, T. Y., Yang, S. C., and Lee, D. C. (2011). Cd Isotope Fractionation in Some Phytoplankton: A Novel Proxy for Fe Limiting Status in the Oceans. Mineralogical Magazine, 75, 1030. Ho, T. Y., Yang, H. H., Pan, X., Wong, G. T. F., and Shiah, F. K. (in revision). Controls on temporal and spatial variations of phytoplankton pigment 6 distribution in the northern South China Sea. Submitted to Deep-Sea Research. Hohl, S. V. (2014). Cadmium isotopic fractionation in Ediacaran carbonates from the shallow water Xiaofenghe section, Yangtze platform, South China (abstract). 2014 GSA Annual Meeting. Horner, T. J., Lee, R. B., Henderson, G. M., Rickaby, R. E. (2011). Intracellular Cadmium Isotope Fractionation (abstract). 2011 AGU Fall Meeting. Horner, T. J., Lee, R. B., Henderson, G. M., and Rickaby, R. E. (2013). Nonspecific uptake and homeostasis drive the oceanic cadmium cycle. Proceedings of the National Academy of Sciences, 110, 2500-2505. Horner, T. J. (2014). Cadmium-isotopic evidence for increasing primary productivity during the late Permian anoxia (abstract). 2014 GSA Annual Meeting. Hsin, Y. C., Wu, C. R., and Shaw, P. T. (2008). Spatial and temporal variations of the Kuroshio east of Taiwan, 1982-2005: A numerical study. Journal of Geophysical Research, 113, C04002, doi:10.1029/2007JC004485. Hung, C. C., Gong, G. C., and Santschi, P. H. (2012). 234Th in different size classes of sediment trap collected particles from the Northwestern Pacific Ocean. Geochimica et Cosmochimica Acta, 91, 60-74. Janssen, D. J., Conway, T. M., John, S. G., Christian, J. R., Kramer, D. I., Pedersen, T. F., and Cullen, J. T. (2014). Undocumented water column sink for cadmium in open ocean oxygen-deficient zones. Proceedings of the National Academy of Sciences, 111, 6888-6893. Jiao, N., and Ni, I. H. (1997). Spatial variations of size-fractionated Chlorophyll, Cyanobacteria and Heterotrophic bacteria in the Central and Western Pacific. In Asia-Pacific Conference on Science and Management of Coastal Environment (pp. 219-230). Springer Netherlands. John, S. G., and Conway, T. M. (2014). A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth and Planetary Science Letters, 394, 159-167. Kaneko, I., Takatsuki, Y., and Kamiya, H. (2001). Circulation of Intermediate and Deep Waters in the Philippine Sea. Journal of Oceanography, 57, 397-420. Kawahata, H., Yamamuro, M., and Ohta, H. (1997). Seasonal and vertical variations of sinking particle fluxes in the West Caroline Basin. Oceanologica Acta, 21, 521-532. Kawahata, H., Suzuki, A., and Ohta, H. (2000). Export fluxes in the Western Pacific Warm Pool. Deep-Sea Research, 47, 2061-2091. Kuss, J. and Kremling, K. (1999). Spatial variability of particle associated trace elements in near-surface waters of the North Atlantic (30 degrees N/60 degrees W to 60 degrees N/ 2 degrees W), derived by large-volume sampling. Marine Chemistry, 68, 71–86. Lacan, F., Francois, R., Ji, Y. C., and Sherrell, R. M. (2006). Cadmium isotopic composition in the ocean. Geochimica et Cosmochimica Acta, 70, 5104-5118. Lambelet, M., Rehkamper, M., van de Flierdt, T., Xue, Z., Kreissig, K., Coles, B., Porcelli, D., and Andersson, P. (2013). Isotopic analysis of Cd in the mixing zone of Siberian rivers with the Arctic Ocean—New constraints on marine Cd cycling and the isotope composition of riverine Cd. Earth and Planetary Science Letters, 361, 64-73. Lane, E. S., Semeniuk, D. M., Strzepek, R. F., Cullen, J. T., Maldonado, M. T. (2009). Effects of iron limitation on intracellular cadmium of cultured phytoplankton: implications for surface dissolved cadmium to phosphate ratios. Marine Chemistry, 115, 155–162. Lee, C. S. L., Li, X. D., Zhang, G., Li, J., Ding, A. J., and Wang, T. (2007). Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China - Evidence of the long-range transport of air contaminants. Atmospheric Environment, 41, 432-447. Lee, D. C., Yang, S. C., and Ho T. Y., (2011). The evolution of Zn and Cd isotopes in the South China Sea (abstract). Mineralogical Magazine, 75, 1284. Lehmann, M. F., Bernasconi, S.M., Barbieri, A., and McKenzie, J.A. (2002). Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta, 66, 3573-3584. Levitus, S., Conkright, M. E., Reid, J. L., Najjar, R. G., and Mantyla, A. (1993). Distribution of nitrate, phosphate and silicate in the world oceans. Progress in Oceanography, 31, 245-273. Li, Y., and Wang, F. (2012). Spreading and salinity change of North Pacific tropical water in the Philippine Sea. Journal of Oceanography, 68, 439-452. Lin, I. I., Chen, J. P., Wong, G. T. F., Huang, C. W., and Lien, C. C. (2007). Aerosol input to the South China Sea: Results from the MODerate resolution Imaging Spectro-radiometer, the quick scatterometer, and the measurements of pollution in the troposphere sensor. Deep-Sea Research, 54, 1589-1601. Liu, G., and Chai, F. (2009). Seasonal and interannual variability of primary and export production in the South China Sea: a three-dimensional physical–biogeochemical model study. ICES Journal of Marine Science, 66, 420-431. Liu, K. K., Chao, S. Y., Shaw, P. T., Gong, G. C., Chen, C. C., and Tang, T. Y. (2002). Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Research, 49, 1387-1412. Liu, K. K., Tseng, C. M., Wu, C. R., Lin, I. I. (2010). The South China Sea. In Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis (pp. 464-482). IGBP Book Series, Springer, Berlin. Mantyla, A. W., and Reid, J. L. (1983). Abyssal characteristics of the World Ocean waters. Deep-Sea Research, 30, 805-833. Martin, J. H., Bruland, K. W., and Broenkow, W. W. (1976). Cadmium transport in the California current. In Marine Pollutant Transfer (pp. 159–84). Lexington Books, D. C.Health and Co., Toronto. Martin, J. M. and Whitfield, M. (1983). The significance of the river input of chemical elements to the ocean. In Trace Metals in Sea Water (pp. 265-296). Springer, US. Murphy, K., Rehkamper, M., and van de Flierdt, T. (2014). Comment on “The isotopic composition of cadmium in the water column of the South China Sea”. Geochimica et Cosmochimica Acta, 134, 335-338. Nitani H. (1972). Beginning of the Kuroshio, In Kuroshio (pp. 129-164). U. of Washington Press, Seattle, WA. Pai, S. C., Fang, T. H., Chen, A. C. T., Jeng, K. L. (1990). A low contamination Chelex-100 technique for shipboard pre-concentration of heavy metals in seawater. Marine Chemistry, 29, 295-306. Pai, S. C., Yang, C. C., and Riley, J. P. (1990). Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphor–antimonyl–molybdenum blue complex. Analytica Chimica Acta, 229, 115–120. Payne, C. D., and Price, N. M. (1999). Effects of cadmium toxicity on growth and elemental composition of marine phytoplankton. Journal of Phycology, 35, 293-302. Qu, T. D., Mitsudera, H., and Yamagata, T. (2000). Intrusion of the North Pacific waters into the South China Sea. Journal of Geophysical Research: Oceans, 105, 6415-6424. Qu, T. D. (2001). Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature. Journal of Geophysical Research: Oceans, 106, 6943-6955. Qu, T. D., Girton, J. B., and Whitehead, J. A. (2006). Deepwater overflow through Luzon Strait. Journal of Geophysical Research: Oceans, 111, doi:10.1029/2005JC003139. Rehkamper, M., Wombacher, F., Horner, T. J., and Xue, Z. (2012). Natural and anthropogenic Cd isotope variations. In Handbook of Environmental Isotope Geochemistry (pp. 125-154). Springer Berlin Heidelberg. Riegman, R., Kuipers, B. R., Noordeloos, A. A., and Witte, H. J. (1993). Size-differential control of phytoplankton and the structure of plankton communities. Netherlands Journal of Sea Research, 31, 255-265. Ripperger, S. and Rehkamper, M. (2007). Precise determination of cadmium isotope fractionation in seawater by double spike MC-ICPMS. Geochimica et Cosmochimica Acta, 71, 631-642. Ripperger, S., Rehkamper, M., Porcelli, D., and Halliday, A. N. (2007). Cadmium isotope fractionation in seawater - A signature of biological activity. Earth and Planetary Science Letters, 261, 670-684. Schmitt, A. D., Galer, S. J. G., Abouchami, W. (2009). Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment. Earth and Planetary Science Letters, 277, 262–272. Shiel, A. E., Barlin, J., Orians, K. J., and Weis, D. (2009). Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision cadmium and zinc isotope ratios. Analytica Chimica Acta, 633, 29-37. Shiel, A. E., Weis, D., and Orians, K. J. (2010). Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining. Science of the total Environment, 408, 2357-2368. Sigman, D.M., Karsh, K.L., and Casciotti, K.L. (2009). Ocean process tracers: nitrogen isotopes in the ocean. In Encyclopedia of Ocean Science (pp. 4138-4153). Elsevier, Amsterdam. Smith, S.L., Henrichs, S.M., and Rho, T. (2002). Stable C and N isotopic composition of sinking particles and zooplankton over the southeastern Bering Sea shelf. Deep-Sea Research, 49, 6031-6050. Suga, T., Kato, A., and Hanawa, K. (2000). North Pacific Tropical Water: Its climatology and temporal changes associated with the climate regime shift in the 1970s. Progress in Oceanography, 47, 223-256. Sunda, W.G., Huntsman, S.A. (1998). Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Science of the total Environment, 219, 165–181. Sunda, W. G., and Huntsman, S. A. (2000). Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: Implications for oceanic Cd cycling. Limnology and Oceanography, 45, 1501-1516. Uematsu, M., Duce, R. A., Prospero, J. M., Chen, L., Merrill, J. T., and McDonald, R. L. (1983). Transport of mineral aerosol from Asia over the North Pacific Ocean. Journal of Geophysical Research: Oceans, 88, 5343-5352. Wang, W. X., and Fisher, N. S. (1998). Accumulation of trace elements in a marine copepod. Limnology and Oceanography, 43, 273-283. Wei, C. L., Jen, K. L., and Chu, K. (1994). Sediment trap experiments in the water column off southwestern Taiwan: 234Th fluxes. Journal of Oceanography, 50, 403-414. Wen, L. S., Jiann, K. T., and Santschi P. H. (2006). Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea. Marine Chemistry, 101, 104-129. Wilson, D. S. (1973). Food size selection among copepods. Ecology, 54, 909-914. Wong, G. T. F., Tseng, C. M., Wen, L. S., and Chung, S. W. (2007). Nutrient dynamics and N-anomaly at the SEATS station. Deep-Sea Research, 54, 1528-1545. Xie, R. C., Galer, S., Abouchami, W., Rijkenberg, M., De Jong, J. (2014). Cadmium isotope distribution along the western boundary of the South Atlantic (abstract). 2014 Ocean Science Meeting. Xu, Y., Wang, W. X., and Hsieh, D. P. H. (2001). Influences of metal concentration in phytoplankton and seawater on metal assimilation and elimination in marine copepods. Environmental Toxicology and Chemistry, 20, 1067-1077. Xu, Y., Tang, D., Shaked, Y., and Morel, F. M. (2007). Zinc, cadmium, and cobalt interreplacement and relative use efficiencies in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 52, 2294-2305. Xue, Z., Rehkamper, M., Schonbachler, M., Statham, P. J., and Coles, B. J. (2012). A new methodology for precise cadmium isotope analyses of seawater. Analytical and bioanalytical chemistry, 402, 883-893. Xue, Z., Rehkamper, M., Horner, T. J., Abouchami, W., Middag, R., van de Flierd, T., andand de Baar, H. J. (2013). Cadmium isotope variations in the Southern Ocean. Earth and Planetary Science Letters, 382, 161-172. Yang, S. C., Lee, D. C., and Ho, T. Y. (2012). The isotopic composition of Cadmium in the water column of the South China Sea. Geochimica et Cosmochimica Acta, 98, 66-77. Yang, S. H., Ho, T. Y., and Yu E. F. (2009). Phytoplankton community structure in the northern South China Sea and West Philippine Sea. Master thesis, National Taiwan Normal University, Taipei, Taiwan. You, Y., Suginohara, N., Fukasawa, M., Yasuda, I., Kaneko, I., Yoritaka, H., and Kawamiya, M. (2000). Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 105, 3253-3280. Zeebe, R.E., and Wolf-Gladrow, D., 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes: Equilibrium, Kinetics, Isotopes. Elsevier Oceanography Series, Elsevier, Amsterdam. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55296 | - |
| dc.description.abstract | 本研究藉由分析南海之海水、懸浮浮游生物與沉降顆粒的鎘同位素組成,來探討生物與非生物性作用如何控制鎘在海洋中循環之相對貢獻。南海海水水柱中的鎘同位素組成隨著水深的增加而減少。鎘同位素組成(ε114/110CdNIST)在表層80公尺的範圍中維持在+8到+9之間,於100到150公尺的範圍內陡降至+4到+5左右,從水深150到1000公尺間自+5緩慢下降到+3,而在1000到3500公尺的水層中維持在+3左右。我們發現鎘同位素組成在水深150公尺以下之範圍內的變化是保守的,暗示鎘在此範圍的循環主要是由水團的對流與混合作用所控制。在表層海水,我們發現採集自水深30公尺處的沉降顆粒具有與鄰近海水一致的同位素組成,同樣介於+8至+9之間。此同位素組成上的一致性顯示在表層海水中生物作用對鎘同位素分化的總體效應並不顯著。此外,在南海氣膠的沉降是表層海水中鎘的主要來源,海水與沉降顆粒具有一致且較重的鎘同位素組成暗示氣膠也同樣具有較重的組成。這些發現暗示表層海水具有較重的鎘同位素組成未必是受生物的分化作用所致。
本研究之懸浮浮游生物與沉降顆粒的鎘同位素結果更進一步揭示了浮游植物攝取、細菌分解與浮游動物攝食等幾個主要的生物作用是如何控制表層海水中鎘同位素分化的總體效應。我們發現富光層中的浮游生物中的鎘同位素組成介於-9至+7之間,顯著地比表層海水的組成還輕。這暗示了浮游生物偏好從海水攝取較輕的鎘同位素。此外,浮游生物的鎘同位素組成也比水深30公尺處之沉降顆粒還輕。由於浮游生物轉變為沉降顆粒之過程主要受微生物分解作用,與浮游動物打包作用所控制,懸浮與沉降顆粒間之鎘同位素差異暗示這些作用在顆粒轉變的過程中會從顆粒釋放出較輕的鎘同位素。我們也發現沉降顆粒中的鎘同位素組成隨著水深的增加而提升,在水深30公尺處其值介於+8到+13 之間,在水深100公尺處上升到+12至+21,到了160公尺處則上升到+16到+18。此同位素組成隨著水深增加而提升之現象暗示微生物分解作用與浮游動物打包作用在生物顆粒沉降的過程中,同樣從顆粒中分解、釋放出較輕的鎘同位素。這些發現顯示生物攝取、微生物分解與浮游動物打包作用對鎘同位素分化的影響程度是在同一個數量級上。這些作用的綜合效應在調節表層海水中溶解態與顆粒態鎘的同位素組成上扮演著關鍵的腳色。 傳統觀念認為表水生物性沉降顆粒是深層海水的溶解態鎘的主要來源。然而我們發現南海表水的沉降顆粒具有高於+8的鎘同位素組成,與全球大洋深層海水的組成+3並不一致。這個同位素上的差異暗示表水之沉降顆粒可能並非深層海水的溶解態鎘的直接來源。未來研究應探討不同水深之懸浮與沉降顆粒的鎘同位素組成,以解開深層海水中鎘的來源為何,以及表層海水與深層海水內鎘循環之間的交互作用。 | zh_TW |
| dc.description.abstract | In this study, we determined the Cd isotopic composition in seawater, suspended plankton, and sinking particles of the South China Sea (SCS) to better understand the relative contributions of biotic and abiotic processes that control Cd cycling in the ocean. The isotopic composition in the water column decreased with depth, with ε114/110CdNIST values ranging from +8 to +9 in the top 80 m, +4 to +5 between 100 and 150 m, decreasing from +5 to +3 at depths from 150 to 1000 m, and remaining at around +3 from 1000 to 3500 m. The isotopic composition in seawater below 150 m varies conservatively, indicating that the Cd cycling is mainly controlled by advection and mixing of water masses. Comparable to the isotopic composition value in surface seawater, the ε114/110CdNIST in the sinking particles collected at 30 m ranged from +8 to +9 suggesting that the net biological isotopic fractionation in the surface water is insignificant. In the SCS, aerosol depositions are known to be the dominant source of the Cd in the surface water. Relatively heavy Cd isotopic composition can be found in the seawater and particles, which suggests that the Cd originating from aerosols is composed of similarly heavy composition. This finding indicates that the heavy Cd isotopic composition in oceanic surface water cannot necessarily be attributed to biological fractionation.
The isotopic composition of Cd in suspended and sinking particles further sheds light on how the major biotic activities, including phytoplankton uptake, microbial degradation, and zooplankton grazing, control the net Cd isotopic fractionation in the surface water. The ε114/110CdNIST in the suspended plankton of the euphotic zone ranged from -9 to +7, which is significantly lighter than the ambient seawater. The isotopic difference between plankton and seawater indicates that plankton preferentially assimilate light Cd isotopes from seawater. Additionally, the composition of the plankton was also lighter than the composition of the sinking particles at 30 m. Because microbial degradation and zooplankton grazing are the major processes controlling the transformation from suspended to sinking particles, the isotopic difference between suspended and sinking particles indicates that the processes disseminate relatively light Cd through the transformation. The ε114/110CdNIST in the sinking particles increased with depth, ranging from +8 to +13 at 30 m, from +12 to +21 at 100 m, and from +16 to +18 at 160 m. The increasing isotopic composition with depth indicates that microbial degradation and zooplankton repackaging also disseminate relatively light Cd from biogenic particles during particle sinking. Consequently, the Cd isotopic fractionations via phytoplankton uptake, microbial degradation, and zooplankton repackaging take place at similar magnitudes. The combined effects of these processes play critical roles in regulating the isotopic composition of dissolved and particulate Cd in the surface water. It is traditionally believed that the dissolved Cd in deep waters predominantly originates from the biogenic sinking particles generated in surface waters. However, our study has found that the isotopic composition of Cd in the sinking particles in the SCS surface waters is ≥ +8 ε, which is not comparable to the composition in global deep waters, which is ~ +3 ε. The isotopic difference indicates that the sinking particles exported from surface waters may not serve as the direct source of Cd in deep waters. Future studies should focus on the Cd isotopic composition in suspended and sinking particles at various water depths to determine the source of Cd in deep waters and decipher the interactions of Cd cycling between surface and deep waters. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:55:21Z (GMT). No. of bitstreams: 1 ntu-103-D98224001-1.pdf: 3787874 bytes, checksum: ad9ef65f983523e78e8ff04d16c1f0a6 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Table of Contents
Acknowledgements in Chinese……………………………………………….……… i Abstract……………………………………………….………………..…...………… iii Abstract in Chinese…………………………………….…………..……..…………. vii Publication List………………………………………………….….…....………...…. ix Table of Contents……………………………………………....….……..…...………. xi Table of Figures………………………….……………….….……………………… xiii Table of Tables……………………………………………………………………….. xv Chapter 1. Introduction……………………..…………………………………………. 1 Chapter 2. Physical and biological processes controlling the cycling and isotopic fractionation of Cd in the South China Sea…………………..…………… 9 Chapter 3. Internal cycling processes controlling Cd isotopic fractionation in the surface water of the South China Sea: the roles of biological uptake and degradation………………………………………………………………. 39 Chapter 4. Estimation for the isotopic composition of Cd in the aerosols input to the South China Sea………………………………………………………… 65 Chapter 5. Understanding the source of the water body in the South China Sea: the isotopic composition of Cadmium in the water column of the West Philippine Sea…………………………………..………………………... 73 Chapter 6. Summary………………...……………………………………………… 103 References…………………………………………………………………………… 107 Table of Figures Figure 1. Map of the study sites in this thesis………………………………………… 4 Figure 2. Evaluation of Sn interference correction, TRU resin matrix, and seawater matrix on Cd IC analysis…………………………………………………… 20 Figure 3. Vertical profiles of Cd concentration and isotopic composition……………. 22 Figure 4. Vertical profile of chlorophyll a concentration in the top 150 m and T-S diagram of the whole water column at the sampling site…………………... 23 Figure 5. Box model for Cd cycling in different water layers………………………… 25 Figure 6. Vertical profiles of potential temperature and salinity, relative volumetric contribution of water masses, calculated Cd concentration isotope data in a mixing-model……………………………………………………………….. 29 Figure 7. Distribution of both concentration and isotopic composition of Cd in the South China Sea and that of world oceans…………………………………. 31 Figure 8. The images of the freeze-dried size-fractionated plankton…………………. 49 Figure 9. Cd isotopic composition, Cd/Al and Cd/P ratios and Cd isotope composition versus Cd/P ratios in the size-fractionated plankton collected……………... 50 Figure 10. Cd fluxes and Cd isotopic composition in the sinking particles collected in different seasons……………………………………………………………. 51 Figure 11. Cd isotopic composition in seawater, suspended particles and sinking particles collected in the euphotic zone…………………………………….. 55 Figure 12. Comparison of the estimated Rayleigh fractionation factors with remained flux fraction………………………………….……………………………... 59 Figure 13. Schematic model for Cd isotopic fractionation in the surface water……... 60 Figure 14. Parameters applied to the South China Sea surface water box model and the model results in Yang et al. (2014).…………………………………….. 71 Figure 15. Depth profiles of Cd concentrations, ε114/110Cd, temperature and salinity at the West Philippine Sea…………………………………………………….. 83 Figure 16. Relationship between Cd concentration and ε114/110Cd in the water column of the West Philippine Sea, along with the data from Abouchami et al. (2011, 2014) and Xue et al. (2013)………………………………………..... 84 Figure 17. Relationship between salinity and temperature; Cd concentration; and ε114/110Cd in the West Philippine Sea and South China Sea………………… 87 Figure 18. Depth profiles of Cd concentrations, ε114/110Cd and salinity in the thermocline and deep water of the West Philippine Sea (200 – 2000 m) and South China Sea (100 – 2000 m)……………………………………..... 89 Figure 19. Depth profiles of Cd concentrations and ε114/110Cd along with O2, AOU, transmission and phytoplankton community structure data in the top 200 m water layer of the West Philippine Sea……………………………… 91 Figure 20. Box model for the cycling of Cd in the euphotic zone of the West Philippine Sea………………………………...…………………………….. 95 Figure 21. Modeled relationship between the isotopic composition in aerosols and the fraction of aerosol inputs in the 0 – 60 m box and relationship between the isotopic composition in exported particulate Cd and the fraction of particulate Cd inputs in the 80 – 150 m box………………………………... 98 Table of Tables Table 1. Cd concentrations and isotope composition of the South China Sea……….. 115 Table 2. Al and P normalized elemental ratios in the sinking particle sample………. 116 Table 3. Cd/Al and Cd/P ratios in size-fractionated suspended particles collected in the South China Sea.………………………………………………………... 117 Table 4. Cd isotopic composition in size-fractionated suspended particles collected in the South China Sea.………………………………………………………... 118 Table 5. Elemental fluxes and ratios in sinking particle samples collected in the South China Sea. ………………………………………………………………….. 119 Table 6. Cd isotopic composition in sinking particle samples collected in the South China Sea…………………………………………………………………… 120 Table 7. Trace metal to phosphorus ratios in the suspended particles with size of 60-100 μm…………………………………………………………………... 121 Table 8. Sampling time and depths for suspended plankton collected in the South China Sea…………………………………………………………………… 122 Table 9. Cd concentrations and isotope compositions for seawater samples collected in the West Philippine Sea………………………………………………….. 123 Table 10. Phosphate concentrations, temperature, salinity, oxygen and apparent oxygen utilization for seawater samples collected in the West Philippine Sea………………………………………………………………………….. 124 | |
| dc.language.iso | en | |
| dc.subject | 鎘 | zh_TW |
| dc.subject | 微量金屬循環 | zh_TW |
| dc.subject | 穩定同位素分化 | zh_TW |
| dc.subject | 生物地球化學 | zh_TW |
| dc.subject | 南海 | zh_TW |
| dc.subject | trace metal cycling | en |
| dc.subject | stable isotope fractionation | en |
| dc.subject | biogeochemistry | en |
| dc.subject | South China Sea | en |
| dc.subject | cadmium | en |
| dc.title | 鎘在南海的同位素分化:生物與非生物過程之角色 | zh_TW |
| dc.title | Cadmium isotopic fractionation in the South China Sea: the roles of biotic and abiotic processes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 李德春(Der-Chuen Lee),何東垣(Tung-Yuan Ho) | |
| dc.contributor.oralexamcommittee | 游鎮烽(Chen-Feng You),任昊佳(Hao-jia Ren),沈川洲(Chuan-Chou Shen) | |
| dc.subject.keyword | 鎘,微量金屬循環,穩定同位素分化,生物地球化學,南海, | zh_TW |
| dc.subject.keyword | cadmium,trace metal cycling,stable isotope fractionation,biogeochemistry,South China Sea, | en |
| dc.relation.page | 124 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-12-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
