Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55295
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃念祖
dc.contributor.authorYu-Hao Huangen
dc.contributor.author黃昱豪zh_TW
dc.date.accessioned2021-06-16T03:55:19Z-
dc.date.available2020-08-04
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-31
dc.identifier.citation1. Brock, T.D., et al., Brock biology of microorganisms. 10th ed. ed. 2003: Upper Saddle River (N.J.) : Prentice-Hall.
2. Abubakar, I., et al., A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food. Health Technol Assess, 2007. 11(36): p. 1-216.
3. Opota, O., et al., Blood culture-based diagnosis of bacteraemia: state of the art. Clinical Microbiology and Infection, 2015. 21(4): p. 313-322.
4. Choi, J., et al., A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Science Translational Medicine, 2014. 6(267): p. 267ra174.
5. Choi, J., et al., Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip, 2013. 13(2): p. 280-7.
6. Ahmed, A., et al., Biosensors for whole-cell bacterial detection. Clinical microbiology reviews, 2014. 27(3): p. 631-646.
7. Nikkhoo, N., P.G. Gulak, and K. Maxwell, Rapid Detection of E. coli Bacteria Using Potassium-Sensitive FETs in CMOS. IEEE Transactions on Biomedical Circuits and Systems, 2013. 7(5): p. 621-630.
8. Pourciel-Gouzy, M.L., et al., Development of pH-ISFET sensors for the detection of bacterial activity. Sensors and Actuators B: Chemical, 2004. 103(1): p. 247-251.
9. Bergveld, P., Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE transactions on bio-medical engineering, 1970. 17(1): p. 70-71.
10. Pourciel-Gouzy, M.L., et al., pH-ChemFET-based analysis devices for the bacterial activity monitoring. Sensors and Actuators B: Chemical, 2008. 134(1): p. 339-344.
11. Nikkhoo, N., et al., Rapid Bacterial Detection via an All-Electronic CMOS Biosensor. PloS one, 2016. 11(9): p. e0162438-e0162438.
12. Moser, N., et al., ISFETs in CMOS and Emergent Trends in Instrumentation: A Review. IEEE Sensors Journal, 2016. 16(17): p. 6496-6514.
13. Yin, L.-T., et al., Study of indium tin oxide thin film for separative extended gate ISFET. Materials Chemistry and Physics, 2001. 70(1): p. 12-16.
14. Chiang, J.-L., et al., Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide. Sensors and Actuators B: Chemical, 2001. 76(1): p. 624-628.
15. Opota, O., et al., Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect, 2015. 21(4): p. 313-22.
16. Wang, S., et al., Portable microfluidic chip for detection of Escherichia coli in produce and blood. Vol. 7. 2012. 2591-600.
17. Liu, Y., et al., Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosensors and Bioelectronics, 2017. 94: p. 131-140.
18. Guven, B., et al., SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst, 2011. 136(4): p. 740-8.
19. Guven, B., et al., SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst, 2011. 136(4): p. 740-748.
20. Yang, D., et al., Reproducible E. coli detection based on label-free SERS and mapping. Talanta, 2016. 146: p. 457-463.
21. da Silva, E.T.S.G., et al., Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem, 2017. 4(4): p. 778-794.
22. Kim, S., et al., Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy. Electrochimica Acta, 2012. 82: p. 126-131.
23. Tomkins, M.R., et al., A coupled cantilever-microelectrode biosensor for enhanced pathogen detection. Sensors and Actuators B: Chemical, 2013. 176: p. 248-252.
24. Hansen, K.M. and T. Thundat, Microcantilever biosensors. Methods, 2005. 37(1): p. 57-64.
25. Zhou, W., et al., Recent advances in microfluidic devices for bacteria and fungus research. TrAC Trends in Analytical Chemistry, 2019. 112: p. 175-195.
26. Kim, S.C., et al., Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing. Antibiotics (Basel, Switzerland), 2015. 4(4): p. 455-466.
27. Caras, S. and J. Janata, Field effect transistor sensitive to penicillin. Analytical Chemistry, 1980. 52(12): p. 1935-1937.
28. Sant, W., et al., Development of chemical field effect transistors for the detection of urea. Sensors and Actuators B: Chemical, 2003. 95(1): p. 309-314.
29. Gonçalves, D., et al., Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors. Biosensors and Bioelectronics, 2008. 24(4): p. 545-551.
30. Qu, L., et al., A micro-potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole–gold nanoparticles composite. Biosensors and Bioelectronics, 2009. 24(12): p. 3419-3424.
31. Douthwaite, M., et al., A Thermally Powered ISFET Array for On-Body pH Measurement. IEEE Transactions on Biomedical Circuits and Systems, 2017. 11(6): p. 1324-1334.
32. Jiang, Y., et al., A High-Sensitivity Potentiometric 65-nm CMOS ISFET Sensor for Rapid E. coli Screening. IEEE Transactions on Biomedical Circuits and Systems, 2018. 12(2): p. 402-415.
33. Moser, N., et al., Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging. Analytical Chemistry, 2020. 92(7): p. 5276-5285.
34. Tjhie, J.H., et al., Direct PCR enables detection of Mycoplasma pneumoniae in patients with respiratory tract infections. J Clin Microbiol, 1994. 32(1): p. 11-6.
35. Kim, D.M. and Y.H. Jeong, Nanowire Field Effect Transistors: Principles and Applications. 2013. 1-290.
36. Gnudi, A., et al., Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation. Solid-State Electronics, 1993. 36(4): p. 575-581.
37. Georgiou, P. and C. Toumazou, ISFET characteristics in CMOS and their application to weak inversion operation. Sensors and Actuators B: Chemical, 2009. 143(1): p. 211-217.
38. Bergveld, P. and A.S. Sibbald, Analytical and Biomedical Applications of Ion-selective Field-effect Transistors. Comprehensive analytical chemistry. 1988: Elsevier.
39. Duarte-Guevara, C., et al., Characterization of a 1024×1024 DG-BioFET platform. Sensors and Actuators B: Chemical, 2017. 250: p. 100-110.
40. Duarte-Guevara, C., et al., Enhanced Biosensing Resolution with Foundry Fabricated Individually Addressable Dual-Gated ISFETs. Analytical Chemistry, 2014. 86(16): p. 8359-8367.
41. Park, J.-K., et al., SOI dual-gate ISFET with variable oxide capacitance and channel thickness. Solid-State Electronics, 2014. 97: p. 2-7.
42. Jang, H.-J. and W.-J. Cho, Performance Enhancement of Capacitive-Coupling Dual-gate Ion-Sensitive Field-Effect Transistor in Ultra-Thin-Body. Scientific Reports, 2014. 4(1): p. 5284.
43. Thompson, J., Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiology Letters, 1987. 46(3): p. 221-231.
44. Bormann, E.J., H. W. DOELLE, Bacterial Metabolism (2nd Edition). 738 S., 19 Tab. New York–San Francisco–London 1975: Academic Press. $ 39.50. Zeitschrift für allgemeine Mikrobiologie, 1977. 17(4): p. 327-327.
45. Abdel-Rahman, M.A., Y. Tashiro, and K. Sonomoto, Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 2013. 31(6): p. 877-902.
46. Sun, Y., et al. A sub-micron CMOS-based ISFET array for biomolecular sensing. in 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). 2016.
47. Benedict, K., et al., Methodological comparisons for antimicrobial resistance surveillance in feedlot cattle. BMC veterinary research, 2013. 9: p. 216.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55295-
dc.description.abstract敗血症是一種具有高死亡率的疾病,尤其是在老年人,免疫功能低下和患病的患者中。嚴重的創傷和某些醫療程序,例如靜脈輸血和裝置或器官的植入,很可能導致細菌性血液感染(BSI)並導致嚴重的敗血症。儘管醫療技術和環境已有飛速的發展,敗血症仍然是全世界的主要死亡原因,死亡率約為50%,早期使用有效的抗生素治療可以大大降低發病率和死亡率。傳統上若需要進行細菌藥敏測試通常需要一至兩天的時間,其中包含血瓶機培養放大血液中的細菌濃度以及繁瑣的細菌清洗流程,用以進行後續的細菌抗藥性檢測,上述冗長及繁複的人工流程不利於需要即時使用適當抗生素治療的病患。因此,如何能即時且快速的進行細菌的鑑定以及抗藥性測試是十分重要的。為了解決此問題,在研究中我們利用對酸鹼值十分敏感的離子感測場效電晶體(ion-sensitive field-effect transistor)與微流道技術,結合細菌生長時會消耗醣類並釋放有機酸的特點,將不同菌株小體積細菌液培養在晶片上,並且利用可攜式儀器進行三十分鐘的短時間細菌藥敏測試,我們目前已經成功在單一晶片上進行兩種菌株的藥敏測試,具有抗藥性的菌株確實生長情形會比沒抗藥性菌株還要顯著。期望在未來的研究上能增加晶片感測面積以及晶片靈敏度以完成更多細菌樣本量的快速檢測。zh_TW
dc.description.abstractSepsis is a common cause of morbidity and mortality, particularly in elderly, immunocompromised, and ill patients. Serious trauma and certain medical procedures, like intravenous transfusion and implantation of devices or organs, may cause bacterial bloodstream infections (BSI) or even lead to severe sepsis. An early treatment with effective antibiotics would greatly reduce the risk of morbidity and mortality. The dosage required for different bacteria will be different, and the method of finding most appropriate dosage depends on the antibiotic susceptibility test.
Traditionally, it takes one to two days to perform an antibiotic susceptibility test, requiring a large incubator and tedious manual processes. In this thesis, we integrated dual microchamber with ion-sensitive field-effect transistor (ISFET) to perform real-time and dual bacteria growth monitoring. ISFET is very sensitive to pH value change of environment, which would happen when bacteria consume sugars and releasing organic acids during their growth phase. Here, we loaded two bacteria strains into microchamber and cultured on the sensor surface. Then, the ISFET sensor was connected to a portable instrument for 30-60 mins bacteria growth monitoring under various antibiotic treatment. Based on our results, the bacteria growth rate of the resistant strains is more significant than the susceptible strains, and we achieved rapid, label-free and real-time dual bacteria detection.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:55:19Z (GMT). No. of bitstreams: 1
U0001-3007202016280800.pdf: 6018976 bytes, checksum: 276b96ab9c54651511929b82e6b93745 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
1.1 Research Background 1
1.1.1 Bacteria detection and conventional AST 1
1.1.2 ISFET and bacteria detection 3
1.1.3 Challenges of ISFET sensor for rapid AST 6
1.2 Literature Review 7
1.2.1 Rapid bacteria detection 7
1.2.2 ISFET for biological sensing 10
1.2.2.1 Modification method 11
1.2.2.2 Non-modification method 13
1.2.3 ISFET for screening applications 15
1.3 Research Motivation 18
1.4 Thesis structure 19
Chapter 2 Experimental Design 20
2.1 The working principle of field-effect transistor 20
2.1.1 The working principle of MOSFET 20
2.1.2 The working principle of ISFET 24
2.1.3 The working principle of DG-ISFET 27
2.2 Bacteria metabolism and activity 28
Chapter 3 Materials and Methods 30
3.1 Materials 30
3.2 Bacteria preparation 30
3.3 Device fabrication 31
3.3.1 ISFET sensors fabrication and design 31
3.3.2 PDMS device design and fabrication 32
3.3.3 Microchamber bonding procedure 35
3.4 Instrument 36
3.5 Measuring procedure 37
Chapter 4 Results and Discussion 39
4.1 Single chamber measurement for sensor performance 39
4.1.1 Sensitivity towards pH buffer 39
4.1.2 Bacteria cultured with different concentration of glucose 41
4.1.3 Different concentration of bacteria culture 42
4.1.4 Bacteria sedimentation test 43
4.1.5 Antibiotic susceptibility test 44
4.1.5.1 E. coli AST 45
4.1.5.2 S. aureus AST 47
4.1.6 In comparison with pH meter and spectrophotometer 48
4.2 Integrated with dual microchamber measurement 50
4.2.1 Dual pH measurement 50
4.2.2 Dual antibiotic susceptibility test 51
Chapter 5 Conclusion 52
Chapter 6 Future Work 53

dc.language.isoen
dc.subject敗血症zh_TW
dc.subject電晶體zh_TW
dc.subjectsepsisen
dc.subjecttransistoren
dc.title參考電極嵌入雙微反應槽整合離子敏感場效應電晶體應用於細菌抗藥性測試zh_TW
dc.titleA Reference Electrode Embedded in Dual Microchamber Integrating Ion-Sensitive Field-Effect Transistor for Antibiotic Susceptibility Testen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡孟勳,林致廷,黃睿政
dc.subject.keyword敗血症,電晶體,zh_TW
dc.subject.keywordsepsis,transistor,en
dc.relation.page60
dc.identifier.doi10.6342/NTU202002114
dc.rights.note有償授權
dc.date.accepted2020-08-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-3007202016280800.pdf
  未授權公開取用
5.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved