請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55271完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊恩誠(En-Cheng Yang) | |
| dc.contributor.author | Yi-Chan Peng | en |
| dc.contributor.author | 彭繹栴 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:54:11Z | - |
| dc.date.available | 2020-01-05 | |
| dc.date.copyright | 2015-01-05 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-12-30 | |
| dc.identifier.citation | Ammar D, Nazari EM, Rauh Muller YM, Allodi S. 2008. New insights on the olfactory lobe of decapod crustaceans. Brain Behav Evol 72: 27-36.
Bicker G. 1999. Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Tech 45: 174-183. Bicker G, Kreissl S. 1994. Calcium imaging reveals nicotinic acetylcholine receptors on cultured mushroom body neurons. J Neurophysiol 71: 808-810. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313: 351-354. Blanchard P, Schurr F, Celle O, Cougoule N, Drajnudel P, Thiery R, Faucon J-P, Ribiere M. 2008. First detection of Israeli acute paralysis virus (IAPV) in France, a dicistrovirus affecting honeybees (Apis mellifera). J Invertebr Pathol 99: 348-350. Bonmatin JM, Moineau I, Charvet R, Colin ME, Fleche C, Bengsch ER. 2005. Behaviour of imidacloprid in fields. Toxicity for honey bees. In: Lichtfouse E, Schwarzbauer J, Robert D, (eds). Environmental Chemistry Springer Berlin Heidelberg. pp 483-494. Bonmatin JM, Moineau I, Charvet R, Fleche C, Colin ME, Bengsch ER. 2003. A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Anal Chem 75: 2027-2033. Bortolotti L, Montanari R, Marcelino J, Medrzycki P, Maini S. 2003. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. B Insectol 56: 63-67. Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege H-C, Menzel R. 2005. Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol 492: 1-19. Brown M, J.F., Paxton R, J. 2009. The conservation of bees: A global perspective. Apidologie 40: 410-416. Buckingham S, Lapied B, Corronc H, Sattelle F. 1997. Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 200: 2685-2692. Chaplin-Kramer R, Dombeck E, Gerber J, Knuth KA, Mueller ND, Mueller M, Ziv G, Klein A-M. 2014. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc Biol Sci 281. Colin M, Bonmatin J. 2000. Effets de tres faibles concentrations d'imidaclopride et derives sur le butinage des abeilles en conditions semi-controlees. In: Rapport au Ministere de l'agriculture et de la peche. Colin ME, Bonmatin JM, Moineau I, Gaimon C, Brun S, Vermandere JP. 2004. A method to quantify and analyze the foraging activity of honey bees: Relevance to the sublethal effects induced by systemic insecticides. Arch Environ Contam Toxicol 47: 387-395. Croft BA. 1990. Arthropod biological control agents and pesticides. New York: John Wiley and Sons Inc. 723 pp. Cure G, Schmidt H, Schmuck R. 1999. Results of a comprehensive field research programme with the systemic insecticide imidacloprid (GauchoR). In: Belzunces L, Pelissier C, Lewis G, (eds). Hazards of Pesticides to Bees INRA, Paris, Avignon, France. pp 49-59. Deglise P, Grunewald B, Gauthier M. 2002. The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321: 13-16. Dacher M, Lagarrigue A, Gauthier M. 2005. Antennal tactile learning in the honeybee: Effect of nicotinic antagonists on memory dynamics. Neuroscience 130: 37-50. Davis RL. 2005. Olfactory memory formation in Drosophila: From molecular to systems neuroscience. Annu Rev Neurosci 28: 275-302. Decourtye A, Devillers J. 2010. Ecotoxicity of neonicotinoid insecticides to bees. In: Thany S, (ed). Insect Nicotinic Acetylcholine Receptors. Springer, New York. pp 85-95. Decourtye A, Lacassie E, Pham-Delegue M-H. 2003. Learning performances of honeybees (Apis mellifera L) are differentially affected by imidacloprid according to the season. Pest Manage Sci 59: 269-278. Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delegue M-H. 2004a. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf 57: 410-419. Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S, Gauthier M, Pham-Delegue M-H. 2004b. Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Physiol 78: 83-92. Desneux N, Decourtye A, Delpuech J-M. 2007. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52: 81-106. Devaud J-M, Blunk A, Podufall J, Giurfa M, Grunewald B. 2007. Using local anaesthetics to block neuronal activity and map specific learning tasks to the mushroom bodies of an insect brain. Eur J Neurosci 26: 3193-3206. Dubnau J, Chiang A-S, Tully T. 2003. Neural substrates of memory: From synapse to system. J Neurobiol 54: 238-253. Dupuis J, Louis T, Gauthier M, Raymond V. 2012. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: From genes to behavioral functions. Neurosci Biobehav Rev 36: 1553-1564. Durst C, Eichmuller S, Menzel R. 1994. Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. Behav Neural Biol 62: 259-263. Dwyer JB, McQuown SC, Leslie FM. 2009. The dynamic effects of nicotine on the developing brain. Pharmacol Ther 122: 125-139. Eiri DM, Nieh JC. 2012. A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing. J Exp Biol 215: 2022-2029. Fahrbach SE. 2006. Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51: 209-232. Fahrbach SE, Farris SM, Sullivan JP, Robinson GE. 2003. Limits on volume changes in the mushroom bodies of the honey bee brain. J Neurobiol 57: 141-151. Fahrbach SE, Moore D, Capaldi EA, Farris SM, Robinson GE. 1998. Experience-expectant plasticity in the mushroom bodies of the honeybee. Learn Memory 5: 115-123. Farris SM, Robinson GE, Fahrbach SE. 2001. Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21: 6395-6404. Farris SM, Robinson GE, Davis RL, Fahrbach SE. 1999. Larval and pupal development of the mushroom bodies in the honey bee, Apis mellifera. J Comp Neurol 414: 97-113. Faucon J-P, Aurieres C, Drajnudel P, Mathieu L, Ribiere M, Martel A-C, Zeggane S, Chauzat M-P, Aubert MFA. 2005. Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies. Pest Manage Sci 61: 111-125. Frambach I, Rossler W, Winkler M, Schurmann F-W. 2004. F-actin at identified synapses in the mushroom body neuropil of the insect brain. J Comp Neurol 475: 303-314. Gerber B, Tanimoto H, Heisenberg M. 2004. An engram found? Evaluating the evidence from fruit flies. Curr Opin Neurobiol 14: 737-744. Gill RJ, Ramos-Rodriguez O, Raine NE. 2012. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491: 105-108. Giurfa M. 2003. Cognitive neuroethology: Dissecting non-elemental learning in a honeybee brain. Curr Opin Neurobiol 13: 726-735. Giurfa M. 2007. Behavioral and neural analysis of associative learning in the honeybee: A taste from the magic well. J Comp Physiol 193: 801-824. Godenschwege TA, Reisch D, Diegelmann S, Eberle K, Funk N, Heisenberg M, Hoppe V, Hoppe J, Klagges BRE, Martin J-R, Nikitina EA, Putz G, Reifegerste R, Reisch N, Rister J, Schaupp M, Scholz H, Schwarzel M, Werner U, Zars TD, Buchner S, Buchner E. 2004. Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. Eur J Neurosci 20: 611-622. Gogolla N, Galimberti I, Caroni P. 2007. Structural plasticity of axon terminals in the adult. Curr Opin Neurobiol 17: 516-524. Goldberg F, Grunewald B, Rosenboom H, Menzel R. 1999. Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J Physiol 514: 759-768. Greggers U, Menzel R. 1993. Memory dynamics and foraging strategies of honeybees. Behav Ecol Sociobiol 32: 17-29. Groh C, Rossler W. 2011. Comparison of microglomerular structures in the mushroom body calyx of neopteran insects. Arthropod Struct Dev 40: 358-367. Groh C, Ahrens D, Rossler W. 2006. Environment- and age-dependent plasticity of synaptic complexes in the mushroom bodies of honeybee queens. Brain Behav Evol 68: 1-14. Groh C, Tautz J, Rossler W. 2004. Synaptic organization in the adult honey bee brain is influenced by brood-temperature control during pupal development. Proc Natl Acad Sci U S A 101: 4268-4273. Groh C, Lu Z, Meinertzhagen IA, Rossler W. 2012. Age-related plasticity in the synaptic ultrastructure of neurons in the mushroom body calyx of the adult honeybee Apis mellifera. J Comp Neurol 520: 3509-3527. Gronenberg W. 2001. Subdivisions of hymenopteran mushroom body calyces by their afferent supply. The Journal of Comparative Neurology 435: 474-489. Gronenberg W, Heeren S, Ouml, Lldobler B. 1996. Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus. J Exp Biol 199: 2011-2019. Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP. 2001. Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 76: 183-191. Hammer M, Menzel R. 1998. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Memory 5: 146-156. Heisenberg M. 1998. What do the mushroom bodies do for the insect brain? An introduction. Learn Memory 5: 1-10. Heisenberg M. 2003. Mushroom body memoir: from maps to models. Nat Rev Neurosci 4: 266-275. Higes M, Martin-Hernandez R, Garrido-Bailon E, Gonzalez-Porto AV, Garcia-Palencia P, Meana A, Del Nozal MJ, Mayo R, Bernal JL. 2009. Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ Microbiol Rep 1: 110-113. Hongpaisan J, Alkon DL. 2007. A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proc Natl Acad Sci U S A 104: 19571-19576. Hourcade B, Muenz TS, Sandoz J-C, Rossler W, Devaud J-M. 2010. Long-Term Memory Leads to Synaptic Reorganization in the Mushroom Bodies: A Memory Trace in the Insect Brain? J Neurosci 30: 6461-6465. Ismail N, Robinson GE, Fahrbach SE. 2006. Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain. Proc Natl Acad Sci U S A 103: 207-211. Johnson BR. 2003. Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc R Soc Lond B Biol Sci 270: 147-152. Jones AK, Raymond-Delpech V, Thany SH, Gauthier M, Sattelle DB. 2006. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res 16: 1422-1430. Kimura-Kuroda J, Komuta Y, Kuroda Y, Hayashi M, Kawano H. 2012. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS One 7: e32432. Klagges BRE, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner S, Buchner E. 1996. Invertebrate synapsins: A single gene codes for several isoforms in Drosophila. J Neurosci 16: 3154-3165. Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. 2007. Importance of pollinators in changing landscapes for world crops. P Roy Soc B-Biol Sci 274: 303-313. Kreissl S, Bicker G. 1989. Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J Comp Neurol 286: 71-84. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vazquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein A-M, Regetz J, Ricketts TH. 2007. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol Lett 10: 299-314. Krofczik S, Khojasteh U, de Ibarra NH, Menzel R. 2008. Adaptation of microglomerular complexes in the honeybee mushroom body lip to manipulations of behavioral maturation and sensory experience. Dev Neurobiol 68: 1007-1017. Liu L, Wolf R, Ernst R, Heisenberg M. 1999. Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400: 753-756. Locatelli F, Bundrock G, Muller U. 2005. Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera. J Neurosci 25: 11614-11618. Lozano V, Armengaud C, Gauthier M. 2001. Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J Comp Physiol 187: 249-254. Maleszka J, Barron A, Helliwell P, Maleszka R. 2009. Effect of age, behaviour and social environment on honey bee brain plasticity. J Comp Physiol 195: 733-740. Malun D. 1998. Early development of mushroom bodies in the brain of the honeybee Apis mellifera as revealed by BrdU incorporation and ablation experiments. Learn Memory 5: 90-101. Maori E, Paldi N, Shafir S, Kalev H, Tsur E, Glick E, Sela I. 2009. IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Mol Biol 18: 55-60. Matsuda K, Shimomura M, Ihara M, Akamatsu M, Sattelle DB. 2005. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: Electrophysiology, molecular biology, and receptor modeling studies. Biosci, Biotechnol, Biochem 69: 1442-1452. Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB. 2001. Neonicotinoids: Insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22: 573-580. Medrzycki P, Montanari R, Bortolotti L, Sabatin iA, Maini S. 2003. Effects of imidacloprid administered in sub-lethal doses on honey bee behaviour. Laboratory tests. Bull Insectol 56: 59-62. Menzel R. 1999. Memory dynamics in the honeybee. J Comp Physiol 185: 323-340. Menzel R. 2001. Searching for the memory trace in a mini-brain, the honeybee. Learn Memory 8: 53-62. Menzel R, Giurfa M. 2001. Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 5: 62-71. Menzel R, Erber J, Masuhr T. 1974. Learning and memory in the honeybee. In: Barton Browne L, (ed). Experimental Analysis of Insect Behaviour Springer Berlin Heidelberg. pp 195-217. Mobbs PG. 1982. The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Philos T Roy Soc B 298: 309-354. Nauen R, Ebbinghaus-Kintscher U, Schmuck R. 2001. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manage Sci 57: 577-586. Ott SR. 2008. Confocal microscopy in large insect brains: Zinc–formaldehyde fixation improves synapsin immunostaining and preservation of morphology in whole-mounts. J Neurosci Methods 172: 220-230. Pareja L, Colazzo M, Perez-Parada A, Niell S, Carrasco-Letelier L, Besil N, Cesio MV, Heinzen H. 2011. Detection of pesticides in active and depopulated beehives in Uruguay. Int J Env Res Public Health 8: 3844-3858. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25: 345-353. Rossler W, Groh C. 2012. Plasticity of synaptic microcircuits in the mushroom-body calyx of the honey bee. In: Galizia CG, Eisenhardt D, Giurfa M, (eds). Honeybee Neurobiology and Behavior Springer Netherlands. pp 141-153. Rossler W, Kuduz J, Schurmann FW, Schild D. 2002. Aggregation of F-actin in olfactory glomeruli: A common feature of glomeruli across phyla. Chem Senses 27: 803-810. Ramirez-Romero R, Chaufaux J, Pham-Delegue M-H. 2005. Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36: 601-611. Ray S, Ferneyhough B. 1999. Behavioral development and olfactory learning in the honeybee (Apis mellifera). Dev Psychobiol 34: 21-27. Robinson GE. 1992. Regulation of division of labor in insect societies. Annu Rev Entomol 37: 637-665. Rybak J, Menzel R. 1993. Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha-lobe. J Comp Neurol 334: 444-465. Rybak J, Kus A, Lamecker H, Zachow S, Hege HC, Lienhard M, Singer J, Neubert K, Menzel R. 2010. The digital bee brain: Integrating and managing neurons in a common 3D reference system. Front Syst Neurosci 4: 931-933. Scheidler A, Kaulen P, Bruning G, Erber J. 1990. Quantitative autoradiographic localization of [125I]α-bungarotoxin binding sites in the honeybee brain. Brain Res 534: 332-335. Schmuck R. 1999. No causal relationship between GauchoR seed dressing in sunflowers and the French bee syndrome. Pflanzenschutz-Nachr Bayer 52: 257–299. Schmuck R, Schoning R, Stork A, Schramel O. 2001. Risk posed to honeybees (Apis mellifera L, Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manage Sci 57: 225-238. Schneider CW, Tautz J, Grunewald B, Fuchs S. 2012. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7: e30023. Smith K, Loh E, Rostal M, Zambrana-Torrelio C, Mendiola L, Daszak P. 2013. Pathogens, pests, and economics: Drivers of honey bee colony declines and losses. EcoHealth 10: 434-445. Stieb SM, Muenz TS, Wehner R, Rossler W. 2010. Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev Neurobiol 70: 408-423. Stokstad E. 2007. The case of the empty hives. Science 316: 970-972. Strausfeld NJ. 2002. Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes. J Comp Neurol 450: 4-33. Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K. 1998. Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Memory 5: 11-37. Suchail S, Guez D, Belzunces LP. 2000. Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environ Toxicol Chem 19: 1901-1905. Suchail S, Guez D, Belzunces LP. 2001. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ Toxicol Chem 20: 2482-2486. Szyszka P, Galkin A, Menzel R. 2008. Associative and non-associative plasticity in kenyon cells of the honeybee mushroom body. Front Syst Neurosci 2: 3. Technau GM. 1984. Fiber number in the mushroom bodies of adult Drosophila melanogaster depends on age, sex and experience. J Neurogenet 1: 113-126. Thany SH, Gauthier M. 2005. Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res 1039: 216-219. Thany SH, Crozatier M, Raymond-Delpech V, Gauthier M, Lenaers G. 2005. Apisα2, Apisα7-1 and Apisα7-2: Three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain. Gene 344: 125-132. Thany SH, Lenaers G, Crozatier M, Armengaud C, Gauthier M. 2003. Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. Insect Mol Biol 12: 255-262. Thompson H. 2003. Behavioural effects of pesticides in bees: Their potential for use in risk assessment. Ecotoxicology 12: 317-330. Tofilski A. 2009. Shorter-lived workers start foraging earlier. Insectes Soc 56: 359-366. Vomel M, Wegener C. 2007. Neurotransmitter-induced changes in the intracellular calcium concentration suggest a differential central modulation of CCAP neuron subsets in Drosophila. Dev Neurobiol 67: 792-808. Winston ML. 1987. The biology of the honey bee Harvard University Press, Cambridge, Massachusetts. 281 pp. Withers GS, Fahrbach SE, Robinson GE. 1993. Selective neuroanatomical plasticity and division of labour in the honeybee. Nature 364: 238-240. Woyciechowski M, Moroń D. 2009. Life expectancy and onset of foraging in the honeybee (Apis mellifera). Insectes Soc 56: 193-201. Wu JY, Anelli CM, Sheppard WS. 2011. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One 6: e14720. Yang EC, Chuang YC, Chen YL, Chang LH. 2008. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101: 1743-1748. Yang EC, Chang HC, Wu WY, Chen YW. 2012. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS One 7: e49472. Yasuyama K, Meinertzhagen IA, Schurmann F-W. 2002. Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445: 211-226. Yu D, Akalal D-BG, Davis RL. 2006. Drosophila | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55271 | - |
| dc.description.abstract | 殺蟲劑的使用是為了害蟲防治,然而,也會影響到作物的授粉者,如蜜蜂。益達胺是一種常見的系統性神經毒農藥,作用於菸鹼酸乙醯膽鹼接受器,造成昆蟲神經系統的過度興奮而死亡。過去研究顯示蜜蜂於幼蟲期暴露於亞致死劑量的益達胺會造成成蟲的嗅覺學習能力下降。在蜜蜂腦中的蕈狀體管理了多種訊號之整合,與學習、記憶、認知過程相關聯,其中的突觸單元隨日齡而增長,學習能力亦是。此突觸可塑性是蜜蜂面對環境各種任務所做的適應以及內部調節之基礎。本研究藉由免疫染色標定蕈狀體中杯狀構造的突觸單位來探討亞致死劑量的益達胺對蜜蜂神經發育的影響。結果發現蜜蜂於幼蟲期餵食亞致死劑量益達胺會造成杯狀構造中突觸單元密度的下降,證實了嗅覺學習能力的下降跟蕈狀體中異常的神經連結相關,也代表益達胺對蜜蜂的影響從幼蟲期即對神經系統發育造成損害。 | zh_TW |
| dc.description.abstract | Pests are the target of pesticides. However, pesticides affect pollinators simultaneously, such as honey bees. Imidacloprid, a common systemic pesticide, acts on the nicotinic acetylcholine receptors and causes hyperexcitation in the nervous system of insects. Previous study showed the decrease of honey bees’ learning ability after exposing to sublethal dosage of imidacloprid in the larval stage. The learning ability may be related to mushroom bodies, which is responsible for the multisensory integration and are associated with learning, memory and cognitive processing in the insect brain. In the mushroom bodies of honey bee worker, the synaptic connectivity increases with age, and so as the learning ability. This synaptic plasticity is the base for the honey bees to cope with different tasks in the environment and make internal adjustment. In this study, immunohistochemistry is used to label the synaptic units in the calyces of mushroom bodies to see the sublethal effects of imidacloprid on the neural development. The results indicate that the density of synaptic units in the calyces region decreases after feeding with sublethal dosages of imidacloprid. This links the decrease of olfactory learning ability to abnormal neural connectivity, and thus demonstrates the imidacloprid impairs the development of nervous system from the larval stage of honey bees. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:54:11Z (GMT). No. of bitstreams: 1 ntu-103-R01632005-1.pdf: 1648902 bytes, checksum: e9d23bad675910123669b5218305e2f4 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv Introduction 1 Decline of natural pollinators 1 Colony collapse disorder (CCD) 1 Imidacloprid, the new neonicotinoid pesticide 2 Median lethal and sublethal level toxicity of imidacloprid 3 Sublethal effect of imidacloprid to honey bees 4 Effect of imidacloprid to honey bee larvae 6 Insect brain 9 Synaptic plasticity 11 Calyces in the mushroom bodies 12 Material and methods 15 Animals 15 Preparation of imidacloprid solution 16 Imidacloprid feeding process 18 Immunocytochemistry 20 Confocal microscopy 22 Image processing and data acquisition 23 Statistical analysis 24 Results 26 Standard trends of microglomeruli counts in the calyces 26 Standard trends of volume in all compartments of the calyces 28 Standard trends of microglomeruli densities in the calyces 30 Decrease of microglomeruli densities after feeding with sublethal dosage of imidacloprid 32 Discussion 36 Establishment of the microglomeruli densities standard trends in the whole calyces 36 Effect of imidacloprid on microglomeruli densities in the calyces 38 Foraging activity dependent on the synaptic connectivity 40 Impairment of the neural connectivity 42 References 43 List of Figures Figure 1. A confocal section of frontal view of the center of an adult bee’s brain with immunolabeled for synapsin.. 52 Figure 2. Schematic diagram of the four calyces 53 Figure 3. ImarisR processed image 54 Figure 4. Influence of imidacloprid feeding during larval stage in the calyces of the 20th day after eclosion adult bee’s mushroom bodies. 55 Figure 5. Standard trends of MG counts from the 1st to the 20th day after eclosion and foragers in each region of the LLC and RLC. 56 Figure 6. Standard trends of volume of different compartments from the 1st to the 20th day after eclosion and foragers in each region of the LLC and RLC 57 Figure 7. Standard trends of MG densities from the 1st to the 20th day after eclosion and foragers in each region of the LLC and RLC 58 Figure 8. Standard trends of MG counts from the 1st to the 20th day after eclosion and foragers in each region of the LMC and RMC 59 Figure 9. Standard trends of volume of different compartments from the 1st to the 20th day after eclosion and foragers in each region of the LMC and RMC 60 Figure 10. Standard trends of MG densities from the 1st to the 20th day after eclosion and foragers in each region of the LMC and RMC 61 Figure 11. Effect of different concentration of imidacloprid to all regions in the four calyces 62 List of Tables Table 1. The comparison of MG densities in LLC and RLC between the control group and imidacloprid feeding groups 63 Table 2. The comparison of MG densities in LMC and RMC between the control group and imidacloprid feeding groups 64 | |
| dc.language.iso | en | |
| dc.subject | 亞致死劑量 | zh_TW |
| dc.subject | 蜜蜂 | zh_TW |
| dc.subject | 突觸 | zh_TW |
| dc.subject | 益達胺 | zh_TW |
| dc.subject | 蕈狀體 | zh_TW |
| dc.subject | sublethal dosage | en |
| dc.subject | honey bees | en |
| dc.subject | mushroom bodies | en |
| dc.subject | synapses | en |
| dc.subject | imidacloprid | en |
| dc.title | 蜜蜂幼蟲期餵食亞致死劑量益達胺對成蟲腦神經連結之影響 | zh_TW |
| dc.title | Abnormal neural connectivity induced by imidacloprid contamination during the larval stage of honey bees | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 路光暉(Kuang-Hui Lu),焦傳金(Chuan-Chin Chiao) | |
| dc.subject.keyword | 蜜蜂,益達胺,亞致死劑量,蕈狀體,突觸, | zh_TW |
| dc.subject.keyword | honey bees,imidacloprid,sublethal dosage,mushroom bodies,synapses, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-12-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
