請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55265完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 金洛仁(Laurent Zimmerli) | |
| dc.contributor.author | Yu-Hsien Chang | en |
| dc.contributor.author | 張郁欣 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:53:55Z | - |
| dc.date.available | 2020-02-04 | |
| dc.date.copyright | 2015-02-04 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-05 | |
| dc.identifier.citation | Acharya, B.R., Raina, S., Maqbool, S.B., Jagadeeswaran, G., Mosher, S.L., Appel, H.M., Schultz, J.C., Klessig, D.F., and Raina, R. (2007). Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant J. 50: 488-499.
Bardoel, B.W., van der Ent, S., Pel, M.J., Tommassen, J., Pieterse, C.M., van Kessel, K.P., van Strijp, J.A. (2011). Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog 7: e1002206. Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.H., and Sheen, J. (2010). Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418-22. Chen, K., Du, L., and Chen, Z. (2003). Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant molecular biology 53: 61-74. Chen, K., Fan, B., Du, L., and Chen, Z. (2004). Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis. Plant molecular biology 56: 271-283. Chen, P.W., Singh, P., and Zimmerli, L. (2013). Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Molecular plant pathology 14: 58–70. Chen, Z. (2001). A superfamily of proteins with novel cysteine-rich repeats. Plant physiology 126: 473-476. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497-500. Ederli, L., Madeo, L., Calderini, O., Gehring, C., Moretti, C., Buonaurio, R., Paolocci, F., and Pasqualini, S. (2011) The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection. Journal of Plant Physiology 168: 1784– 1794. Garcia, A.V., and Hirt, H. (2014) Salmonella enterica induces and subverts the plant immune system. Front Microbiol. 5:141. Idanheimo, N., Gauthier, A., Salojarvi, J., Siligato, R., Brosche, M., Kollist, H., Mahonen, A.P., Kangasjarvi, J., and Wrzaczek, M. (2014). The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress. Biochemical and Biophysical Research Communications 445: 457-462. Melotto, M., Underwood, W., and He, S.Y. (2006). Role of stomata in plant innate immunity and foliar bacterial diseases. Annual Review of Phytopathology 46:101–122. Mersmann, S., Bourdais, G., Rietz. S., and Robatzek, S. (2010). Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiology 154: 391–400. Miyakawa, T., Miyazono, K., Sawano, Y., Hatano, K., and Tanokura, M. (2009). Crystal structure of ginkbilobin-2 with homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Proteins 77: 247-51. Pieterse, C.M., Leon-Reyes, A., Van Der Ent, S., and Van Wees, S.C. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5: 308–316. Rayapuram, C., Jensen, M.K., Maiser, F., Shanir, J.V., Hornshoj, H., Rung, J.H., Gregersen, P.L., Schweizer, P., Collinge, D.B., and Lyngkjar, M.F. (2012). Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Molecular plant pathology 13: 135–147. Singh, P., Kuo, Y.C., Mishra, S., Tsai, C.H., Chien, C.C., Chen, C.W., Desclos-Theveniau, M., Chu, P.W., Schulze, B., Chinchilla, D., Boller, T., and Zimmerli, L. (2012). The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. The Plant cell 24: 1256-1270. Tanaka, H., Osakabe, Y., Katsura, S., Mizuno, S., Maruyama, K., Kusakabe, K., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2012). Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J. 70: 599-613. Tanou, G., Fotopoulos, V., and Molassiotis, A. (2012). Priming against environmental challenges and proteomics in plants: update and agricultural perspectives. Front Plant Sci 3:216. Wrzaczek, M., Brosche, M., Salojarvi, J., Kangasjarvi, S., Idanheimo, N., Mersmann, S., Robatzek, S., Karpinski, S., Karpinska, B., and Kangasjarvi, J. (2010). Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biology 10: 95. Yang, K., Rong, W., Qi, L., Li, J., Wei, X., and Zhang, Z. (2013). Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis. Scientific Reports 3: 3021. Zhang, X., Han X., Shi, R., Yang, G., Qi, L., Wang, R. and Li, G. (2013). Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae. Plant Physiology and Biochemistry 73: 383-391 Zimmerli, L., Jakab, G., Metraux, J.P., Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proc Natl Acad Sci USA 97: 12920-5. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55265 | - |
| dc.description.abstract | 在阿拉伯芥的類受體蛋白激酶中,凝集素受體激酶VI.2(LecRK-VI.2)是先天免疫的正向調控者,阿拉伯芥凝集素受體激酶VI.2的過度表現轉殖株的轉錄組學分析中許多基因被正向調控,而在這些基因當中,有13個基因同屬於一類受體蛋白激酶中的亞家族成員,此亞家族叫多重複半胱胺酸受體激酶(CRKs)。CRKs在細胞外的區域包含了1-4個C-X8-C-X2-C模組的重複序列,而且目前已經知道,CRKs可以被細菌性斑點病病原菌(Pst DC3000)所誘導表現。根據這些線索,我們有個假設便是這13個CRKs在調控病原菌的防禦上扮演著重要的角色。在使用T-DNA插入突變株的分析中,在感染Pst DC3000後,除了crk18突變株以外,我們並沒有看到任何相較於野生株顯著不同的病徵。這些結果表示這剩餘的12個CRKs與植物免疫反應無相關,或是這些CRKs基因在功能上可能扮演著類似的角色。為了進一步闡明所選擇的12 CRKs是否涉及在植物的免疫,我們決定分析這12個基因在野生型(Col-0)中大量表現後的改變。我們目前的結果顯示,相較於野生型,大量表現CRK4、CRK6、CRK12、CRK24和CRK36對Pst DC3000有較大的抗性。此外,在處理過鞭毛蛋白(flg22)後,相較於野生型,這五個轉殖株展現出較高的活性氧類和免疫相關的基因FRK1的表現,且增強了氣孔相關的免疫能力。經這些結果我們推論CRKs可能與植物的防禦有關。 | zh_TW |
| dc.description.abstract | Of the receptor-like kinases (RLKs) in Arabidopsis, LECTIN RECEPTOR KINASE-VI.2 (LecRK-VI.2) is a positive regulator of innate immunity. Transcriptome analysis of LecRK-VI.2 overexpression line revealed up-regulation of numerous genes. Among the up-regulated genes, 13 genes which belong to the same sub-family of RLKs which named CYSTEINE-RICH REPEAT KINASES (CRKs). CRKs contain 1-4 copies of the C-X8-C-X2-C motif in their extracellular domains and CRKs expression can be induced by pathogenic bacteria such as Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). According to these clues, we have a hypothesis that these 13 CRKs may play an important roles in the regulation of pathogen defense. Using a loss-of-function approach, most crk T-DNA insertion mutant lines tested did not demonstrate an altered resistance phenotype after Pst DC3000 inoculation except crk18. This observation suggests that the remaining 12 CRKs are functionally redundant or are not involved in plant defense. To further clarify whether the selected 12 CRKs are involved in plant immunity, a gain-of-function approach by over-expression in wild-type Col-0 was performed. Our results indicate that CRK4, CRK6, CRK12, CRK24 and CRK36 over-expression lines are more resistant to Pst DC3000 than Col-0 wild-type plants. In addition, after flg22 treatment, these five CRKs over-expression lines showed enhanced reactive oxygen species (ROS) production, increased up-regulation of the plant immunity marker gene FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1), and a reinforced stomatal immunity. These results suggest that CRK4, CRK6, CRK12, CRK24 and CRK36 are involved in the plant innate immunity response. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:53:55Z (GMT). No. of bitstreams: 1 ntu-104-R01b42033-1.pdf: 2939882 bytes, checksum: 6a430818192735865c05cc262f9df20f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Contents
致謝 i 摘要 iii Abstract iv Abbreviations v Contents vi Introduction 8 Materials and Methods 11 Biological Materials and Growth Conditions 11 Pst DC3000 Bioassay 11 ROS Assay 11 Stomatal Assay 12 RNA Extraction and Gene Expression Analysis 12 Callose Staining Assay 13 Results 14 Most crk T-DNA insertion mutant lines show no disease phenotype after Pst DC3000 infection 14 Over-expression of some CRKs in Arabidopsis triggers resistance against Pst DC3000 14 CRK4, CRK6, CRK12, CRK24 and CRK36 OE lines exhibit higher flg22- triggered reactive oxygen species production 15 Upon Pst DC3000 infection, CRK4, CRK6, CRK12, CRK24 and CRK36 positively regulates stomatal closure 16 Overexpression of CRK4, CRK6, CRK12, CRK24 and CRK36 increases flg22-mediated induces up-regulation of PTI-responsive genes 16 Pst DC3000 hrcC- -mediated callose deposition is increased in some CRK OE lines 17 Conclusion 18 Discussion and future perspectives 19 Figures 23 Figures 1. Constitutive expression of CRK10 in transgenic Arabidopsis plants. 23 Figures 2. Constitutive expression of CRK13 in transgenic Arabidopsis plants. 24 Figures 3. Constitutive expression of CRK14 in transgenic Arabidopsis plants. 25 Figures 4. Constitutive expression of CRK37 in transgenic Arabidopsis plants. 26 Figures 5. Constitutive expression of CRK4 in transgenic Arabidopsis plants. 27 Figures 6. Constitutive expression of CRK24 in transgenic Arabidopsis plants. 28 Figures 7. Bacterial titers of CRKs OE lines. 29 Figures 8. Transgenic lines overexpressing CRKs show more ROS production after flg22 treatment. 30 Figures 9. Over-expression of CRKs alters stomatal immunity to Pst DC3000. 31 Figures 10. Expression analyses of the PTI marker gene FRK1 in Arabidopsis over-expressing CRKs. 32 Figures 11. Ectopic expression of CRKs affect Pst DC3000 hrcC- -mediated callose deposition. 33 Appendix 34 Appendix1. Phylogenetic tree of the CRK. 34 Appendix2. Lest of Primers Used for checking CRKs expression level. 35 Appendix3. Pst DC3000 infection in Col-0 and 12 crk T-DNA insertion mutant lines. 36 Appendix4. Illustration of CRK genes when introduced into pG103 Binary Vector. 36 Appendix5. Constitutive expression of CRK6 in transgenic Arabidopsis plants. 37 Appendix6. Constitutive expression of CRK12 in transgenic Arabidopsis plants. 38 Appendix7. Constitutive expression of CRK36 in transgenic Arabidopsis plants. 39 Appendix8. Bacterial titers of CRKs OE lines. 40 Appendix9. Over-expression of CRKs alters stomatal immunity to Pst DC3000. 41 Appendix10. Ectopic expression of CRKs affect Pst DC3000 hrcC- -mediated callose deposition. 42 References 43 | |
| dc.language.iso | en | |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 凝集素受體激?VI.2 | zh_TW |
| dc.subject | 防禦反應 | zh_TW |
| dc.subject | 細菌 | zh_TW |
| dc.subject | 多重複半胱胺酸受體激? | zh_TW |
| dc.subject | cysteine-rich repeat kinases | en |
| dc.subject | defense response | en |
| dc.subject | Arabidopsis | en |
| dc.subject | bacteria | en |
| dc.subject | lectin receptor kinase-VI.2 | en |
| dc.title | 分析多重複半胱胺酸受體激酶是否參與阿拉伯芥中的抗菌反應 | zh_TW |
| dc.title | Analysis of Cysteine-rich Receptor-like Kinases Involved in Arabidopsis Resistance to Bacteria | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳克強(Keqiang Wu, Professor),林乃君(Nai-Chun Lin) | |
| dc.subject.keyword | 阿拉伯芥,防禦反應,細菌,多重複半胱胺酸受體激?,凝集素受體激?VI.2, | zh_TW |
| dc.subject.keyword | Arabidopsis,defense response,bacteria,cysteine-rich repeat kinases,lectin receptor kinase-VI.2, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
