Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55258
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周宏農
dc.contributor.authorChiung-Wen Changen
dc.contributor.author張瓊文zh_TW
dc.date.accessioned2021-06-16T03:53:36Z-
dc.date.available2020-01-13
dc.date.copyright2015-01-13
dc.date.issued2015
dc.date.submitted2015-01-06
dc.identifier.citation丁蘭平、孫國棟、黄冰心、陳善文、陳偉洲,2013。溫度和鹽度對刺枝魚棲苔(Acanthophora spicifera)(红藻門,松節藻科)生長及其幾種光合色素的影響。海洋與湖沼,第44卷第4期。
江永棉、王仁瓊,1976。本省紫菜之種類及其分佈。中國水產。
汪文俊、許璞、王廣策、朱建一、林祥志、黃春愷,2008。紅毛菜生物學研究進展Ⅰ.生活史和有性生殖研究。海洋科學,第32卷,第4期,p. 92-96。
林書吟,2010。頭髮菜絲狀體R型藻藍蛋白之提純與性質分析及光質對其生長與色素含量的影響。國立臺灣大學漁業科學研究所碩士論文。
洪雅萍,1994。溫度、光線對杉葉紫菜絲狀體光合色素組成的影響。國立中興大學植物研究所碩士論文。
夏建榮、田其然、高坤山,2010。經濟海藻紅毛菜原位光合作用日變化。生態學報。30(6):1524-1531。
堀輝三,1993。藻類的生活史集成(褐藻、紅藻類)。第二卷:268-269。
黃淑芳,2000年,臺灣東北角海藻圖錄。國立臺灣博物館出版。
湯曉榮、費修綆,1998。光溫對紫菜絲狀體生長發育的影響。中國科學院海洋研究所調查研究報告。海洋科學,第4期。
楊志斌,1994。蠕枝藻絲狀體抽取藻紅素之探討。國立臺灣大學漁業科學研究所碩士論文。
楊詩韻,2008。臺灣產粉枝藻科系統分類研究和分子類緣關係探討。國立臺東大學生命科學研究所碩士論文。
楊嘉穎,2010。稀毛蜈蚣藻 Grateloupia sparsa 生活史及養殖育苗技術研究。國立臺灣大學漁業科學研究所碩士論文。
廖金鳳、江永棉,1978。杉葉紫菜絲狀體生長之研究。臺灣水產學會刊。
陳晴、江永棉、江蔡淑華,1981。臺灣產蠕枝藻科(海麵目,紅藻植物門)植物之形態研究:ɪ蠕蟲枝藻屬。師大生物學報,第十六期 p. 27-32。
鄭俊明,1992。紅藻絲狀體藻膽蛋白之高效層析及光譜之研究。國立臺灣大學漁業科學研究所碩士論文。
Avila M., Santelices B. and McLachlan J., 1986. Photoperiod and temperature regulation of the life history of Porphyra columbina(Rhodophyta, Bangiales)from central Chile. Canadian Journal of Botany. 64(9):1867-1872.
Brody M. and Emerson R., 1959. The effect of wavelength intensity of light on the proportion of pigments in Porphyridium cruentum. Botanical Society of America. p. 433-440
Broom J. E. S., Farr T. J. and Nelson W. A., 2004. Phylogeny of the Bangia (Rhodophyta)flora of New Zealand suggests a southern origin for Porphyra and Bangia. Molec. Phylog. Evol. 31:1197–1207.
Chang C.J., Yang Y. H., Liang Y. C., Chiu C. J., Chu K. H., Chou H. N. and Chiang B. L., 2011. A novel phycobiliprotein alleviates allergic airway inflammation by modulating immune responses. Am. J. Respir. Crit. Care Med. 183(1):15-25.
Chen L. C. M., Edelstein T. and McLachlan J., 1969. Bonnemaisonia hamifera hariot in nature and in culture. Journal of Phycology 5:211-220.
Chen L. C., M. and Taylor A. R. A., 1978. Medullary tissue culture of the red alga Chondrus crispus. Can. J. Bot. 56:883–6.
Chen M. and Tang Y. L., 2012. Investigation on the detrimental effects of salt stress on photosynthesis of Spirulina platensis. Agri-cultural Science & Technology. 13:1625-1627, 1770.
Cherng S. C., Cheng S. N., Tarn A. and Chou T. C., 2007. Anti-inflammatory activity of c-phycocyanin in lipopolysaccharide-stimulated RAW 264.7 macrophages. Life Sci. 81, 1431-1435.
Chiang Y. M. and Wang J. C., 1980. A study on the production of conchosporangia in the conchocelis phase of Porphyra angusta Okamura et Ueda. Phycologia. 19:20-24.
Cunningham F. X. J., Dennenberg R. J., Mustardy L. and Jursinic P. A., 1989. Stoichiometry of photosystem ɪ photosystem Ⅱ, and growth irradiance. Plant Physiology. 91:1179-1187.
Davision I. R., 1991. Environmental effects on algal photosynthesis:temperature. Journal Phycology. 27:2-8.
Ding L., Ma Y., Huang B. and Chen S., 2013. Effects of seawater salinity and temperature on growth and pigment contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta). BioMed Research International. p.1-10.
Dixon P. S., 1968. Life history of Bangia fuscopurpurea(Dillw.)Lyngb. in culture. Nature vol. 218:496-497.
Drew K. M., 1949. Conchocelis-phase on the light history of Porphyridium umilicalis(L.)Kiitz. Nature. 164:748-749.
Dring M. J., 1967. Effects of daylength on growth and reproduction of the conchocelis-phase of Porphyra tenera. J. Mar. Boil. 47:501-510.
Dring M. J., 1988. Photocontrol of development in algae. Ann. Rev. Plant Physiol. Mol. Biol. 39:157–174.
Eriksen N. T., 2008. Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol. 80:1-14.
Fogg G. E. and Thake B., 1987. Algal cultures and phytoplankton ecology(3rd edn.)University of Wisconsin Press.
Frazer A. W. J. and Brown M. T., 1995. Growth of the conchocelis phase of Porphyra columbina(Bangiales, Rhodophyta)at different temperatures and levels of light, nitrogen and phosphorus. Phycol. Res. 43:249∼253.
Franklin L. A., Krabs G. and Kuhlenkamp R., 2001. Blue light and UV‐A radiation control the synthesis of mycosporine‐like amino acids in Chondrus crispus(Florideophyceae). Phycology. 37:257–270.
Fredriksen S., Guiry,M. D. and Rueness J., 1994. Morphological and biosystematic studies of Gelidium pusillum and G. pulchellum(Gelidiaceae, Rhodophyta)from Europe. Phycologia. p. 462-470.
Gantt E. and Lipschultz C. A., 1974. Phycobilisomes of Porphyridium cruentum: pigment analysis. Biochem. 13:2960-2966.
Glazer A. N., 1994. Phycobiliproteins-a family of valuable, widely used fluorophores. J. Appl. Phycol. 6:105-112.
Glazer A. N. and Hixson C. S., 1975. Characterization of R-phycocyanin. Chromophore content of R-phycocyanin and C-phycoerythrin. J. Biol. Chem. 250(14):5487-5495.
Gretz M. R. and McCandless E. L.,1983. The galactan sulfates of the conchocelis phase of Porphyra leucostricta and Bangia atropurpurea(Rhodophyta). J. Exp. Bot. 34:705–711.
Haberlandt G., 1902. Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber. Akad Wiss Wien. Math-Naturwiss Kl., Abt. J. 111:69–92.
Hanelt D., 1992. Photoinhibition of photosynthesis in marine macrophytes of the South Chinese Sea. Marine Ecology Progress Series. 82:199-206.
He P. and Yarish C., 2006. The developmental regulation of mass cultures of free-living conchocelis for commercial net seeding of Porphyra leucosticta from Northeast America. Aquaculture. 257:373–381.
Iima M., Kinoshita T., Kawaguchi S. and Migita S., 1995. Cultivation of Grateloupia acuminata (Halymeniaceae, Rhodophyta)by regeneration from cut fragments of basal crusts and upright thalli. Appl. Phycol. 7:583-588.
Israel L., 2006. Technology for cultivation of Porphyra and other seaweeds in land-based sea water ponds. Patent Application Publication.
Karsten U. and West J. A.. 2000. Living in the intertidal zone — seasonal effects on heterosides and sun-screen compounds in the red alga Bangia atropurpurea (Bangiales). Journal of Experimental Marine Biology and Ecology. 254:221–234.
Kawamitsu Y., Driscoll T. and Boyer J. S., 2000. Photosynthesis during desiccation in an intertidal alga and a land plant. Plant Cell Physiology. 41(3):344-353.
King R. J. and Schramm W., 1976. Photosynthetic rates of the benthic marine algae in relation to light intensity and seasonal variations. Marine Biology 37:215-222.
Kirst G. O., 1996. Osmotic adjustment in phytoplankton and macroalgae. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds.121-129.
Korbee N., Figueroa F. L. and Aguilera J., 2005. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta(Bangiales, Rhodophyta). J. Photochem. Photobiol. B. 80:71–78.
Levasseur M., Thompson P. A., and Harrison P. J., 1993. Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29:87-595.
Levy I. and Gantt, E., 1988. Light acclimatation of Porphyridium cruentum:growth, photosynthesis and phycobilisomes. J. Phycol. 24:452.
Ley A. C. and Butler W. L., 1980. Effect of chromatic adaptation on the photochemical apparatus of photosynthesis in Porphyridum cruentum. Plant Physiol. 65:714-722.
Lindstrom S. C., Conitz J. M., Hall S. and Stekoll M. S., 2008.Induction of conchospore release:ecotypic variation in northeast Pacific species of Porphyra. J. Appl. Phycol. 20:331-340.
Li X., Yang L. and He P. M., 2011. Formation and growth of free-living conchosporangia of Porphyra yezoensis:effects of photoperiod, temperature and light intensity. Aquaculture Research. 42:1079-1086.
Lobban C. S. and Marrison P. J., 1997. Seaweed ecology and Phsiology. Cambride University Press.
Lu S. and Yarish C., 2011. Interaction of photoperiod and temperature in the development of conchocelis of Porphyra purpurea(Rhodophyta:Bangiales). J. Appl. Phycol. 23:89–96.
Mathieson A. C. and Burns R. L., 1971. Ecological studies of economic red algae. I. photosynthesis and respiration of Chondrus crispus Stackhouse and Gigartina stellata(Stackhouse)Batters. J. exp. mar. Biol. Ecol. 7:197-206.
Mercedes A. L., Francisco J. E. R. and Leonard V. E, 1995. Facts, problems, and needs in seaweed tissue culture:an appraisal. J. Phycol. 31:677-688.
Mukai, L.S., Craigie, J.S. and Brown, R.G., 1981. Chemical composition and structure of the cell walls of the conchocelis and thallus phases of Pyropia tenera(Rhodophyceae). J. Phycol. 17:192-198.
Muller K. M., Oliveira M.C., Sheath R.G. and Bhattacharya D., 2001. Ribosomal DNA phylogeny of the Bangiophycidae(Rhodophyta)and the origin of secondary plastids. Amer. J. Bot. 88:1390–1400.
Muller K.M., Sheath R.G., Vis M.L., Crease T.J. and Cole K.M., 1998. Biogeography and systematics of Bangia(Bangiales, Rhodophyta)based on the Rubisco spacer, rbcL gene and 18S rRNA gene sequences and morphometric analyses. Phycologia. 37:195–207.
Nelson W. A., 2007. Bangiadulcis gen. nov.: a new genus for freshwater filamentous Bangiales(Rhodophyta). TAXON. 56:883–886.
Notoya M. and Iijima N., 2003. Life history and sexuality of archeospore and apogamy of Bangia atropurpurea(Roth)Lyngbye(Bangiales, Rhodophyta)from Fukaura and Enoshima, Japan. Fisheries Sci. 69:799-805.
Oliveira M. C. and Bhattacharya D., 2000. Phylogeny of the Bangiophycidae(Rhodophyta)and the secondary endosymbiotic origin of algal plastids. Amer. J. Bot. 87:482–492.
Pereira R., Yarish C. and Sousa-Pinto I., 2006. The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica(Bangiales, Rhodophyta). Aquaculture. 252:66–78.
Rico J. M., 1991. Field studies and growth experiments on Gelidium latifolium from Asturias(northern Spain)Hydrobiologia. 221:67-75.
Romay C., Gonzalez R., Ledon N., Remirez D. and Rimbau V., 2003. C-phycocyanin:a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein and Peptide Science. 4:207-216.
Saga N., Uchida T. and Sakai Y., 1978. Clone Laminaria from single isolated cells. Bull. Jap. Soc. Sci. Fish. 44:87.
Shibata Y., JinS K. and Morita M.,1990. Arsenic compounds in the edible red alga, Porphyra fenera, and in nori and yakinori, food items produced from red algae. Applied Orgnnornerallic Chemisrry. 4:255-260.
Smith C. M. and Berry J. A., 1986. Recovery of photosynthesis after exposure of intertidal algae to osmotic and temperature stresses:comparative studies of species with differing distributional limits. Oecologia. 70:6-12.
Sommerfeld M. R. and Nichols H. W., 1970. Developmental and cytological studies of Bangia fuscopurpurea in culture. Am. J. Bot. 57: 640-648.
Sousa P. I., Murano E., Coelho S., Felga A. and Pereira R., 1999. The effect of light on growth and agar content of Gelidium pulchellum(Gelidiaceae, Rhodophyta) in culture. Hydrobiologia. 399:329–338.
Sun, A.S. and Tseng, C.K., 1996. Preliminary report on suspension culture of clone of Porphyra yezoensis conchosporangial filaments in the production of purple laver aquaculture. Ocean. Limn. Sin. 27(6):667–670.
Sudatti D. B., Fujii M. T., Rodrigues S. V., Turra A. and Pereira R. C., 2011. Effects of abiotic factors on growth and chemical defenses in cultivated clones of Laurencia dendroidea J. Agardh(Ceramiales, Rhodophyta). Mar. Biol.
Tang X., Jiang H., Fei X. and Yarish C., 2004. New life cycles of Porphyra katadae var. hemiphylla in culture. Journal of Applied Phycology. 16:505–511.
Tseng C. K. and Chang T. J., 1956. Conditions of Porphyra conchospores formation and discharge and the discharge rhythm. Acta. Bot. Sin. 5:33–48.
Umezaki I., 1960. On the development of reproductive organs of the genus Helminthocladia found in Japan-H. australis Harv and H. macrocephata Yamada. Acta. Phytotax. Geobot. 18:169-177.
Waaland J. R., Waaland S. D. and Bates G., 1974. Chloroplast structure and pigment composition in the red algae Griffithsia pacifica:regulation by light intensity. J. Phycol. 10:193–199.
Waaland J. R., Dickson L. G. and Carrier J. E., 1987. Conchocelis growth and photoperiodic control of conchospore release in Porphyra torta(Rhodophyta). J. Phycol. 23:399–406.
Waaland J. R., Dickson L. G. and Duffield E. C. S., 1990. Conchospore production and seasonal occurrence of some Porphyra species(Bangiales, Rhodophyta)in Washington State. Hydrobiologia. 204/205:453-459.
Wang W. J., Zhu J. Y., Xu J. R., Lin X. Z., Huang C. K., Song W. L., Peng G. and Wang G. C., 2008. Characterization of the life history of Bangia fuscopurpurea(Bangiaceae, Rhodophyta)in connection with its cultivation in China. Aquaculture. 278:101-109.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55258-
dc.description.abstract紅藻的絲狀體可為果孢子萌發而來(如頭髮菜屬),以及分離自葉片髓部之偽薄壁組織的絲狀組織(如海索麵目),本實驗室以絲狀體作為提取藻體內容物(藻膽蛋白)之原料,在操作上具有較簡便之優勢,因此,藉由測試不同環境條件(如溫度、光照強度、光週期及鹽度等),來探討三種紅藻絲狀體(頭髮菜、壇紫菜、蠕枝藻)的生長情形以及藻膽蛋白的含量差異以培養絲狀體而生產藻粉。由實驗結果可知在適宜的生長條件下,三種紅藻絲狀體之生長速率與生長密度會隨著溫度上升而上升,又以25℃為較佳的培養條件,然而當溫度上升至30℃時,絲狀體的生長便產生影響,使其最後收穫之密度下降,且藻體色素也明顯變淡。光照強度的影響也因不同藻種而異,頭髮菜絲狀體較適合於低光照(40μE/m2/s)下培養,壇紫菜卻在高光照(120μE/m2/s)下生長較佳,蠕枝藻在所設定的光照範圍培養下,其生長表現無顯著的差異,除壇紫菜絲狀體外,另外兩種絲狀體之生長密度皆隨著光照強度上升而下降。光照週期的結果可知24小時照光有助於縮短絲狀體的養成時間,故於養殖過程中增加光照時間,使其在短時間內達到一定的密度。鹽度的實驗結果發現到頭髮菜及蠕枝藻對鹽度的耐受性較廣,各組之生長密度及藻體色素變化皆無顯著差異,而壇紫菜以接近海水鹽度(35‰)為適宜培養的條件。總體而言,屬於組織培養的蠕枝藻絲狀體其生長速率和生長密度皆比孢子萌發的絲狀體高,相對較具有培養上的優勢,評估此三種紅藻絲狀體的生長狀況後,期望未來能於臺灣的露天環境下養殖,以生產藻粉作後續應用。zh_TW
dc.description.abstractThe filament are derived from spore germination(Bangiacean), and isolated from the pseudoparenchymatous of the of pith leaves(Nemaliales). In our laboratory, We extracted the algae contents(phycobiliproteins)from filamentous stage that it is more convenient. So this study tested the growth and phycobiliprotein content of three filamentous(Bangia fuscopurpurea, Pyropia haitanensis, Helminthocladia australis)under different environment factors that it can culture filamentous to produce the algae powder(Such as temperature, light intensity, photoperiod, and salinity). In the experimental results, the three species of red filaments have a higher growth rate and growth density as the temperature rises that it is under the appropriate growth condition. The best culture condition is 25℃. However the algae grew poorly at 30℃. The final biomass was very little. The algae pigment was also affected significantly. And light intensity also has different effects on each of the algae species. There are higher growth rate of the conchocelis of B. fuscopurpurea in the low light intensity(40μE/m2/s), while P. haitanensis grew better under the high light intensity(120μE/m2/s). H. australis is no significant differences in growth of the setting light range. Aside from P. haitanensis, the growth density is increased when the light intensity is decreased. The results of the light cycle that it can help the filament shorten the culture time by increasing the light time. Increasing light source in the breeding process can reach higher density in a shorter period of time. For salinity, B. fuscopurpurea and H. australis are more wider tolerance to salinity. And there were no significant of the growth density and algae color. However, P. haitanensis is more appropriate when it culture near the sea salinity(35‰). Overall, belonging to the tissue culture of filamentous of H. australis has higher growth rate and growth density than the spore germination of conchocelis. It also has relatively advantageous when cultured in the outdoors. After evaluating the growth conditions of three red algae filment in the laboratory, we expected that it has able to culture in the open-air environment of Taiwan in the future. it will can be produce the algae powder as the raw material for the subsequent application.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:53:36Z (GMT). No. of bitstreams: 1
ntu-104-R01b45004-1.pdf: 1131513 bytes, checksum: 94665658a95937baf99c463a2b6bfd62 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要………………………………………………………………………………ɪ
英文摘要………………………………………………………………………………Ⅱ
第一章 前言…………………………………………………………………………1
第二章 文獻回顧
2-1 紅藻的絲狀體…………………………………………………………………4
2-2紅藻絲狀體之藻膽蛋白的應用………………………………………………4
2-3果孢子萌發之紅藻絲狀體……………………………………………………5
2-4 組織再生之紅藻絲狀體………………………………………………………6
2-5 環境因子對海藻的生長及發育影響…………………………………………6
2-6 環境因子對紅藻之藻膽蛋白的影響…………………………………………8
第三章 材料與方法
3-1 親緣關係的分析……………………………………………………………10
3-2 藻種的來源與培養…………………………………………………………10
3-3 溫度、光照強度、光照週期及鹽度與紅藻絲狀體的生長實驗
3-3-1 溫度對紅藻絲狀體生長的影響………………………………………11
3-3-2 光照對紅藻絲狀體生長的影響………………………………………11
3-3-3 光照週期對紅藻絲狀體生長的影響…………………………………11
3-3-4 鹽度對紅藻絲狀體生長的影響………………………………………12
3-4 紅藻絲狀體之生長密度測量
3-4-1 絲狀體的生長密度測定………………………………………………12
3-4-2 生長速率………………………………………………………………12
3-5 藻膽蛋白之萃取……………………………………………………………13
3-6 統計分析……………………………………………………………………13
第四章 結果與討論
4-1藻種親緣鑑定結果……………………………………………………………14
4-2環境因子對三種紅藻絲狀體的生長情形
4-2-1不同溫度對紅藻絲狀體生長之影響…………………………………14
4-2-2 不同光照強度對紅藻絲狀體之生長影響……………………………16
4-2-3 不同光週期對紅藻絲狀體之生長影響………………………………18
4-2-4 不同鹽度對紅藻絲狀體之生長影響…………………………………19
4-3 評估室外露天養殖紅藻絲狀體之可能性…………………………………21
第五章 參考文獻……………………………………………………………………23
圖目錄
Fig. 1 Bangia生活史…………………………………………………………………35
Fig. 2 Pyropia生活史…………………………………………………………………36
Fig. 3組織培養之葉片內部構造……………………………………………………37
Fig. 4使用rbcL基因定序法鑑定藻種………………………………………………38
Fig. 5三種紅藻絲狀體培養在不同溫度之生長速率………………………………39
Fig. 6三種紅藻絲狀體培養在不同光照強度之生長速率…………………………40
Fig. 7三種紅藻絲狀體培養在不同光週期之生長速率.……………………………41
Fig. 8三種紅藻絲狀體培養在不同鹽度之生長速率………………………………42
Fig. 9三種紅藻絲狀體培養在不同鹽度之藻體顏色差異…………………………43
表目錄
表1 SWM-III 培養基成分…………………………………………………………44
表2三種紅藻絲狀體培養在不同溫度之採收密度…………………………………45
表3三種紅藻絲狀體培養在不同溫度之藻紅蛋白含量……………………………46
表4三種紅藻絲狀體培養在不同光照強度之採收密度……………………………47
表5三種紅藻絲狀體培養在不同光照強度之藻紅蛋白含量………………………48
dc.language.isozh-TW
dc.subject紅藻zh_TW
dc.subject絲狀體zh_TW
dc.subject藻膽蛋白zh_TW
dc.subject環境條件zh_TW
dc.subject培養zh_TW
dc.subjectcultureen
dc.subjectred algaeen
dc.subjectfilamenten
dc.subjectphycobiliproteinen
dc.subjectenvironment factorsen
dc.title環境因子對紅藻絲狀體之生長條件探討zh_TW
dc.titleEffect of environmental factors on the growth of Rodophycean filamentsen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃淑芳,陳淑美
dc.subject.keyword紅藻,絲狀體,藻膽蛋白,環境條件,培養,zh_TW
dc.subject.keywordred algae,filament,phycobiliprotein,environment factors,culture,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2015-01-06
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved