Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55257
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏宏宇(Hung-Yu Wei)
dc.contributor.authorChan-Yu Tung 董展羽en
dc.contributor.author董展羽zh_TW
dc.date.accessioned2021-06-16T03:53:33Z-
dc.date.available2016-02-04
dc.date.copyright2015-02-04
dc.date.issued2014
dc.date.submitted2015-01-06
dc.identifier.citation[1] E. Perahia, C. Cordeiro, M. Park, and L. Yang, “IEEE 802.11ad: Defining the Next Generation Multi-Gbps Wi-Fi,” in 2010 7th IEEE Consumer Communications and Networking Conference (CCNC), Jan 2010, pp. 1–5.
[2] A. Maltsev, R. Maslennikov, A. Sevastyanov, A. Lomayev, A. Khoryaev, A. Davydov, and V. Ssorin, “Characteristics of Indoor Millimeter-Wave Channel at 60 GHz in Application to Perspective WLAN System,” in 2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), April 2010, pp. 1–5.
[3] A. Maltsev, R. Maslennikov, A. Sevastyanov, A. Khoryaev, and A. Lomayev, “Experimental Investigations of 60 GHz WLAN Systems in Office Environment,” vol. 27, no. 8, October 2009, pp. 1488–1499.
[4] ——, “Experimental Investigations of 60 GHz WLAN Systems in Office Environment,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 8, pp. 1488–1499, October 2009.
[5] Z. Genc, B. Dang, J. Wang, and I. Niemegeers, “Home Networking at 60 GHz: Challenges and Research Issues,” annals of telecommunications, vol. 63, no. 9-10, pp. 501–509, 2008. [Online]. Available: http://dx.doi.org/10.1007/s12243-008-0047-0
[6] M. Jacob, C. Mbianke, and T. Kurner, “A Dynamic 60 GHz Radio Channel Model For System Level Simulations With MAC Protocols For IEEE 802.11ad,” in 2010 IEEE 14th International Symposium on Consumer Electronics (ISCE), June 2010, pp. 1–5.
[7] S. Hur, T. Kim, D. Love, J. Krogmeier, T. Thomas, and A. Ghosh, “Millimeter Wave Beamforming for Wireless Backhaul and Access in Small Cell Networks,” IEEE Transactions on Communications, vol. 61, no. 10, pp. 4391–4403, October 2013.
[8] J. Nsenga, A. Bourdoux, and F. Horlin, “Mixed Analog/Digital Beamforming for 60 GHz MIMO Frequency Selective Channels,” in 2010 IEEE International Conference on Communications (ICC), May 2010, pp. 1–6.
[9] C.-S. Choi, M. Piz, and E. Grass, “Performance Evaluation of Gbps OFDM PHY Layers For 60-GHz Wireless LAN Applications,” in 2009 IEEE 20th International Symposium on Personal, Indoor, and Mobile Radio Communications, Sept 2009, pp. 1657–1661.
[10] X. Zhu, A. Doufexi, and T. Kocak, “Throughput and Coverage Performance for IEEE 802.11ad Millimeter-Wave WPANs,” in 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), May 2011, pp. 1–5.
[11] H. Dai, K.-W. Ng, and M.-Y. Wu, “An Overview of MAC Protocols with Directional Antennas in Wireless ad hoc Networks,” pp. 84–84, July 2006.
[12] M. Gong, D. Akhmetov, R. Want, and S. Mao, “Directional CSMA/CA Protocol with Spatial Reuse for mmWave Wireless Networks,” in 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), Dec 2010, pp. 1–5.
[13] C. Barati, S. Hosseini, S. Rangan, P. Liu, T. Korakis, and S. Panwar, “Directional Cell Search For Millimeter Wave Cellular Systems,” pp. 120–124, June 2014.
[14] I. Jawhar and J. Wu, “Resource Allocation in Wireless Networks Using Directional Antennas,” in Fourth Annual IEEE International Conference on Pervasive Computing and Communications 2006, March 2006, pp. 10 pp.–327.
[15] L. Bao and J. Garcia-Luna-Aceves, “Transmission Scheduling in Ad Hoc Networks with Directional Antennas,” in Proceedings of the 8th Annual International Conference on Mobile Computing and Networking, ser. MobiCom ’02. New York, NY, USA: ACM, 2002, pp. 48–58. [Online]. Available: http://doi.acm.org/10.1145/570645.570652
[16] D. Lal, R. Toshniwal, R. Radhakrishnan, D. Agrawal, and J. Caffery, “A Novel MAC Layer Protocol for Space Division Multiple Access in Wireless Ad Hoc Networks,” in Eleventh International Conference on Computer Communications and Networks 2002 Proceedings, Oct 2002, pp. 614–619.
[17] J. Wang, Z. Lan, C. woo Pyo, T. Baykas, C.-S. Sum, M. Rahman, J. Gao, R. Funada, F. Kojima, H. Harada, and S. Kato, “Beam Codebook Based Beamforming Protocol for Multi-Gbps Millimeter-Wave WPAN Systems,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 8, pp. 1390–1399, October 2009.
[18] A. Ghosh, T. Thomas, M. Cudak, R. Ratasuk, P. Moorut, F. Vook, T. Rappaport, G. MacCartney, S. Sun, and S. Nie, “Millimeter-Wave Enhanced Local Area Systems: A High Data-Rate Approach for Future Wireless Networks,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1152–1163, June 2014.
[19] A. Swindlehurst, E. Ayanoglu, P. Heydari, and F. Capolino, “Millimeter-Wave Massive MIMO: The Next Wireless Revolution?” IEEE Communications Magazine, vol. 52, no. 9, pp. 56–62, September 2014.
[20] T. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. Wong, J. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5g cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013.
[21] M. Akdeniz, Y. Liu, M. Samimi, S. Sun, S. Rangan, T. Rappaport, and E. Erkip, “Millimeter Wave Channel Modeling and Cellular Capacity Evaluation,” Selected Areas in Communications, IEEE Journal on, vol. 32, no. 6, pp. 1164–1179, June 2014.
[22] S. Sun, G. MacCartney, M. Samimi, S. Nie, and T. Rappaport, “Millimeter wave Multi-Beam Antenna Combining For 5G Cellular Link Improvement in New York City,” in 2014 IEEE International Conference on Communications (ICC), June 2014, pp. 5468–5473.
[23] S. Larew, T. Thomas, M. Cudak, and A. Ghosh, “Air Interface Design and Ray Tracing Study for 5G Millimeter Wave Communications,” in 2013 IEEE Globecom Workshops (GC Wkshps), Dec 2013, pp. 117–122.
[24] S. Rangan, T. Rappaport, and E. Erkip, “Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges,” Proceedings of the IEEE, vol. 102, no. 3, pp. 366–385, March 2014.
[25] V. Vishnevsky, A. Larionov, and S. Frolov, “Design and Scheduling in 5G Stationary and Mobile Communication Systems Based on Wireless Millimeter-Wave Mesh Networks,” in Distributed Computer and Communication Networks, ser. Communications in Computer and Information Science, V. Vishnevsky, D. Kozyrev, and A. Larionov, Eds. Springer International Publishing, 2014, vol. 279, pp. 11–27. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-05209-0_2
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55257-
dc.description.abstract下世代的高速行動網路將發展於毫米波傳輸。無限行動網路的資源分配是許多研究發展的重要領域,特別是 5G 的下世代網路。在這個論文裡,我們將設計一個指向性的資源分配演算法。主要針對從基地台下載到行動裝置的資源分配。這個演算法稱之為 PWBU Approach,設計於達到次等優化,但省下許多處理時間。在這篇論文的末端我們將證明這個演算法可以把使用者有效率的分配到這個時槽裡頭,且用低干擾的指向性訊號做完資源分配。這些資源分配的結果,將會跟窮舉法所找出來的絕對最佳分配做比較。zh_TW
dc.description.abstractNext generation cellular system applies mmWave for high rate transmission. Radio resource allocation is a critical problem in 5G mmWave system. In this thesis, we design a resource allocation algorithm, mainly on downlink data transmission by Base Station (BS) to User Equipments (UEs) implemented using directional antennas. The resource allocation is accomplished by Pair-Wisely Bottom-Up (PWBU) approach, targeting a time-efficient allocation based on SINR value feedbacks. We utilize adaptive smart antennas capable of simultaneous transmission toward different target device ends. The goal of allocation is to determine which UEs to serve in each time-slots. At the end of this thesis, we will evaluate performance of PWBU heuristic allocation. The designed algorithm will achieve time efficient and sub-optimal resource allocation compared to the results of exhaustive optimization.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:53:33Z (GMT). No. of bitstreams: 1
ntu-103-R01942126-1.pdf: 3827950 bytes, checksum: 018f7a328ef09e68eebc220a0752ba90 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
1 Introduction 1
2 Related Researches 5
2.1 Current mmWave Technologies at 60GHz . . . . . . . . . . . . . . . . . . . . 6
2.2 More on Directional Beamform Antennas . . . . . . . . . . . . . . . . . . . . 8
2.3 Relationship to 5G with mmWave . . . . . . . . . . . . . . . . . . . . . . . . 9
3 System Model 12
3.1 Physical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 Physical Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Resource Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Propagation Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Propagation for LoS . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Propagation for NLoS with LoS . . . . . . . . . . . . . . . . . . . . . 17
3.3 Throughput Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Antenna Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 Device Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 PWBU Heuristic Algorithm 24
4.1 Introduction to PWBU Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Subliminary Allocation Functions . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Multiple UEs Categorization . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Multiple UEs Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.4 Multiple UEs Fill-Up Allocation . . . . . . . . . . . . . . . . . . . . . 28
4.1.5 UEs Beam Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Single UE Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Pair Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Interference Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Derivation of Receiving Zone . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Multiple UEs Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Multiple UEs Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Multiple UEs Fill-Up Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 UEs Beam Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 Exhaustive Approach 48
5.1 Exhaustive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.1 Combination Function: arrangeDivisionAccess . . . . . . . . . . . . . 51
5.2 Exhaustive Fill-Up Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6 PWBU Heuristic With SINR 60
6.1 Heuristic Algorithm Modification . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Single Allocation by SINR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Pair Allocation by SINR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 Multiple UEs Categorization by SINR . . . . . . . . . . . . . . . . . . . . . . 65
6.5 Other Functions with SINR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7 Miscellaneous Concepts 67
7.1 Pair Allocation by Inequality Approach . . . . . . . . . . . . . . . . . . . . . 67
7.1.1 Analytical Approach in Quadrant-I . . . . . . . . . . . . . . . . . . . 69
7.1.2 Analytical Approach in Quadrant-II . . . . . . . . . . . . . . . . . . . 69
7.1.3 Analytical Approach in Quadrant-III . . . . . . . . . . . . . . . . . . . 70
7.1.4 Analytical Approach in Quadrant-IV . . . . . . . . . . . . . . . . . . . 71
7.2 Preference of Simultaneous Beamforming over TDMA . . . . . . . . . . . . . 71
7.3 Maximum UEs per Time-Slot . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3.1 Defining Maximum UEs in Provided Sector . . . . . . . . . . . . . . . 75
7.3.2 Defining Maximum UEs by Average SINR . . . . . . . . . . . . . . . 76
8 Performance Evaluation 79
8.1 Examinations in a Sector Area . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.1.1 Sector Allocation Without Fill-Up . . . . . . . . . . . . . . . . . . . . 81
8.1.2 Sector Allocation With Fill-Up . . . . . . . . . . . . . . . . . . . . . . 82
8.2 Examination in All Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2.1 Allocation Without Fill-Up . . . . . . . . . . . . . . . . . . . . . . . . 86
8.2.2 Allocation With Fill-Up . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.3 Fairness Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.3.1 Measurement in Sector Area . . . . . . . . . . . . . . . . . . . . . . . 92
8.3.2 Measurement in All Locations . . . . . . . . . . . . . . . . . . . . . . 92
9 Conclusion 94
Bibliography 94
dc.language.isoen
dc.subject指向性天線zh_TW
dc.subject毫米波zh_TW
dc.subject5Gzh_TW
dc.subject傳輸時間空間演算法zh_TW
dc.subject智慧型天線zh_TW
dc.subjectDirectional Antennaen
dc.subjectAdaptive Antenna Arrayen
dc.subjectTime- Spatial Resource Allocationen
dc.subjectmmWaveen
dc.subjectBeamformingen
dc.title下世代指向性毫米波媒體(MAC)資源分配最佳化zh_TW
dc.titleNext-Generation Directional mmWave MAC Time-Spatial Resource Allocationen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張家俊,周俊廷,謝宏昀
dc.subject.keyword指向性天線,毫米波,5G,傳輸時間空間演算法,智慧型天線,zh_TW
dc.subject.keywordDirectional Antenna,Beamforming,Adaptive Antenna Array,Time- Spatial Resource Allocation,mmWave,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2015-01-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved