Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55246
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorJung-Hung Changen
dc.contributor.author張榮宏zh_TW
dc.date.accessioned2021-06-16T03:53:04Z-
dc.date.available2020-03-13
dc.date.copyright2015-03-13
dc.date.issued2014
dc.date.submitted2015-01-09
dc.identifier.citation[1]. Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539-541 (1990).
[2]. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121-128 (1999).
[3]. C. D. Muller, et al. Multi-colour organic light-emitting displays by solution processing. Nature 421, 829-833 (2003).
[4]. Hebner, T. R., Wu, C. C., Marcy, D., Lu, M. H. & Sturm, J. C. Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett. 72, 519-521 (1998).
[5]. Pardo, D.A., Jabbour, G. E. & Peyghambarian, N. Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater. 12, 1249-1252 (2000).
[6]. Ko, L. C. et al. Multi-layer organic light-emitting diodes processed from solution using phosphorescent dendrimers in a polymer host. Org. electronics 11, 1005-1009 (2010).
[7]. Yimsiri, P. & Mackley, M. R. Spin and dip coating of light-emitting polymer solutions: matching experiment with modelling. Chem. Eng. Sci. 61, 3496-3505 (2006).
[8]. Gustafsson, G. et al. Flexible light-emitting diodes made from soluble conducting polymer. Nature 11, 477-479 (1992).
[9]. Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90, 5048-5051 (2001).
[10]. Zeng, W. et al. Polymer light-emitting diodes with cathodes printed from conducting Ag paste. Adv. Mater. 19, 810-814 (2007).
[11]. Zheng, H. et al. All-solution processed polymer light-emitting diode displays. Nat. Commun. 4, 1971 (2013).
[12]. Yu, Z. et al. Highly flexible polymer light-emitting devices using carbon nanotubes as both anodes and cathodes. SPIE 1, 011003 (2011).
[13]. Pei, Q., Yu, G., Zhang, C., Yang, Y. & Heeger, A. J. Polymer light-emitting electrochemical cells. Science 269, 1087-1088 (1995).
[14]. Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Fully solution-based fabrication of flexible light-emitting device at ambient conditions. J. Phys. Chem. C 117, 16632-16639 (2013).
[15]. Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photonics 7, 818-824 (2013).
[16]. Matyba, P. et al. Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4, 637-642 (2010).
[17]. Yu, G., Cao, Y., Andersson, M., Gao, J. & Heeger, A. Polymer light-emitting electrochemical cells with frozen p-i-n junction at room temperature. J. Adv. Mater. 10, 385-388 (1998).
[18]. Shin, J. H., Xiao, S., Fransson, A. & Edman, L. Polymer light-emitting electrochemical cells: frozen-junction operation of an “ionic liquid” device. Appl. Phys. Lett. 87, 043506 (2005).
[19]. Hu, L., Kim, H. S., Lee, J. Y., Peumans, P. & Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nono 4, 2955-2963 (2010).
[20]. Wu, Z. et al. Transparent, conductive carbon nanotube films. Science, 305, 1273-1275 (2004).
[21]. Kirchmeyer, S. & Reuter, K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 15, 2077-2088 (2005).
[22]. Kim, K. S. et al Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710 (2009).
[23]. Lee, M. S. et al. High-performance, transparent, and stretchable electrodes using graphene−metal nanowire hybrid structures. Nano lett. 13, 2814-2821 (2013).
[24]. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008).
[25]. Novoselov, K. S. et al. Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197-200 (2005).
[26]. Geim, A. K. & Novoselov, S. The rise of graphene. Nat. Mater. 6, 183-191 (2007).
[27]. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).
[28]. Pang, S., Hernandez, Y., Feng, X. & Mullen K. Graphene as transparent electrode material for organic electronics. Adv. Mater. 23, 2779-2795 (2011).
[29]. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270-274 (2008).
[30]. Takagi, Y. & Okada, S. Theoretical calculation for the ultraviolet optical properties of single-walled carbon nanotubes. Phys. Rev. B 79, 233406 (2009).
[31]. Weber, C. M. et al. Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV–Vis region. Small 6, 184-189 (2010).
[32]. Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711-2713 (2007).
[33]. Bae, S. et al. Roll-to roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574-578 (2010).
[34]. Tao, L. et al. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films. Acs Nano. 6, 2319-2325 (2012).
[35]. Song, J. et al. A general method for transferring graphene onto soft surfaces. Nat. Nanotechnol. 8, 356-362 (2013).
[36]. Han, T. H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photon. 6, 105-110 (2012).
[37]. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666 (2004).
[38]. Vitchev, R. et al. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition. Nanotechnology 21, 095602 (2010).
[39]. Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268-4272 (2009).
[40]. Li, X. et al. Large-area synthesis of high quality and uniform graphene films on copper foils. Science 324, 1312-1314 (2009).
[41]. Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359-4363 (2009).
[42]. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710 (2009).
[43]. Lin, W. H. et al. A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano. 8, 1784-1791 (2014).
[44]. Han, T. H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics, 6, 105-110 (2012).
[45]. Song, J. et al. A general method for transferring graphene onto soft surfaces. Nat. Nanotechnol. 8, 356-362 (2013).
[46]. Cook, J. H., Attar, H. A. A. & Monkman, A. P. Effect of PEDOT-PSS resistivity and work function on PLED persormance. Org. Electron. 15, 245-250 (2014).
[47]. Lin, H. W., Lin, W. C., Chang, J. H. & Wu, C. I. Solution-processed hexaazatriphenylene hexacarbonitrile as a universal hole-injection layer for organic light-emitting diodes. Org. Electron. 14, 1204-1210 (2013).
[48]. Lin, C. Y. et al. A thermally cured 9,9-diarylfluorene-based triaryldiamine polymer displaying high hole mobility and remarkable ambient stability. J. Mater. Chem. 19, 3618-3623 (2009).
[49]. Du, B. S. et al. Os(II) based green to red phosphors: A great prospect for solution-processed, highly efficient organic light-emitting diodes. Adv. Funct. Mater. 22, 3491-3499 (2012).
[50]. Kim, Y. K., Kim, J. W. & Park Y. Energy level alignment at a charge generation interface between 4,4’-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11- hexaazatriphenylene-hexacarbonitrile. Appl. Phys. Lett. 94, 063305 (2009).
[51]. Bolink, H. J., Brine, H., Coronado, E. & Sessolo, M. Phosphorrescent hybride organic-inorganic light-emitting diodes. Adv. Mater. 22, 2198-2201 (2010).
[52]. Wu, H. et al. Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers. Adv. Mater. 20, 1926-1830 (2004).
[53]. Zhang, Y., Huang, F., Chi, Y. & Jen, A. K. Y. Highly efficient white polymer light-emitting diodes based on nanometer-scale control of the electron injection layer morphology through solvent processing. Adv. Mater. 20, 1565-1570 (2008).
[54]. Yook, K. S. & Lee, J. Y. Solution processed high efficiency blue and white phosphorescent organic light-emitting diodes using a high triplet energy exciton blocking layer. Org. Electron. 12, 1293-1297 (2011).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55246-
dc.description.abstractDirect photoemission spectroscopy (PES) has been widely used to investigate the interfaces and surfaces of organic materials, including ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). However, inverse photoemission spectroscopy (IPES) is more difficult to obtain and not widely used as direct PES due to its extremely low yield of inverse photoemission process. The IPES is set up in this work. With combination of UPS and IPES in the identical equipment, more details of the electrical properties in the organic materials can be investigated.
In this dissertation, the mechanism of charge generation and transport in tandem organic light emitting diodes (OLEDs) and AC-driven OLEDs are explored via UPS and IPES simultaneously. Moreover, the application and physical mechanisms of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) in organic devices are also investigated with XPS, UPS and IPES, including the charge generation mechanism of tandem-OLEDs based on n-type doped ETL/HAT-CN structure and the mechanism of improved stability of OLEDs with HAT-CN as hole injection layers.
On the other hand, graphene thin films have a strong potential to be transparent electrodes in organic electronic devices with excellent conductivity and highly transparent properties. In this dissertation, n-type doped graphene with a new polymer-free transfer method is achieved. With n-doped multilayer graphene as top cathodes, all-solution-processed transparent OLEDs could be fabricated without any vacuum process.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:53:04Z (GMT). No. of bitstreams: 1
ntu-103-F97941068-1.pdf: 8754223 bytes, checksum: 6bb129475714772f51cca3e18d4f9c1c (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 I
Abstract II
Content III
List of Figures VI
List of Tables X
Chapter 1
Introduction 1
1.1 Organic light-emitting diodes (OLEDs) 1
1.1.1 Development and applications of OLEDs 1
1.1.2 Basic structures and operation principles of OLEDs 3
1.2 Background of electron energetics at surfaces and interfaces 6
1.3 Background of Graphene 9
1.4 Motivation 11
1.4.1 Physical mechanisms in OLEDs 11
1.4.2 Achievement of all solution-processed transparent OLEDs 11
1.5 Organization of the thesis 13
References 14
Chapter 2
Experiment 15
2.1 Direct photoemission spectroscopy (PES) 15
2.1.1 Ultra-violet photoemission spectroscopy (UPS) 17
2.1.2 X-ray photoemission spectroscopy (XPS) 19
2.1.3 Cylindrical Mirror Analyzer (CMA) 20
2.2 Inverse photoemission spectroscopy (IPES) 21
2.3 Fabrication and measurement of OLEDs 28
2.3.1 Vacuum thermal-evaporated OLEDs 29
2.3.2 Solution-processed OLEDs 32
2.3.3 Characteristics of OLEDs 33
2.4 Transfer of Graphene 34
References 36
Chapter 3
The investigation of carrier generation and transport in tandem-OLEDs and AC-organic EL devices through UPS and IPES 37
3.1 Introduction 37
3.1.1 Background of Tandem-OLEDs 37
3.1.2 Background of AC-organic electroluminance devices 38
3.2 Mechanisms of carrier generation and transport in tandem-OLEDs devices with p-n junction CGLs 40
3.2.1 Tandem-OLED devices 40
3.2.2 The investigation of energy level alignment through UPS and IPES 44
3.3 Mechanisms of carrier generation and transport in AC-organic electroluminance devices 48
3.3.1 AC-driven organic EL devices 48
3.3.2 The investigation of energy level alignment through UPS and IPES 51
3.4 Summary 58
References 59
Chapter 4
The investigation of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) in OLED devices 61
4.1 Introduction 62
4.2 Electronic energy structure of HAT-CN 64
4.3 Charge generation process of tandem-OLEDs with HAT-CN as intermediate connectors 66
4.4 Stability improvement of OLEDs by insertion of HAT-CN as HILs 71
4.4.1 ITO substrate with UV-ozone and the insertion of HILs 71
4.4.2 Stability improvement of OLEDs by inserting HILs 74
4.5 Summary 78
References 79
Chapter 5
Fully Solution-Processed Transparent OLEDs with Graphene as Top Cathodes 81
5.1 Introduction 82
5.1.1 Solution-processed OLEDs 82
5.1.2 Graphene as Transparent Electrode 83
5.2 Graphene transfer and doping 85
5.3 Solution processed multilayer polymer OLEDs 93
5.4 All-solution processed transparent polymer Graphene-OLEDs 100
5.5 Summary 108
References 109
Chapter 6
Summary and Future work 113
6.1 Summary 113
6.2 Future work 114
dc.language.isoen
dc.subject濕式製程透明有機發光二極體zh_TW
dc.subjectn-型摻雜zh_TW
dc.subject石墨烯zh_TW
dc.subject介面能階分佈zh_TW
dc.subject有機發光二極體zh_TW
dc.subject反轉式光電子能譜zh_TW
dc.subject光電子能譜zh_TW
dc.subjectn-type dopingen
dc.subjectUPSen
dc.subjectXPSen
dc.subjectIPESen
dc.subjectenergy level alignmenten
dc.subjectgrapheneen
dc.subjectOLEDsen
dc.subjectsolution-processed transparent OLEDsen
dc.title利用正向與反向光電子能譜分析儀分析OLEDs中介面能階匹配及
利用石墨烯實現全濕式製程穿透OLEDs元件之研究
zh_TW
dc.titleThe Investigation of Energy Level Alignment in OLEDs by Direct and Inverse Photoemission Spectroscopy &
&
All Solution-Processed Transparent OLEDs with Graphene as Top Cathodes
en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee吳忠幟,林恭如,汪根欉,陳美杏,陳裕宏
dc.subject.keyword光電子能譜,反轉式光電子能譜,有機發光二極體,介面能階分佈,石墨烯,n-型摻雜,濕式製程透明有機發光二極體,zh_TW
dc.subject.keywordOLEDs,UPS,XPS,IPES,energy level alignment,graphene,n-type doping,solution-processed transparent OLEDs,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2015-01-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
8.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved