請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55240完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟 | |
| dc.contributor.author | Cheng-Han Chiang | en |
| dc.contributor.author | 江承翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:52:49Z | - |
| dc.date.available | 2015-02-04 | |
| dc.date.copyright | 2015-02-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2015-01-11 | |
| dc.identifier.citation | [1] Kai Wang, et al., 'Design of compact freeform lens for application specific
light-emitting diode packaging,'OPTICS EXPRESS, Vol.18, No.2, pp. 413-425,18 January 2010 [2] ZexinFeng, et al., 'Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,' OPTICS EXPRESS, Vol.18, No.21, pp. 22020-22031,11 October 2010 [3] Hyunsuk Cho, et al., 'A Local Dimming Algorithm for Low Power LCD TVs Using Edge-type LED Backlight,'IEEE Transactions on Consumer Electronics, Vol.56, No.4, pp. 2054-2060, November 2010. [4] Gerard Harbers,et al., ' LED backlighting for LCD HDTV,' Journal of the SID,pp. 347-350, 2002. [5] YI Luo, et al., 'Design of compact and smooth free-form optical system with uniform illuminance for LED source,' OPTICS EXPRESS, Vol. 18, No. 9, pp. 9055-9063, 26 April 2010. [6] H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Journal of Optics A: Pure and Applied Optics, vol. 8, pp. S407-S429, 2006. 54 [7] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics, vol. 46, pp. 1281-1284, April, 1988. [8] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol., vol. 1, pp. 759-766, 1990. [9] T. R. Jay and M. B. Stern, “Preshaping photoresist for refractive microlens fabrication”, Optical Engineering ,vol. 33, pp. 3552-3555, 1994. [10] H. Ottevaere, B. Volckaerts, M. Vervaeke, P. Vynck, A. Hermanne, H. Thienpont, “Plastic Microlens Arrays by Deep Lithography with Protons: fabrication and characterization,” in Proceedings Symposium IEEE/LEOS Benelux Chapter, pp. 281-284, 2003. [11] K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Applied Optics, vol. 42, pp. 6349-6359, 2003. [12] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, ” Microjet fabrication of microlens arrays,” IEEE Photonics Technology Letters, vol. 6, pp. 1112-1114, Sep. 1994. [13] M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” 55 Optical Engineering, vol. 33, pp. 3547-3551, Nov. 1994. [14] H. P. Le, “Progress and Trends in Ink-jet Printing Technology” Journal of Imaging Science and Technology, vol. 42, 1998. [15] B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Advanced Materials, vol. 16, pp. 203-213, Feb. 2004. [16] B. J. Kang, C. K. Lee and J. H. Oh, “All-inkjet-printed electrical components and circuit fabrication on a plastic substrate,” Microelectronic Engineering, vol. 97, pp. 251-254, 2012. [17] P. Calvert, “Inkjet printing for materials and devices,” Chemistry of Materials, vol. 13, pp. 3299-3305, 2001. [18] H. Sirringhaus, T. Kawase, and R. H. Friend, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, 2123-2126, 2000. [19] C. N. Hoth, P. Schilinsky, S. A. Choulis, C. J. Brabec., “Printing highly efficient organic solar cell,” Nano Letters, vol.8, pp. 2806-2813, 2008. [20] C. Altman, “Microlens array fabrication via microjet printing technologies,” altman.casimirinstitute.net, 2007. [21] J.-P. Lu, W.-K. Huang, F.-C. Chen, “Self-positioning microlens arrays prepared using ink-jet printing,” SPIE, vol. 48, pp. 073606, 2009. 56 [22] H.-C. Wei and G.-D. J. Su, “Fabrication of transparent and self-assembled microlens array using hydrophilic effect and electric fielding pulling,” Journal of Micromechanics and Microengineering, vol. 22, pp. 025007, 2012. [23] XIONG Si-si, et al., 'Design of Freeform Surface Lens for LED of Random Light Distribution in Road Lighting,' Proc. of SPIE, Vol. 891315, pp. 891315-1-891315-8, 2012. [24] Liwei Sun, et al., 'Free-form microlens for illumination applications,' Applied optics, Vol. 48,No.29, pp. 5520-5527,October 2009. [25] H. Ries and A. Rabl, 'Edge-ray principle of nonimaging optics,' Optical Society of America, Vol. 11, No.4,pp. 1256-1259,April 1994. [26] Liwei Sun, et al., 'Free-form microlens for illumination applications,' APPLIED OPTICS, Vol. 48, No. 29, pp.5520-5527, October 2009. [27] F. Chen, et al., 'Free-form lenses for high illumination quality light-emitting diode MR 16 lamps,'Optical Engineering, Vol. 48, pp. 123002-1 – 123002-7 ,December 2009. [28] R. Forch, H. Schonherr, A. Tobias, and A. Jenkins, Surface Design: Applications in Bioscience and Nanotechnology, Wiley-VCH, 2009. [29] C. A. Miller, P. Neogi, “Interface phenomena: equilibrium and dynamic effects,” in Surfactant Science Series, vol. 17, 1985. 57 [30] O. P. Parida, and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” in International Conference on Optics and Photonics CSIO, Nov. 2009. [31] S.-M. Kuo and C.-H. Lin, “Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method”, Optics Express, vol. 18, pp. 19114-19119, 2010. [32] C.-J. Chang, C.-S. Yang, L.-H. Lan, P.-C, Wang and F.-G. Tseng, “Fabrication of a SU-8-based polymer-enclosed channel with a penetrating UV/ozone-modified interior surface for electrokinetic separation of proteins,” J. Micromech. Microeng, vol. 20, pp. 1-11, 2010. [33] H.-C. Wei and G.-D. J. Su, “Fabrication of transparent and self-assembled microlens array using hydrophilic effect and electric fielding pulling,” Journal of Micromechanics and Microengineering, vol. 22, pp. 025007, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55240 | - |
| dc.description.abstract | 本論文主要介紹利用三維微透鏡陣列取代光學擴散片,進而縮小背光模組尺寸,以及降低能源消耗,使顯示設備能以各多元的方式設計。文中以噴墨、翻模等技術製作微透鏡,此方法利用SU-8光阻與自身維疏水性之特性,並使用噴墨機台製作出凸透鏡,之後再使用蔽蔭遮罩和紫外線�臭氧機進行SU-8基層表面的改質,使之變為親水性,製作出凹透鏡,此方法可於同一平面 (玻璃基板) 上同時製作出凹凸透鏡。製作出此凹凸透鏡後,再利用3D列印技術列印出與模擬相同之模具,並與玻璃基板結合,翻印後可得與模擬相同之為透鏡陣列。
此方法皆提供了簡單、符合成本效益、並利用翻印技術可大量製作之微透鏡製程。 | zh_TW |
| dc.description.abstract | In this thesis we demonstrated a novel design and fabrication processes of convex and concave microlenses on top of light emitting diodes by using hydrophilic confinement effect and a 3D-printer. We used energy conservation and lawnmower algorithm to design a freeform lens and transform the freeform surface into heterogeneous microlenses. The diameters of microlenses on top of a light emitting diode are 500μm and 200μm for concave and convex shapes, respectively. We made heterogeneous microlenses using hydrophilic confinement effect of the SU-8 photoresist by an inkjet printer on a glass substrate. Then we assembled it with a mold made by a 3D-printer to perform replication process. In the replication process, we filled polydimethylsiloxane (PDMS) into the mold to reproduce heterogeneous microlenses. This heterogeneous microlens array can improve the light distribution uniformity of light-emitting diode from 30% to 70%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:52:49Z (GMT). No. of bitstreams: 1 ntu-103-R01941107-1.pdf: 2252583 bytes, checksum: 9a0928b02d132fd288d5b57d79963d70 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 ....................................................................................................................................i
中文摘要 .......................................................................................................................... ii ABSTRACT .................................................................................................................... iii CONTENTS .....................................................................................................................iv LIST OF FIGURES ..........................................................................................................vi LIST OF TABLES ............................................................................................................xi Chapter 1 Introduction .............................................................................................. 1 1.1 Free form lens ................................................................................................. 1 1.2 Review fabrication of technologies of microlens array .................................. 3 1.2.1 Thermal reflow of photoresist ............................................................... 6 1.2.2 Laser beam writhing .............................................................................. 6 1.2.3 Deep lithography with photons ............................................................. 7 1.2.4 Laser ablation ........................................................................................ 8 1.3 Inkjet printing process .................................................................................. 10 Chapter 2 Simulation result and working Principles of Fabrication Process .... 13 2.1 Introduction of simulation of free form lens................................................. 13 2.2 Simulation result ........................................................................................... 16 2.2.1 Free form lens of square target plane ............................................. 15 2.2.2 Microlens array ............................................................................... 17 2.2.3 Distribution of LED light source .................................................... 18 2.3 Principles of hydrophilicity and hydrophobicity .......................................... 19 2.4 SU-8 photoresist ........................................................................................... 20 v 2.5 Ultra-violet (UV)/ozone treatment ............................................................... 21 2.6 Ultra-violet (UV)/ozone treatment ............................................................... 22 2.7 Fabrication process ....................................................................................... 23 2.7.1 SU-8 photoresist base layer ............................................................ 23 2.7.2 Inkjet printing of microlens array ................................................... 24 2.7.3 UV/ozone treatment ........................................................................ 25 2.7.4 UV exposure of microlens arrays ................................................... 26 2.7.5 3D-printing ..................................................................................... 27 Chapter 3 Inkjet printing fabrication system ........................................................ 30 3.1 Inkjet Printer Framework .............................................................................. 30 3.1.1 The gas pressure and ink supply control system ............................ 32 3.1.2 The dual-axis motion platform system ........................................... 34 3.1.3 The drop monitoring system ........................................................... 34 3.1.4 Program controlling system ............................................................ 35 Chapter 4 Experimental results .............................................................................. 42 4.1 Heterogeneous surface of microlens array .................................................... 42 4.2 Light distribution .......................................................................................... 44 4.2.1 Uniformity ...................................................................................... 47 4.2.2 Efficiency ........................................................................................ 48 4.3 Different lens curvature and uniformity ....................................................... 50 Chapter 5 Conclusion .............................................................................................. 52 REFERENCE .................................................................................................................. 53 Published Paper ............................................................................................................... 58 | |
| dc.language.iso | en | |
| dc.subject | 親水性 | zh_TW |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | 噴墨 | zh_TW |
| dc.subject | 微透鏡 | zh_TW |
| dc.subject | 疏水性 | zh_TW |
| dc.subject | microlens | en |
| dc.subject | hydrophilicity | en |
| dc.subject | hydrophilic | en |
| dc.subject | confinement | en |
| dc.subject | inkjet printing | en |
| dc.title | 利用親水疏水性質與表面張力之三維結構微透鏡陣列 | zh_TW |
| dc.title | Fabrication of Three-dimensional microlenses using hydrophilic confinement and self-surface tension | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳忠幟,蔡永傑 | |
| dc.subject.keyword | 微透鏡,親水性,疏水性,3D列印,噴墨, | zh_TW |
| dc.subject.keyword | microlens,hydrophilicity,hydrophilic,confinement,inkjet printing, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
