Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55238
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建中(Chien-Chung Chen)
dc.contributor.authorWei-Hsiang Yuen
dc.contributor.author游為翔zh_TW
dc.date.accessioned2021-06-16T03:52:43Z-
dc.date.available2020-02-04
dc.date.copyright2015-02-04
dc.date.issued2015
dc.date.submitted2015-01-12
dc.identifier.citationAnzai, A., Ohzawa, I., & Freeman, R. D. (1999a). Neural mechanisms for encoding binocular disparity: Receptive field position versus phase. Journal of Neurophysiology, 82(2), 874–90.
Anzai, A., Ohzawa, I., & Freeman, R. D. (1999b). Neural mechanisms for processing binocular information I. Simple cells. Journal of Neurophysiology, 82(2), 891–908.
Anzai, A., Ohzawa, I., & Freeman, R. D. (1999c). Neural mechanisms for processing binocular information II. Complex cells. Journal of Neurophysiology, 82(2), 909–24.
Bedau, M. A. (1997). Emergent models of supple dynamics in life and mind. Brain and Cognition, 34(1), 5–27. doi:10.1006/brcg.1997.0904
Barlow, H. B., Blakemore C. & Pettigrew J. D. (1967). The neural mechanism of binocular depth discrimination. The Journal of Physiology, 193, 327-342
Bishop, P. O., Henry, G. H., & Smith, C. J. (1971). Binocular interaction fields of single units in the cat striate cortex. The Journal of Physiology, 216(1), 39–68.
Bacon, B. A., Lepore, F., & Guillemot, J. P. (2000). Neurons in the posteromedial lateral suprasylvian area of the cat are sensitive to binocular positional depth cues. Experimental Brain Research, 134(4), 464-476
Bishop, P. O., & Pettigrew, J. D. (1986). Neural mechanisms of binocular vision. Vision Research, 26(9), 1587–600.
Boynton, G. M., Demb, J. B., Glover, G. H., & Heeger, D. J. (1999). Neuronal basis of contrast discrimination. Vision Research, 39(2), 257–269. doi:10.1016/S0042-6989(98)00113-8
Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1. J. Neurosci., 16(13), 4207–4221.
Boynton, G. M., Engel, S. A., & Heeger, D. J. (2012). Linear systems analysis of the fMRI signal. NeuroImage, 62(2), 975–84. doi:10.1016/j.neuroimage.2012.01.082
Brindley, G. S., & Lewin, W. S. (1968). The sensations produced by electrical stimulation of the visual cortex. Journal of Physiology, 196(2), 479–493.
Burt, P., & Julesz, B. (1980). A disparity gradient limit for binocular fusion. Science, 208(4444), 615–617. doi:10.1126/science.7367885
Chen, G., Lu, H. D., & Roe, A. W. (2008). A map for horizontal disparity in monkey V2. Neuron, 58(3), 442–50. doi:10.1016/j.neuron.2008.02.032
Cottereau, B. R., McKee, S. P., Ales, J. M., & Norcia, A. M. (2011). Disparity-tuned population responses from human visual cortex. The Journal of Neuroscience, 31(3), 954–65. doi:10.1523/JNEUROSCI.3795-10.2011
Cottereau, B. R., McKee, S. P., & Norcia, A. M. (2012). Bridging the gap: Global disparity processing in the human visual cortex. Journal of Neurophysiology, 107(9), 2421–9. doi:10.1152/jn.01051.2011
Dale, A. M., Fischl, B., and Sereno, M. I. (1999a). Cortical surface-based analysis I. segmentation and surface reconstruction. NeuroImage. 179-194.
Dale, A. M., Fischl, B., and Sereno, M. I. (1999b). Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system. NeuroImage. 195-207.
Darki, F., & Oghabian, M. A. (2009). Accurate activation map detection using bootstrap resampling of single fMRI data. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, 4783–6. doi:10.1109/IEMBS.2009.5334207
De Valois, R. L. & De Valois, K. K. (1988). Spatial vision. New York: Oxford University Press.
DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1991). Depth is encoded in the visual cortex by a specialized receptive field structure. Nature, 352(6331), 156–9. doi:10.1038/352156a0
DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1995). Neuronal mechanisms underlying stereopsis: How do simple cells in the visual cortex encode binocular disparity? Perception, 24(1), 3–31.
DeYoe, E. A., Carman, G. J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., … Neitz, J. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 93(6), 2382–6.
Dumoulin, S. O., & Wandell, B. A. (2008). Population receptive field estimates in human visual cortex. NeuroImage, 39(2), 647–60. doi:10.1016/j.neuroimage.2007.09.034
Durand, J. B., Zhu, S., Celebrini, S., & Trotter, Y. (2002). Neurons in parafoveal areas V1 and V2 encode vertical and horizontal disparities. Journal of Neurophysiology, 88(5), 2874–9. doi:10.1152/jn.00291.2002
Erkelens, C. J. (1988). Fusional limit for a large random-dot stereogram. Vision Res, 28, 345-353
Engel, S. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex, 7(2), 181–192. doi:10.1093/cercor/7.2.181
Engel, S. A., Rumelhart, D. E., Wandell, B. A., Lee, A. T., Glover, G. H., Chichilnisky, E. J., & Shadlen, M. N. (1994). fMRI of human visual cortex. Nature, 369, 525, doi:10.1038/369525a0
Ferster, D. (1981). A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. The Journal of Physiology, 311, 623–55.
Fishman, R. S. (1997). Gordon Holmes, the cortical retina, and the wounds of war. The seventh Charles B. Snyder Lecture. Documenta Ophthalmologica. Advances in Ophthalmology, 93(1-2), 9–28.
Fleet, D. J. (1994). Disparity from local weighted phase-correlation. IEEE International Conference on SMC, San Antonio.
Fleet, D. J. and Jepson, A. D. (1993). Stability of phase information. IEEE Trans on Pattern Analysis and Machine Intelligence., 15(12), 1253-1268
Fleet, D. J., Jepson, A. D., & Jenkin, M. R. M. (1991). Phase-based disparity measurement. CVGIP: Image Understanding, 53(2), 198–210. doi:10.1016/1049-9660(91)90027-M
Fleet, D. J., Wagner, H., & Heeger, D. J. (1996). Neural encoding of binocular disparity: energy models, position shifts and phase shifts. Vision Research, 36(12), 1839–57.
Fox, P. T., Miezin, F. M., Allman, J. M., Van Essen, D. C., & Raichle, M. E. (1987). Retinotopic organization of human visual cortex mapped with positron-emission tomography. Journal of Neuroscience, 7(3), 913–922.
Freeman, R. D., & Ohzawa, I. (1990). On the neurophysiological organization of binocular vision. Vision Research, 30(11), 1661–76.
Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. D., & Turner, R. (1998). Event-related fMRI: Characterizing differential responses. NeuroImage, 7(1), 30–40. doi:10.1006/nimg.1997.0306
Gonzalez, F. & Perez, R. (1998). Neural mechanisms underlying stereoscopic vision. Progress in Neurobiology, 55(3), 191-224
Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–9.
Gitelman, D. R., Penny, W. D., Ashburner, J., & Friston, K. J. (2003). Modeling regional and psychophysiologic interactions in fMRI: The importance of hemodynamic deconvolution. NeuroImage, 19(1), 200–7.
Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage, 9(4), 416–29.
Harvey, B. M., & Dumoulin, S. O. (2011). The relationship between cortical magnification factor and population receptive field size in human visual cortex: Constancies in cortical architecture. The Journal of Neuroscience, 31(38), 13604–12. doi:10.1523/JNEUROSCI.2572-11.2011
Hampton, D. R. & Kertesz, A. E. (1983). Fusional vergence response to local peripheral stimulation. Journal of the Optical Society of America, 73(1), 7-10
Holmes, G. (1918). Disturbances of vision by cerebral lesions. The British Journal of Ophthalmology, 2(7), 353–84.
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology, 148, 574–91.
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106–54.
Hubel, D. H., Wiesel, T. N., & Stryker, M. P. (1977). Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique. Nature, 269(5626), 328–30.
Joshua, D. E., & Bishop P. O. (1970). Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral units in cat striate cortex. Experimental Brain Research. 10. 389-416
Jenkin, M. and Jepson, A. D. (1988) The measurement of binocular disparity. Computational Processes in Human Vision, New Jersey.
Lee, C., Rohrer, W. H., & Sparks, D. L. (1988). Population coding of saccadic eye movements by neurons in the superior colliculus. Nature, 332(6162), 357–60. doi:10.1038/332357a0
Liu, L. & Schor, C. M. (1998). Functional division of the retina and binocular correspondence. J Opt Soc Am A Opt Image Sci Vis, 15(7), 1740-1755
LeVay, S., & Voigt, T. (1988). Ocular dominance and disparity coding in cat visual cortex. Visual Neuroscience, 1(4), 395–414.
Li, X., Dumoulin, S. O., Mansouri, B., & Hess, R. F. (2007). The fidelity of the cortical retinotopic map in human amblyopia. The European Journal of Neuroscience, 25(5), 1265–77. doi:10.1111/j.1460-9568.2007.05356.x
Liang, C. L., Ances, B. M., Perthen, J. E., Moradi, F., Liau, J., Buracas, G. T., … Buxton, R. B. (2013). Luminance contrast of a visual stimulus modulates the BOLD response more than the cerebral blood flow response in the human brain. NeuroImage, 64, 104–11. doi:10.1016/j.neuroimage.2012.08.077
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–7. doi:10.1038/35084005
Lee, S., Papanikolaou, A., Logothetis, N. K., Smirnakis, S. M. & Keliris, G. A. (2013). A new method for estimating population receptive field topography in visual cortex. NeuroImage, 81, 144-157
Mitchell, D. E. (1966). Retinal disparity and diplopia, Vision Research, 6, 441-451
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., & Suetens, P. (1997). Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16(2), 187–98. doi:10.1109/42.563664
Marčelja, S. (1980). Mathematical description of the responses of simple cortical cells. Journal of the Optical Society of America, 70(11), 1297. doi:10.1364/JOSA.70.001297
Maske, R., Yamane, S., & Bishop, P. O. (1984). Binocular simple cells for local stereopsis: Comparison of receptive field organizations for the two eyes. Vision Research, 24(12), 1921–9.
Mimeault, D., Lepore, F., & Guillemot, J. P. (2002). Phase- and position-disparity coding in the posteromedial lateral suprasylvian area of the cat. Neuroscience, 110(1), 59–72.
Mohamed, F. B., Pinus, A. B., Faro, S. H., Patel, D., & Tracy, J. I. (2002). BOLD fMRI of the visual cortex: Quantitative responses measured with a graded stimulus at 1.5 Tesla. Journal of Magnetic Resonance Imaging, 16(2), 128–36. doi:10.1002/jmri.10155
Nikara, T., Bishop, P. O., & Pettigrew, J. D. (1968). Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Experimental Brain Research, 6(4), 353–72.
Ogawa, S., & Lee, T. M. (1990). Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation. Magnetic Resonance in Medicine, 16(1), 9–18.
Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14(1), 68–78. doi:10.1002/mrm.1910140108
Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., & Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 5951–5955.
Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1996). Encoding of binocular disparity by simple cells in the cat’s visual cortex. Journal of Neurophysiology, 75(5), 1779–805.
Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1997). Encoding of binocular disparity by complex cells in the cat’s visual cortex. Journal of Neurophysiology, 77(6), 2879–909.
Ohzawa, I., & Freeman, R. D. (1986). The binocular organization of complex cells in the cat’s visual cortex. Journal of Neurophysiology, 56(1), 243–59.
Piantanida T. I. (1986). Stereo hysteresis revisited. Vision Res, 26, 431-437
Paradiso, M. A. (1988). A theory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biological Cybernetics, 58(1), 35–49.
Poggio G. F. (1991). Mechanisms of stereopsis in monkey visual cortex. Cerebral cortex. 5(3), 193-204
Perez, R., Castro, A. F., Justo, M. S., Bermudez, M. A., & Gonzalez, F. (2005a). Retinal correspondence of monocular receptive fields in disparity-sensitive complex cells from area V1 in the awake monkey. Investigative Ophthalmology & Visual Science, 46(4), 1533–9. doi:10.1167/iovs.04-1061
Perez, R., Castro, A. F., Justo, M. S., Bermudez, M. A., & Gonzalez, F. (2005b). Retinal correspondence of monocular receptive fields in disparity-sensitive complex cells from area V1 in the awake monkey. Investigative Ophthalmology & Visual Science, 46(4), 1533–9. doi:10.1167/iovs.04-1061
Poggio G. F., & Fischer B. (1977). Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. Journal of Neurophysiology, 40, 1392–1405.
Poggio, G. F., Motter, B. C., Squatrito, S., & Trotter, Y. (1985). Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms. Vision Research, 25(3), 397–406.
Preston, T. J., Li, S., Kourtzi, Z., & Welchman, A. E. (2008). Multivoxel pattern selectivity for perceptually relevant binocular disparities in the human brain. The Journal of Neuroscience, 28(44), 11315–27. doi:10.1523/JNEUROSCI.2728-08.2008
Prince, S. J. D., Cumming, B. G., & Parker, A. J. (2002). Range and mechanism of encoding of horizontal disparity in macaque V1. Journal of Neurophysiology, 87(1), 209–21.
Prince, S. J., & Eagle, R. A. (1999). Size-disparity correlation in human binocular depth perception. Proceedings. Biological Sciences / The Royal Society, 266(1426), 1361–5. doi:10.1098/rspb.1999.0788
Purushothaman, G., & Bradley, D. C. (2005). Neural population code for fine perceptual decisions in area MT. Nature Neuroscience, 8(1), 99–106. doi:10.1038/nn1373
Rosa, M. G. P. (2002). Visual maps in the adult primate cerebral cortex: Some implications for brain development and evolution. Brazilian Journal of Medical and Biological Research, 35(12), 1485–1498. doi:10.1590/S0100-879X2002001200008
Sanger, T. (1988). Stereo disparity computation using Gabor filters. Biology Cybernetics, 59, 405-418
Salzman, C. D., & Newsome, W. T. (1994). Neural mechanisms for forming a perceptual decision. Science, 264(5156), 231–7.
Schor, C. M. & Tyler, C. W. (1981). Spatio-temporal properties of Panum's fusional area. Vision Research, 21, 683–692
Schor, C., Heckmann, T., & Tyler, C. W. (1989). Binocular fusion limits are independent of contrast, luminance gradient and component phases. Vision Research, 29(7), 821–835. doi:10.1016/0042-6989(89)90094-1
Schor, C. M., & Wood, I. (1983). Disparity range for local stereopsis as a function of luminance spatial frequency. Vision Research, 23(12), 1649–54.
Schor, C., Wood, I., & Ogawa, J. (1984). Binocular sensory fusion is limited by spatial resolution. Vision Research, 24(7), 661–5.
Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., … Tootell, R. B. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science, 268(5212), 889–93.
Sparks, D. L., Holland, R., & Guthrie, B. L. (1976). Size and distribution of movement fields in the monkey superior colliculus. Brain Research, 113(1), 21–34.
Ts’o, D. Y., Roe, A. W., & Gilbert, C. D. (2001). A hierarchy of the functional organization for color, form and disparity in primate visual area V2. Vision Research, 41(10-11), 1333–49.
Ts’o, D. Y., Zarella, M., & Burkitt, G. (2009). Whither the hypercolumn? The Journal of Physiology, 587(12), 2791–805. doi:10.1113/jphysiol.2009.171082
Tsai, J. J., & Victor, J. D. (2003). Reading a population code: A multi-scale neural model for representing binocular disparity. Vision Research, 43(4), 445–66.
Tsang, E. K., & Shi, B. E. (2008). Estimating disparity with confidence from energy neurons. Neural Information Processing Systems (NIPS), Vancouver, B.C., Canada, 1537–1544.
Tsao, D. Y., Conway, B. R., & Livingstone, M. S. (2003a). Receptive Fields of Disparity-Tuned Simple Cells in Macaque V1. Neuron, 38(1), 103–114. doi:10.1016/S0896-6273(03)00150-8
Tsao, D. Y., Conway, B. R., & Livingstone, M. S. (2003b). Receptive fields of disparity-tuned simple cells in macaque V1. Neuron, 38(1), 103–14.
Tyler, C. W. (1975). Spatial organization of binocular disparity sensitivity. Vision Research, 15(5), 583–590. doi:10.1016/0042-6989(75)90306-5
von der Heydt, R., Adorjani, C., Hänny, P., & Baumgartner, G. (1978). Disparity sensitivity and receptive field incongruity of units in the cat striate cortex. Experimental Brain Research, 31(4), 523–45.
Wagner H., & Frost B. (1993). Disparity-sensitive cells in the owl have a characteristic disparity. Nature, 364, 796-8
Wandell, B. A., Chial, S., & Backus, B. T. (2000). Visualization and measurement of the cortical surface. Journal of Cognitive Neuroscience, 12(5), 739–52.
Wandell, B. A., Dumoulin, S. O., & Brewer, A. A. (2007). Visual field maps in human cortex. Neuron, 56(2), 366–83. doi:10.1016/j.neuron.2007.10.012
Wiesel, T. N., & Hubel, D. H. (1974). Ordered arrangement of orientation columns in monkeys lacking visual experience. The Journal of Comparative Neurology, 158(3), 307–18. doi:10.1002/cne.901580306
Yoshikai R. & Kaneko H. (2014). The shape of the empirical horopter for eccentric gaze directions. European Conference of Visual Science (37th), Belgrade, Serbia.
Zhu, Y. D., & Qian, N. (1996). Binocular receptive field models, disparity tuning, and characteristic disparity. Neural Computation, 8(8), 1611–41.
Zuiderbaan, W., Harvey, B. M., & Dumoulin, S. O. (2012). Modeling center-surround configurations in population receptive fields using fMRI. Journal of Vision, 12(3), 10. doi:10.1167/12.3.10
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55238-
dc.description.abstract過去動物生理研究已經發現單一大腦視覺神經細胞即可以利用其分別於左、右兩眼的接受域在對應視野區域上位置差異或相位角(接受域之內部結構)差異處理雙眼像差。Anzai, Ohzawa, & Freeman 等人1999 年的研究之結果主張在單一神經中,左右眼接受域的相位像差才是神經編譯雙眼像差的主要因素,而位置像差則為其次。然而,許多大腦功能的研究顯示,個體的行為或是知覺表徵為透過一群神經元共同進行表徵(如手部移動的方向或是對於物體運動方向的判斷),但過去對於雙眼像差的研究多半著重於神經元層次,並未太多研究探討視覺神經群如何表徵雙眼像差。故,本研究旨於探討視覺神經群如何透過其結構編譯雙眼像差。透過磁振造影並結合神經群接受域模型Dumoulin & Wandell, 2008)模擬大腦視覺神經群分別在接受左ǵ右眼的低對比刺激下之群接受域。本研究結果發現群接受域的位置像差在整個視覺皮質中並無顯著差異於零,顯示視覺皮質整體並無特定偏好交叉(cross)或反交叉(uncross),與過去行為研究相符。我們進一步利用
資料模擬方法計算各別視覺神經群的左、右群接受域之變異,用以估計每個視覺神經群所對應的位置像差。結果顯示,不論在初級(V1)或次級(V2ǵV3)視覺皮質,皆有大量神經群顯著對應到特定雙眼像差。另外,神經群的位置像差隨視中央至外視野增加,其與心理物理實驗之結果相符。綜合本研究之結果,雖然本研究並無分析群接受域內部結構差異是否能編譯雙眼像差,但由於左、右群接受域在位置上已經有顯著差異,故可推斷雙眼像差在群神經階層可透過左、右群接受域的位置像差進行編譯。
zh_TW
dc.description.abstractElectrophysiological evidence suggests that the visual cortical neurons encode disparity through either position or phase difference between left and right receptive fields. Since Anzai, Ohzawa, & Freeman (1999a) proposed that the visual cortical neurons encode binocular disparity mainly rely on the receptive fields phase difference but less position difference, how group of neurons encode binocular disparity remains unclear. Here, we investigated the position disparity model at the population level with fMRI. Retinotopic BOLD activations were measured under binocular and two monocular (the left and right eye) viewing conditions with low contrast checkerboard patterns and fitted to a population receptive field (pRF) model (Dumoulin & Wandell, 2008). The position disparity was measured by the distance between centers of left and right pRFs. Also, a bootstrap method was used to generate simulated data to estimate variations of pRFs of each viewing condition of each voxel. This allows us to test binocular disparity of each neural population statistically. Our results showed that distributions of horizontal and vertical disparities of visual cortical neurons do not significant deviate from zero, suggesting that visual system does not prefer to any disparity. Moreover, simulations showed that a bunch of binocular voxels (30% on average) have a significant pRFs position shift (at α =.01 level), suggesting a position coding of disparity at the population level. Also, both horizontal and vertical disparities increase with the eccentricity in all visual cortices, which consistent with psychophysics’ results that the fusion limit is positive correlate to the eccentricity. Together, our results revealed (A) a position coding of binocular disparity and (B) neural evidence for increasing fusion limit with the eccentricity at the population level.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:52:43Z (GMT). No. of bitstreams: 1
ntu-104-R01227113-1.pdf: 2755789 bytes, checksum: bc69e3bdac0203f083bcc4419252e106 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsIntroduction 1
Materials & Methods 13
Participants 13
Anatomical Data 13
Functional Data Preprocessing 15
Stimulus Presentation 15
Visual Field Mapping and pRF Stimuli 16
Image Analysis 18
Results 25
Discussion 30
Conclusion 37
Reference 40
Tables 50
Figures 54
dc.language.isoen
dc.subjectfMRIzh_TW
dc.subject雙眼像差zh_TW
dc.subjectpopulation receptive fieldzh_TW
dc.subjectBinocular disparityen
dc.subjectfMRIen
dc.subjectpopulation receptive fielden
dc.title以磁振造影研究探討雙眼視差之神經編碼機制zh_TW
dc.titlePosition coding mechansims for binocular disparity revealed by fMRIen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃榮村,黃碧群
dc.subject.keyword雙眼像差,fMRI,population receptive field,zh_TW
dc.subject.keywordBinocular disparity,fMRI,population receptive field,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2015-01-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved