請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55226
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾惠斌 | |
dc.contributor.author | Po-Chen Chen | en |
dc.contributor.author | 陳柏誠 | zh_TW |
dc.date.accessioned | 2021-06-16T03:52:12Z | - |
dc.date.available | 2015-02-03 | |
dc.date.copyright | 2015-02-03 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-01-15 | |
dc.identifier.citation | 外文部分
1. Agarwal, V. and Taffer, R. (2008). “Comparing the performance of market-based and accounting-based bankruptcy prediction models.” Journal of Banking & Finance, 32, 1541–1551. 2. Akbani, R., Kwek, S., Japkowicz, N. (2004), “Applying support vector machines to imbalanced datasets.” The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases — ECML, 39–50. 3. Altman, E. I. (1968). “Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy.” Journal of Finance,23(4), 589-609. 4. Beaver, W. H. (1966). “Financial Ratios as Predictors of Failure.”Journal of Accounting Research, 4, 71-111. 5. Black, F., and Scholes, M. (1973). “The Pricing of Options and Corporate Liabilities.”Journal of Political Economy, 81(3), 637-654. 6. Blum, M. (1974). “Failing Company Discriminant Analysis.”Journal of Accounting Research, 12(1), 1-25. 7. Chang, C.C., Lin, C.J. (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm 8. Chava, S. and Jarrow, R. A. (2004). “Bankruptcy prediction with industry effects.” Review of Finance, 8(4), 537-569. 9. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.(2002)“SMOTE: Synthetic Minority Over-sampling Technique.” Journal of Artificial Intelligence Research, 321-357. 10. Chin, H.W.(2009). “A Barrier Option Framework for Predicting Insolvency of Construction Firms”, Department of Civil Engineering, College of Engineering, National Taiwan University, Master Thesis 11. Coats, P. K. and Fant, L. F. (1993). “Recognizing financial distress patterns using a neural-network tool.” Financial Management, 22(3), 142-155. 12. Crosbie, P. and Bohn, J. (2003). “Modeling Default Risk.”Moody’s KMV, < http://www.moodyskmv.com/research/files/wp/ModelingDefaultRisk.pdf> 13. Deakin, E. B. (1972). “A Discriminant Analysis of Predictors of Business Failure.”Journal of Accounting Research, 10(1), 167-179. 14. Edum-Fotwe, F., Price, A., Thorpe, A. (1996). “A Review of Financial Ratio Tools for Predicting Contractor Insolvency.” Journal of Construction Management and Economics, 14, 189-198. 15. Fan, A., Palaniswami, M.(2000)“Selecting bankruptcy predictors using support vector machine approach.” Proc. of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, 6, 354-359. 16. Fawson, C., Glover, T. F., Fang, W., Chang, T. Y. (1996). “The Weak-Form Efficiency of the Taiwan Share Market.” Applied Economics Letters, 3, 663-667 17. Gharghori, P., Chan, H., Faff, R. (2006). “Investigating the Performance of Alternative Default-Risk Models: Option-Based Versus Accounting-Based Approaches.”Australian Journal of Management, 31(2), 207-234. 18. Hillegeist, S. A., Keating, E. K., Cram, D. P., Lundstedt, K. G. (2004) “Assessing the Probability of Bankruptcy.”Review of Accounting Studies, 9, 5–34. 19. He, H., Garcia, E.A. (2009). “Learning from imbalanced data,” IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263-1284. 20. Luong, T.A. (2010). “A logit model using enforced training procedure to predict default probability in the construction industry.” Master Thesis, Department of Civil Engineering, National Taiwan University. 21. Merton, R. C.(1974) “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.” Journal of Finance, 29 (2) 22. Meyer, P. A. and Pifer, H. W. (1970) “Prediction of bank failures.” The Journal of Finance, 25(4), 853-868. 23. Min, J.H., Lee, Y.C. (2005) “Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters.” Expert Systems with Applications, 28((4)), 603-614. 24. Nguyen, T.A. (2012). “Integration of Merton model and Logit model with over-sampling technique to predict construction contractor default.' Master Thesis, Department of Civil Engineering, National Taiwan University. 25. Odom, M. D. and Sharda, R. (1990). “A neural network model for bankruptcy prediction.” IJCNN International Joint Conference 12, 163-168. 26. Ohlson, J. A. (1980). “Financial Ratios and the Probabilistic Prediction of Bankruptcy.” Journal of Accounting Research, 18 (1) 27. Pastena, V .and Ruland, W. (1986). “The Merger Bankruptcy Alternative.” The Accounting Review, 288-301 28. Reisz, A. S. and Perlich, C. (2007) “A Market-Based Framework for Bankruptcy Prediction.”Journal of Financial Stability, 3(2), 85–131 29. Rumelhart, D.E., Hinton, G.R., Williams, R.J., (1986). “Learning internal representations by error propagation.” In: Rumelhart, D.E., David, E. (Eds.), Parallel Distributed Processing. MIT Press, Massachusetts, 318–362. 30. Russell, J. S. and Jaselskis, E. J. (1992). “Predicting Construction Contractor Failure Prior to Contract Award.”Journal of Construction Engineering and Management, 118(4), 791-811. 31. Shevade, S.K., Keerthi, S.S., Bhattacharyya, C., Murthy, K.R.K. (2000) “Improvements to the SMO algorithm for SVM regression” IEEE Transactions on Neural Networks, 11 (5) 1188–1193. 32. Shin, K.S., Lee, T.S., Kim, H.J. (2005) “An application of support vector machines in bankruptcy prediction model.” Expert Systems with Applications, 28(1) 127-135. 33. Sobehart, J. R., Stein, R., Mikityanskaya, V. and Li, L. (2000). “Moody’s Public Risk Firm Risk Model: A Hybrid Approach to Modeling Short Term Default Risk.” Moody’s Investor Service, Global Credit Research, Rating Methodolgy. 34. Taffler, R. J. (1982). “Forecasting company failure in the UK using discriminant-analysis and financial ratio data.” Journal of the royal statistical society series a-statistics in society, 145 (3), 342-358. 35. Takahashi, N., Guo, J., Nishi, T. (2008). “Global Convergence of SMO Algorithm for Support Vector Regression.” IEEE Transactions on Neural Networks, 19(6), 971-982. 36. Theodossiou, P. S. (1993). “Predicting shifts in the mean of a multivariate time series process: an application in predicting business failures.” The Journal of American Statistical Association, 88(422), 441-449. 37. Tran, Minh(2011). “A Back Propagation Neural Network using Over-sampling techniques in bankruptcy prediction in construction industry.” Master Thesis, Department of Civil Engineering, National Taiwan University. 38. Tsai, L.K. (2011). “Predicting Construction Contractor Default with Market-based Credit Models - in Cases of North American Construction Contractors and Taiwan Construction Industry.” Doctoral Dissertation, Department of Civil Engineering, National Taiwan University. 39. Tserng, H. P., Lin, G. F.,Tsai, L. K., Chen, P. C. (2011) “An enforced support vector machine model for construction contractor default prediction.” Automation in Construction, 20(8), 1242-1249. 40. Vapnik, V. N. (1995). “The nature of statistical learning theory.” Springer-Verlag, Berlin Heidelberg, New York. 41. Vassalou, M., and Xing, Y. (2004). “Default Risk in Equity Returns.”Journal of Finance, 59(2), 831-868. 42. Wang, W.P. (2010). “Predicting Construction Contractor Default in Taiwan –Integration of Accounting-based & Market-based Models.” Master Thesis, Department of Civil Engineering, National Taiwan University. 43. Whitaker, R. B. (1999). “The Early Stages of Financial Distress.” Journal of Economics and Finance, 23, 123-133. 44. Zmijewski, M. E. (1984). “Methodological issues related to the estimation of financial distress prediction models.” Journal of Accounting Research, 22, 59-82. 45. Zhang, G., Hu, M.Y., Patuwo, B.E., Indro, D.C. (1999) “Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis.” European Journal of Operational Research 116(1) 16-32. 中文部份 1. 陳肇榮,「運用財務比率預測企業財務危機之實證研究」,國立政治大學財政研究所,博士論文,民國72 年6 月。 2. 陳明賢,「財務危機預測之計量分析研究」,國立台灣大學商學研究所,碩士論文,民國75 年6 月。 3. 潘玉葉,『台灣股票上市公司財務危機預警分析』,淡江大學管理科學研究所,博士論文,民國79 年5 月。 4. 張智欽,「財務比率、區別分析與臺灣股票上市公司升降類之研究」,國立成功大學企業管理研究所,未出版碩士論文,民國84 年。 5. 陳建年,「由財務指標態樣探討上市營建公司經營危機之研究」,中央大學土木工程學系,碩士論文,民國89年6月。 6. 林文修,「演化式類神經網路為基底的企業危機診斷模型︰智慧資本之應用」,國立中央大學資訊管理學系,博士論文,民國89 年7 月。 7. 周業修,「建設公司資本結構最適化之研究」,國立台灣大學土木工程學系,碩士論文,民國89年。 8. 陳渭淳,『上市公司失敗預測之實證研究』,國立台北大學企業管理學系,博士論文,民國90 年6 月。 9. 曾祥珉,「運用財務指標建立建設公司財務危機預警模式之研究」,中央大學土木工程學系,碩士論文,民國91年6月。 10. 阮正治、江景清,「台灣企業信用評分模型建置與驗證」,信用資訊月刊,財團法人金融聯合徵信中心,民國93年6月 11. 黃漢堂,「整合支撐向量機模型(SVM)與市場基礎模型應用於台灣營建公司財務危機預測之研究」,台灣大學土木工程學系,碩士論文,民國100年1月。 12. 台灣經濟新經濟報(Taiwan Economic Journal Data Bank,TEJ) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55226 | - |
dc.description.abstract | 營建產業相對於其他產業,擁有較高的財務風險,由於營造產業之承攬業務金額龐大且工期長,對國內外的政府機構、業主、貸款銀行、保險公司和承包商來說,評估營建產業公司的財務危機機率是一個非常重要的課題。早期發展之財務危機預測模型,多是針對所有產業,鮮少針對個別產業進行研究。主要的原因是,集中於單一的行業的研究樣本蒐集困難,尤其是危機公司的樣本數與財務正常樣本數相較下過於稀少,而營建產業由於其獨特的財務特性更是大多被排除在早期的研究範圍外。有鑑於營建產業的產業特性及編列財務報表之會計處理原則與其他產業不盡相同,目前的營建產業環境也急需針對營建產業財務危機預測之研究,故本研究目的即為建立營建公司財務危機預測模型。
傳統之財務危機預測模型以會計基礎模型為主,學者們假設在財務危機公司與財務正常公司的會計財務報表應該有所不同,並試圖利用一些資料探勘或迴歸方法來找出這些不同,因此會計基礎模型需要大量的歷史樣本做為參考。過去有關會計基礎模型財務危機預測的研究中,建立樣本集時經常採用配對法,即一個財務危機樣本配對一至兩個財務正常樣本。由於現實中財務危機為相對稀少的事件,如此建立樣本集的方式會造成選樣偏誤,近來已有學者提出應將所有可得之樣本皆放入樣本集內。如此一來便帶來了新的問題:財務正常樣本的數量遠多於財務危機樣本,這樣的不平衡被稱為「分類間不平衡」。會計基礎模型使用的迴歸方法常常只能表現樣本集中佔大部分的樣本特性,忽略佔小部份的樣本。在財務危機預測中,佔小部分的財務危機樣本卻才是估計準確的關鍵,因此在含有分類間不平衡的樣本集中,會計基礎模型的預測能力就受到了限制。為了改善這個分類間不平衡的問題,本研究目的其一即為應用兩項重覆取樣技術:「強化訓練」及「Synthetic Minority Over-sampling Technique (SMOTE)」以改善此問題,其目的在於增加財務危機樣本的數量,減少分類間的不平衡。 除了會計資訊外,近年來也有學者開始使用以公司股價為主要資訊來源的市場基礎模型。在效率的股票市場中,股價應能充份表現公司價值,是另一個優質的財務資訊來源。本研究目的其二即為建立一整合會計資訊及股票市場資訊之混合型模型,並搭配重覆取樣技術以提高預測模型的準確度。 本研究採用實證的方式評估模模型的預測能力,收集了美國與台灣營建產業公司財務樣本,分別建立美國及台灣的營建產業財務危機預測模型,以了解不同市場下對模型的影響。由實證的結果可知,比起單獨使用會計基礎模型或市場基礎模型,混合型模型有更高的預測能力。再搭配重覆取樣技術之後,還能進一步提昇會計基礎模型及混合型模型的預測能力。藉由這些技術的應用,能及早預測營建產業可能發生之財務危機公司,以提供營建產業經營者、管理者、金融機構、保險公司,投資大眾及營建相關產業等做為參考,更具體地瞭解及正確地辨別營建公司之財務危機。 | zh_TW |
dc.description.abstract | Due to the special financial characteristic of construction industry, past researches on bankruptcy prediction models mostly excluded the construction industry from their sample. However, the financial health of construction contractors is critical in successfully completing a project. The financial default probability of the construction industry is always an important issue for governmental organizations, construction owners, lending institutions, surety underwriters, and contractors. Thus, this research aims to measure and predict the construction contractor default risk.
The financial default predicting models developed in past literatures are in large built by historical accounting information. They were called as “accounting-based models”. These researches supposed that there may be different patterns between defaulters and non-defaulters in historical accounting information, and tried to find out these patterns by some regression or data mining analysis. Thus, scholars usually need numerous of samples to build accounting-based models. Most of the previous studies on prediction construction contractor default used sample-match method to build their sample set, which produces sample selection biases. In order to avoid the sample selection biases, this research used all available firm-years samples during the sample period. Yet this brings a new challenge: the number of non-defaulted samples greatly exceeds the defaulted samples, which is referred to as between-class imbalance. Accounting-based models only demonstrate the distribution of the major parts of input points, ignoring the small parts of input points. Thus using the accounting-based models on default prediction with imbalance data set is not satisfactory. The primary objective of this research is to improve this shortcoming by 2 kinds of over-sampling technique: “replication” and “Synthetic Minority Over-sampling Technique (SMOTE)”. The purpose of these over-sampling techniques is to increase the number of default samples, and reduce the between-class imbalance. Besides the accounting-based models, the option-based model is another way to predict company default. The option-based model doesn’t catch the information by data mining, but depicts the physical mechanism of company’s default by using option-pricing equations with the main input: company stock price. In an efficient market, the company’s stock price could be a good source of information because it not only reflects accounting and economic information but also reflects qualitative factors such as management and technique. The second objective of this research is to build hybrid models which combine accounting and stock market information. The empirical results of this research show that the hybrid models outperform the accounting-based models and the option-based model. With the over-sampling techniques, the predicting performance of models could be even better. Thus, this research recommends the proposed hybrid models with over-sampling techniques as an alternative to the traditionally used models. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:52:12Z (GMT). No. of bitstreams: 1 ntu-104-F97521714-1.pdf: 2289776 bytes, checksum: 780d5672156da97d09242530ade13277 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書--ii
誌謝--iii 中文摘要--iv 英文摘要--vi 第一章 緒論 --1 1.1 研究背景 --1 1.2 研究動機 --3 1.2.1會計基礎模型與市場基礎模型之不足--3 1.2.2分類間不平衡問題--4 1.3 研究目的--5 1.4 研究範圍與限制--7 1.5 研究流程--8 1.6 論文架構--10 第二章 文獻回顧--11 2.1財務危機之定義--11 2.2會計基礎模型(Accounting- Based Models)相關文獻回顧--14 2.2.1單變量區別分析(Univariate Discriminant Analysis)相關文獻回顧--15 2.2.2多變量區別分析(Multivariate Discriminant Analysis)相關文獻回顧--16 2.2.3迴歸分析相關文獻回顧--17 2.2.4 類神經網路模型(Artificial Neural Network Model)相關文獻回顧--18 2.2.5支撐向量機(Support Vector Machine)相關文獻回顧--19 2.3市場基礎模型(Market-Based Models)相關文獻回顧--20 2.3.1 Merton模型相關文獻回顧--20 2.3.2 Barrier模型相關文獻回顧--21 2.4混合型模型(Hybrid Models)相關文獻回顧--21 2.5研究小組相關文獻回顧--22 2.6小結--24 第三章 研究理論基礎--28 3.1研究理論架構--28 3.2會計基礎模型--32 3.2.1 Logistic模型--32 3.2.2 SVM 模型--35 3.3 市場基礎模型--41 3.4 混合型模型(Hybrid Models)--45 3.5 重覆取樣技術--46 3.5.1 強化訓練--46 3.5.2 SMOTE--48 3.6模型評估、驗證方法--50 3.6.1 Receiver Operating Characteristics Curve (ROC Curve)--50 3.6.2交互驗證(Cross-Validation)--52 第四章 樣本蒐集與變數選取--53 4.1 樣本蒐集--53 4.2 交互驗證下的樣本集--54 4.3 輸入變數選取--58 4.3.1 回顧文獻中常用變數--58 4.3.2 選取變數 - Logistic 逐步迴歸--63 第五章 實證結果與分析--67 5.1 限制輸入自變數--68 5.2 混合型模型--73 5.3 重覆取樣技術於會計基礎模型--76 5.4 重覆取樣技術於混合型模型--79 5.5 小結--82 第六章 結論--83 6.1 結論--83 6.2 實際應用步驟建議--84 6.3 研究貢獻--85 6.4 未來研究建議--85 參考文獻--87 | |
dc.language.iso | zh-TW | |
dc.title | 考量市場與會計基礎模型於營建產業財務危機預測之研究 | zh_TW |
dc.title | ntegration of Accounting-Based & Option-Based Models with Sampling Techniques to Predict Construction Contractor Default | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 郭斯傑,廖咸興,周瑞生,王維志 | |
dc.subject.keyword | 財務危機預測,會計基礎模型,市場基礎模型,混合型模型,重覆取樣技術,SMOTE, | zh_TW |
dc.subject.keyword | default prediction,accounting-based model,option-based model,hybrid model,over-sampling technique,SMOTE, | en |
dc.relation.page | 92 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-01-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。