Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55220
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳基旺
dc.contributor.authorQing-Qing Yeen
dc.contributor.author葉青青zh_TW
dc.date.accessioned2021-06-16T03:51:52Z-
dc.date.available2020-03-12
dc.date.copyright2015-03-12
dc.date.issued2014
dc.date.submitted2015-01-16
dc.identifier.citationReferences
1. Cummings, J. L.; Zhong, K. Treatments for behavioural disorders in neurodegenerative diseases: drug development strategies. Nat. Rev. Drug. Discov., 2006, 5, 64-74.
2. Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev., 2001, 81, 741-766.
3. Hippius, H.; Neundorfer, G. The discovery of Alzheimer's disease. Dialogues. Clin. Neurosci., 2003, 5, 101-108.
4. Tanzi, R. E.; Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell, 2005, 120, 545-555.
5. Campbell, A. Inflammation, neurodegenerative diseases, and environmental exposures. Ann. N. Y. Acad. Sci., 2004, 1035, 117-132.
6. Ross, C. A.; Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat. Med., 2004, 10 Suppl, S10-17.
7. Terry, A. V., Jr.; Buccafusco, J. J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther., 2003, 306, 821-827.
8. Policy Brief: The Global Impact of Dementia 2013-2050. Alzheimer's Disease International.
9. Bartus, R. T.; Dean, R. L., 3rd; Beer, B.; Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science, 1982, 217, 408-414.
10. Shah, R. S.; Lee, H. G.; Xiongwei, Z.; Perry, G.; Smith, M. A.; Castellani, R. J. Current approaches in the treatment of Alzheimer's disease. Biomed. Pharmacother., 2008, 62, 199-207.
11. Hardy, J. A.; Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science, 1992, 256, 184-185.
12. Selkoe, D. J.; Schenk, D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol., 2003, 43, 545-584.
13. Kojro, E.; Fahrenholz, F. The non-amyloidogenic pathway: structure and function of alpha-secretases. Subcell. Biochem., 2005, 38, 105-127.
14. Luo, Y.; Bolon, B.; Kahn, S.; Bennett, B. D.; Babu-Khan, S.; Denis, P.; Fan, W.; Kha, H.; Zhang, J.; Gong, Y.; Martin, L.; Louis, J. C.; Yan, Q.; Richards, W. G.; Citron, M.; Vassar, R. Mice deficient in BACE1, the Alzheimer's β-secretase, have normal phenotype and abolished β-amyloid generation. Nat. Neurosci., 2001, 4, 231-232.
15. Barman, A.; Prabhakar, R. Elucidating the catalytic mechanism of beta-secretase (BACE1): a quantum mechanics/molecular mechanics (QM/MM) approach. J. Mol. Graph. Model., 2013, 40, 1-9.
16. Yuan, J.; Venkatraman, S.; Zheng, Y.; McKeever, B. M.; Dillard, L. W.; Singh, S. B. Structure-based design of beta-site APP cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer's disease. J. Med. Chem., 2013, 56, 4156-4180.
17. De Strooper, B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron, 2003, 38, 9-12.
18. De Strooper, B. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature, 1999, 398, 518-522.
19. Milano, J. Modulation of Notch processing by γ-secretase inhibitors causes intestinal goblet cellmetaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol. Sci., 2004, 82, 341-358.
20. Imbimbo, B. P. Alzheimer's disease: γ-secretase inhibitors. Drug Discov. Today, 2008, 5, 169-175.
21. Nitsch, R. M.; Slack, B. E.; Wurtman, R. J.; Growdon, J. H. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science, 1992, 258, 304-307.
22. Walsh, D. M.; Selkoe, D. J. Aβ oligomers: a decade of discovery. J. Neurochem., 2007, 101, 1172-1184.
23. Santa-Maria, I.; Hernandez, F.; Del Rio, J.; Moreno, F. J.; Avila, J. Tramiprosate, a drug of potential interest for the treatment of Alzheimer's disease, promotes an abnormal aggregation of tau. Mo.l Neurodegener., 2007, 2, 17.
24. Ma, K.; Thomason, L. A.; McLaurin, J. scyllo-Inositol, preclinical, and clinical data for Alzheimer's disease. Adv. Pharmacol., 2012, 64, 177-212.
25. Mawuenyega, K. G.; Sigurdson, W.; Ovod, V.; Munsell, L.; Kasten, T.; Morris, J. C.; Yarasheski, K. E.; Bateman, R. J. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science, 2010, 330, 1774.
26. Yoon, S. S.; Jo, S. A. Mechanisms of Amyloid-beta Peptide Clearance: Potential Therapeutic Targets for Alzheimer's Disease. Biomol. Ther. (Seoul), 2012, 20, 245-255.
27. Deane, R.; Wu, Z.; Zlokovic, B. V. RAGE (yin) versus LRP (yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood-brain barrier. Stroke, 2004, 35, 2628-2631.
28. Duce, J. A.; Bush, A. I. Biological metals and Alzheimer's disease: implications for therapeutics and diagnostics. Prog Neurobiol, 2010, 92, 1-18.
29. Bush, A. I. The metal theory of Alzheimer's disease. J. Alzheimers Dis., 2013, 33 Suppl 1, S277-281.
30. Ayton, S.; Lei, P.; Bush, A. I. Metallostasis in Alzheimer's disease. Free Radic. Biol. Med., 2013, 62, 76-89.
31. Bush, A. I. Metal complexing agents as therapies for Alzheimer's disease. Neurobiol. Aging, 2002, 23, 1031-1038.
32. Lannfelt, L.; Blennow, K.; Zetterberg, H.; Batsman, S.; Ames, D.; Harrison, J.; Masters, C. L.; Targum, S.; Bush, A. I.; Murdoch, R.; Wilson, J.; Ritchie, C. W. Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet. Neurol., 2008, 7, 779-786.
33. Gerald, Z.; Ockert, W. Alzheimer's disease market: hope deferred. Nat Rev Drug Discov, 2013, 12, 19-20.
34. De Strooper, B. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol. Rev., 2010, 90, 465-494.
35. Cavalli, A.; Bolognesi, M. L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51, 347-372.
36. Lu, J.-J.; Pan, W.; Hu, Y.-J.; Wang, Y.-T. Multi-Target Drugs: The Trend of Drug Research and Development. PLoS ONE, 2012, 7, e40262.
37. Munoz-Torrero, D.; Camps, P. Dimeric and hybrid anti-Alzheimer drug candidates. Curr. Med. Chem., 2006, 13, 399-422.
38. Winker, M. A. Tacrine for Alzheimer's disease. Which patient, what dose? Jama., 1994, 271, 1023-1024.
39. Ros, E.; Aleu, J.; Gomez de Aranda, I.; Canti, C.; Pang, Y. P.; Marsal, J.; Solsona, C. Effects of bis(7)-tacrine on spontaneous synaptic activity and on the nicotinic ACh receptor of Torpedo electric organ. J. Neurophysiol., 2001, 86, 183-189.
40. Hieke, M.; Ness, J.; Steri, R.; Dittrich, M.; Greiner, C.; Werz, O.; Baumann, K.; Schubert-Zsilavecz, M.; Weggen, S.; Zettl, H. Design, synthesis, and biological evaluation of a novel class of gamma-secretase modulators with PPARgamma activity. J. Med. Chem., 2010, 53, 4691-4700.
41. Charkoudian, L. K.; Pham, D. M.; Franz, K. J. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. J. Am. Chem. Soc., 2006, 128, 12424-12425.
42. Leon, R.; Garcia, A. G.; Marco-Contelles, J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer's disease. Med. Res. Rev., 2013, 33, 139-189.
43. Bebbington, D.; Monck, N. J.; Gaur, S.; Palmer, A. M.; Benwell, K.; Harvey, V.; Malcolm, C. S.; Porter, R. H. 3,5-Disubstituted-4-hydroxyphenyls linked to 3-hydroxy-2-methyl-4(1H)-pyridinone: potent inhibitors of lipid peroxidation and cell toxicity. J. Med. Chem., 2000, 43, 2779-2782.
44. Adlard, P. A.; Cherny, R. A.; Finkelstein, D. I.; Gautier, E.; Robb, E.; Cortes, M.; Volitakis, I.; Liu, X.; Smith, J. P.; Perez, K.; Laughton, K.; Li, Q. X.; Charman, S. A.; Nicolazzo, J. A.; Wilkins, S.; Deleva, K.; Lynch, T.; Kok, G.; Ritchie, C. W.; Tanzi, R. E.; Cappai, R.; Masters, C. L.; Barnham, K. J.; Bush, A. I. Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron, 2008, 59, 43-55.
45. Gerald, Z.; Ockert, W. Alzheimer's disease market: hope deferred. Nat. Rev. Drug Discov., 2013, 12, 19-20.
46. Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002, 297, 353-356.
47. Iqbal, K.; Liu, F.; Gong, C. X. Alzheimer disease therapeutics: focus on the disease and not just plaques and tangles. Biochem. Pharmacol., 2014, 88, 631-639.
48. Allen, S. J.; Watson, J. J.; Shoemark, D. K.; Barua, N. U.; Patel, N. K. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther., 2013, 138, 155-175.
49. Fischer, W.; Wictorin, K.; Bjorklund, A.; Williams, L. R.; Varon, S.; Gage, F. H. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature, 1987, 329, 65-68.
50. Markowska, A. L.; Koliatsos, V. E.; Breckler, S. J.; Price, D. L.; Olton, D. S. Human nerve growth factor improves spatial memory in aged but not in young rats. J. Neurosci., 1994, 14, 4815-4824.
51. Tuszynski, M. H.; Gage, F. H. Bridging grafts and transient nerve growth factor infusions promote long-term central nervous system neuronal rescue and partial functional recovery. Proc. Natl. Acad. Sci. U S A, 1995, 92, 4621-4625.
52. Aloe, L.; Rocco, M. L.; Bianchi, P.; Manni, L. Nerve growth factor: from the early discoveries to the potential clinical use. J. Transl. Med., 2012, 10, 239.
53. Borg, J.; Toazara, J.; Hietter, H.; Henry, M.; Schmitt, G.; Luu, B. Neurotrophic effect of naturally occurring long-chain fatty alcohols on cultured CNS neurons. FEBS Lett., 1987, 213, 406-410.
54. Borg, J. The neurotrophic factor, n-hexacosanol, reduces the neuronal damage induced by the neurotoxin, kainic acid. J. Neurosci. Res., 1991, 29, 62-67.
55. Luu, B.; De Aguilar, J.-L.; Girlanda-Junges, C. Cyclohexenonic Long-Chain Fatty Alcohols as Neuronal Growth Stimulators. Molecules, 2000, 5, 1439-1460.
56. Jover, E.; Gonzalez de Aguilar, J. L.; Luu, B.; Lutz-Bucher, B. Effect of a cyclohexenonic long-chain fatty alcohol on calcium mobilization. Eur. J. Pharmacol., 2005, 516, 197-203.
57. Schmidt, F.; Champy, P.; Seon-Meniel, B.; Franck, X.; Raisman-Vozari, R.; Figadere, B. Chemicals possessing a neurotrophin-like activity on dopaminergic neurons in primary culture. PLoS One, 2009, 4, e6215.
58. Hauss, F.; Liu, J.; Michelucci, A.; Coowar, D.; Morga, E.; Heuschling, P.; Luu, B. Dual bioactivity of resveratrol fatty alcohols: differentiation of neural stem cells and modulation of neuroinflammation. Bioorg. Med. Chem. Lett., 2007, 17, 4218-4222.
59. Hanbali, M.; Bagnard, D.; Luu, B. Solid-phase synthesis of quinol fatty alcohols, design of N/O-substituted quinol fatty alcohols and comparative activities on axonal growth. Bioorg. Med. Chem. Lett., 2006, 16, 3917-3920.
60. Huang, C.-W. Design, Synthesis and Biological Evaluation of Hydroxyalkyl Substituted 8-Hydroxyl/Alkoxyquinolines with Multifunctional Activities agains Alzheimer's Disease. Nation Taiwan University, 2013.
61. Cherny, R. A. Treatment with a copper-zinc chelator markedly and rapidly inhibits [beta]-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron, 2001, 30, 665-676.
62. Chang, P. T.; Kung, F. L.; Talekar, R. S.; Chen, C. S.; Lai, S. Y.; Lee, H. Y.; Chern, J. W. An improved screening model to identify inhibitors targeting zinc-enhanced amyloid aggregation. Anal. Chem., 2009, 81, 6944-6951.
63. Greeff, J.; Joubert, J.; Malan, S. F.; van Dyk, S. Antioxidant properties of 4-quinolones and structurally related flavones. Bioorg Med Chem, 2012, 20, 809-818.
64. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
65. Pardridge, W. M. Alzheimer's disease drug development and the problem of the blood-brain barrier. Alzheimers Dement., 2009, 5, 427-432.
66. Fiedler, H. Notiz uber die Verwendung von Polyphosphorsaure bei der Reaktion nach DOBNER-v. MILLER. J. Prakt. Chem., 1961, 13, 86-89.
67. Kitamura, C.; Maeda, N.; Kamada, N.; Ouchi, M.; Yoneda, A. Synthesis of 2-(substituted methyl)quinolin-8-ols and their complexation with Sn(II). J. Chem. Soc., Perkin Trans. 1, 2000, 781-785.
68. Kerms, E.H; Li, D. Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization. Wiley 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55220-
dc.description.abstractThe aim of this thesis is to design and synthesize novel series of 8-methoxyquinoline derivatives based on lead compound J2326, which targets and modulates multiple facets of Alzheimer’s disease (AD). The J2326 was designed and synthesized previously in our lab by merging two compounds, namely neurotrophic n-hexacosanol and metal-chelating clioquinol, which blocked metal-induced fAβ formation.
A series of 8-methoxyquinoline-2-yl-alkyl derivatives was designed by introduction of hydroxyl, carbonyl, oxime moieties at α position on the side chain of J2326 to improve its solubility and metal chelation activity profile. Benzylic oxidation of appropriate 8-methoxy-2-methylquinoline afforded respective 8-methoxy-2-aldehyde-quinoline, which on Grignard reaction with dec-9-en-1-ylmagnesium bromide afforded corresponding alkene-alcohol, with side chain bearing terminal olefin. This terminal olefin was then converted to hydroxyl group by hydroboration oxidation reaction to afford first series of target molecules (TM). Further, the α-hydroxyl moiety of these molecules was converted to carbonyl by selective oxidation of secondary alcohol to afford second series of TM. These ketones were then converted to oximes by reaction with hydroxylamine hydrochloride to afford third series of TM.
The biological evaluation of these 8-methoxyquinoline derivatives demonstrated that all compounds retained metal chelating as well as neurotrophic activities as that of J2326. Among these, compounds with oxime and secondary alcohol at α position were found better than carbonyl for anti-fAβ and neurotrophic activities. Structure-activity relationship (SAR) study led to identification of novel leads oxime 6c, 6d and 6f with 5’-F, 5’-CF3 and 6’-F substituted which were more effective than J2326. Interestingly, most compounds have much better solubility profile (0.6-87.7μg/ml) than J2326 (<0.003 μg/ml). Furthermore, these compounds showed anti-ROS activity and acceptable blood-brain barrier permeability profile.
Compound 6c, 6d, 6f and 6h can serve as leads for further optimization to develop a potential candidates for AD treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:51:52Z (GMT). No. of bitstreams: 1
ntu-103-R01423025-1.pdf: 6226751 bytes, checksum: dcd96af1428792443789ed48131a4d64 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iv
Abstract vi
Contents viii
List of Schemes x
List of Figures xi
List of Tables xii
List of Abbreviations xiii
Chapter 1 Introduction 1
1.1 Background of Alzheimer’s Disease 1
1.2 Rationale and Strategies for Alzheimer’s disease modification 3
1.3 Development of Multi-targets Directed Ligands of AD 11
1.4 Summary 15
Chapter 2 Design, Synthesis and Evaluation of 8-Methoxyquinoline-2-yl-alkyl Alcohols as MTDLs for AD Treatment 17
2.1 Introduction 17
2.2 Rational Design 20
2.3 Synthetic Results 21
2.4 Biological Activities and Discussion 25
2.5 Summary 39
2.6 Experiment Section 40
Chapter 3 Conclusion 91
Chapter 4 References 93
Chapter 5 Appendix 98
dc.language.isoen
dc.subject阿茲海默症zh_TW
dc.subject多靶點藥物zh_TW
dc.subject??衍生物zh_TW
dc.subjectQuinoline Derivativesen
dc.subjectAlzheimer’s Diseaseen
dc.subjectMultifunctional Agentsen
dc.title設計合成與評估8-甲氧基喹啉衍生物作爲抗阿茲海默症之潛在多靶點藥物zh_TW
dc.titleDesign, Synthesis and Evaluation of 8-Methoxyquinoline Derivatives as Potential Multifunctional Agents for the Treatment of Alzheimer’s Diseaseen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王光昭,顧記華,忻凌偉,梁碧惠
dc.subject.keyword阿茲海默症,多靶點藥物,??衍生物,zh_TW
dc.subject.keywordAlzheimer’s Disease,Multifunctional Agents,Quinoline Derivatives,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2015-01-16
dc.contributor.author-college藥學專業學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved