Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55204Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔡欣穆 | |
| dc.contributor.author | Hui-Yu Lee | en |
| dc.contributor.author | 李蕙宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:51:12Z | - |
| dc.date.available | 2015-08-16 | |
| dc.date.copyright | 2015-08-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-19 | |
| dc.identifier.citation | [1] S. D. Perli, N. Ahmed, and D. Katabi, “Pixnet: interference-free wireless links using
lcd-camera pairs,” in Proceedings of Mobile computing and networking. ACM, 2010, pp. 137–148. [2] T. Hao, R. Zhou, and G. Xing, “COBRA: color barcode streaming for smartphone systems,” in Proceedings of Mobile systems, applications, and services. ACM, 2012, pp. 85–98. [3] W. Hu, H. Gu, and Q. Pu, “LightSync: unsynchronized visual communication over screen-camera links,” in Proceedings of Mobile computing and networking. ACM, 2013, pp. 15–26. [4] G. Woo, A. Lippman, and R. Raskar, “Vrcodes: Unobtrusive and active visual codes for interaction by exploiting rolling shutter,” in Proceedings of the 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), ser. ISMAR ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 59–64. [Online]. Available: http://dx.doi.org/10.1109/ISMAR.2012.6402539 [5] A. Ashok, M. Gruteser, N. Mandayam, J. Silva, M. Varga, and K. Dana, “Challenge: Mobile optical networks through visual mimo,” in Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, ser. MobiCom ’10. New York, NY, USA: ACM, 2010, pp. 105–112. [Online]. Available: http://doi.acm.org/10.1145/1859995.1860008 [6] A. Ashok, M. Gruteser, N. Mandayam, T. Kwon, W. Yuan, M. Varga, and K. Dana, “Rate adaptation in visual mimo,” in Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2011 8th Annual IEEE Communications Society Conference on, June 2011, pp. 583–591. [7] M. Varga, A. Ashok, M. Gruteser, N. Mandayam, W. Yuan, and K. Dana, “Demo: Visual mimo based led - camera communication applied to automobile safety,” in Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, ser. MobiSys ’11. New York, NY, USA: ACM, 2011, pp. 383–384. [Online]. Available: http://doi.acm.org/10.1145/1999995.2000046 [8] R. D. Roberts, “Undersampled frequency shift ON-OFF keying (UFSOOK) for camera communications (CamCom),” in Proceedings of Wireless and Optical Communication Conference. IEEE, May 2013, pp. 645–648. [9] C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” in Proceedings of Globecom Workshops. IEEE, Dec 2012, pp. 1244–1248. [10] N. Rajagopal, P. Lazik, and A. Rowe, “Visual light landmarks for mobile devices,” in Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, ser. IPSN ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 249–260. [Online]. Available: http://dl.acm.org/citation.cfm?id=2602339.2602367 [11] S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support,” IEEE Communications Magazine, vol. 50, pp. 72 – 82, March 2012. [12] H. Haas, “High-speed wireless networking using visible light,” SPIE Newsroom, 2013. [13] “TED Talk online by Harald Haas on wireless data from every light bulb,” http: //bit.ly/tedvlc. [14] J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras. Boca Raton, FL, USA: CRC Press, Inc., 2005. [15] A. El Gamal and H. Eltoukhy, “CMOS image sensors,” Circuits and Devices Magazine, vol. 21, no. 3, pp. 6–20, 2005. [16] A. De Cheveigne and H. Kawahara, “Yin, a fundamental frequency estimator for speech and music,” The Journal of the Acoustical Society of America, vol. 111, no. 4, pp. 1917–1930, 2002. [17] “PointGrey Flea3 Product Datasheet,” http://www.ptgrey.com/products/flea3/ Flea3_Datasheet.pdf. [18] I. Bridgelux, “Bridgelux ES array series product data sheet.” [Online]. Available: http://media.digikey.com/pdf/Data%20Sheets/Bridgelux%20PDFs/ES_ Array_Series.pdf | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55204 | - |
| dc.description.abstract | 本論文實作利用單顆發光二極體為傳送端,滾動式快門相機為接收端之可見光通訊系統。可見光通訊是一種新型的資料傳輸技術,透過控制發光二極體的發光強度在空氣中傳遞數位訊息。
相較於無線視頻技術,可見光通訊包含了高指向性、高保密性以及高頻寬等特性。由於發光二極體具低功耗,高效率,壽命長之優點,近年來已逐漸取代傳統日光燈照明。此外對輸入訊號的快速反應及成本低,也使其極具通訊之潛在價值。 我們利用滾動式快門相機作為接收端。在現今的行動裝置中,至少都有一個內建滾動式快門相機,因此不需要額外花費或修改即能接收發光二極體訊號。我們的發想是,利用相機影像來接收發光二極體所傳遞的訊息,此技術可應用於行車安全輔助系統、室內定位,還可利用燈源在相機影像中的位置,來做與視覺結合的應用。 由於相機的每秒顯示幀數不盡相同,常會發生多收或少收到訊號的狀況;傳送端與接收端的相位差也會使得同一個幀內出現混合訊號。所以在系統設計上,我們特別解決傳送端與接收端間不同步所產生的問題。我們利用軟體無線電來實作傳送端訊號,實際測試於現有的智慧型手機相機與工業相機上,並在智慧型手機上開發一個即時解碼應用程式,以驗證使用滾動式快門相機之可見光通訊的可行性,期待未來可以廣泛運用於生活中。 | zh_TW |
| dc.description.abstract | The thesis presents a visible light communication (VLC) system that utilizes a single light-emitting diode (LED) light source as the transmitter and a CMOS rolling shutter camera as the receiver. VLC is a new data transmission technology. Unlike traditional RF wireless communication, VLC uses the optical signal to carry digital information by controlling the LED's light intensity in free space. VLC has the properties of high directivity, high security and high bandwidth.
In recent years, with the development of the LED technology, due to its advantages of low power consumption, high efficiency, and long life, LED has gradually replaced the traditional fluorescent lighting. The quick response time and the low cost also make LED a very attractive transmitter solution for communications. In our proposed system, we use CMOS rolling shutter camera as the receiver. Today, almost every modern mobile device is equipped with at least one built-in CMOS camera, and CMOS camera can receive signals from the LEDs without any modification, and thus, any additional cost. Our idea is to use the acquired images to extract the message transmitted from the LED. This technology can be used in many applications, such as advanced driver assistance system (ADAS), indoor positioning, and visual-associated application. Due to the wide range of frames rates of the cameras, it is common to receive redundant symbols or have symbol loss; Frames with more than one data symbols, i.e., mixed frames, may also happen because of the phase offset between the transmitter and the receiver. Both of the issues are due to the unsynchronized nature of our proposed system. In this thesis, we propose a number of schemes to address the issues caused by unsynchronized transmitter and receiver. To evaluate the feasibility of these schemes, we use software-defined radio (SDR) to implement the transmitter and use the built-in camera of several recent smartphones and an industrial camera as the receiver. We also develop a real-time decoding application on the smartphone. Our result shows that we can improve the packet reception rate (PRR) from 0.6 to 0.99 when the transmitting and receiving frame rates are close. We also can improve the PRR from 0.0 to 0.8~1.0 even when the transmitting and receiving frame rates have a large difference. The overall throughput can reach 18 bytes per second. We expect this technology can be widely used for a wide range of applications in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:51:12Z (GMT). No. of bitstreams: 1 ntu-104-R01922028-1.pdf: 11738091 bytes, checksum: 2158b9491e9ff7949eb1ecf373efd4df (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝ii
Acknowledgements iii 摘要iv Abstract v 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Main Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Related Works 6 2.1 Camera-received VLC . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Screen-to-camera communications . . . . . . . . . . . . . . . . . 6 2.1.2 Single-LED-to-camera communications . . . . . . . . . . . . . . 7 2.2 Photodiode-received VLC . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Background 10 3.1 The Channel Model of Rolling Shutter Camera . . . . . . . . . . . . . . 10 3.1.1 Rolling Shutter Operation . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Time Gap in the Frame Duration . . . . . . . . . . . . . . . . . . 12 3.1.3 Channel Characteristics . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Rolling Shutter Frequency-Shift Keying (RS-FSK) . . . . . . . . . . . . 14 3.2.1 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Problem Statement: Unsynchronized Transmitter and Receiver 18 4.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 The Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2.1 Case I: When the transmitting frame rate is higher than the receiving frame rate, . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2.2 Case II: When the transmitting frame rate is lower than the receiving frame rate, . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 System Design 24 5.1 System Architecture and End-to-End System Flow . . . . . . . . . . . . 24 5.2 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2.1 LED Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2.2 Software Defined Radio . . . . . . . . . . . . . . . . . . . . . . 29 5.2.3 UHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.4 VLC Front-end Board . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.5 Rolling Shutter Camera . . . . . . . . . . . . . . . . . . . . . . . 31 5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3.2 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6 Evaluation 33 6.1 Performance under Different Receiving Frame Rate . . . . . . . . . . . . 34 6.2 Performance under Varying Inter-frame Interval . . . . . . . . . . . . . . 36 6.3 Performance under Different Smartphone Cameras . . . . . . . . . . . . 38 6.4 Max Throughput under Different Transmitting Frame Rate . . . . . . . . 43 6.5 Performance under Different LED Size in the Image . . . . . . . . . . . . 45 6.6 Time Measurement of Real-time iOS Decoder App . . . . . . . . . . . . 49 7 Conclusion 52 7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ix | |
| dc.language.iso | en | |
| dc.subject | 滾動式快門 | zh_TW |
| dc.subject | 相機通訊 | zh_TW |
| dc.subject | 可見光通訊 | zh_TW |
| dc.subject | Visible Light Communications | en |
| dc.subject | Camera Communication | en |
| dc.subject | Rolling Shutter | en |
| dc.title | 使用滾動式快門相機之非同步可見光通訊系統: 實作與評估 | zh_TW |
| dc.title | Unsynchronized Visible Light Communications using Rolling
Shutter Camera: Implementation and Evaluation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃仁竑,楊竹星,逄愛君,林靖茹 | |
| dc.subject.keyword | 可見光通訊,相機通訊,滾動式快門, | zh_TW |
| dc.subject.keyword | Visible Light Communications,Camera Communication,Rolling Shutter, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| Appears in Collections: | 資訊工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-104-1.pdf Restricted Access | 11.46 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
