請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55191
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林君榮 | |
dc.contributor.author | Ming-Hao Hsu | en |
dc.contributor.author | 許明豪 | zh_TW |
dc.date.accessioned | 2021-06-16T03:50:41Z | - |
dc.date.available | 2020-03-13 | |
dc.date.copyright | 2015-03-13 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-01-21 | |
dc.identifier.citation | Amidon, G.L., Lennernas, H., Shah, V.P., Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research, 1995, 12, 413-420. Amidon, G.L., Sinko, P.J., Fleisher, D. Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds. Pharmaceutical Research, 1988, 5, 651-654. Artursson, P., Palm, K., Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Advanced Drug Delivery Review, 2001, 46, 27-43. Baldwin, S.A., Mackey, J.R., Cass, C.E., Young, J.D. Nucleoside transporters: molecular biology and implications for therapeutic development. Molecular Medicine Today, 1999, 5, 216-224. Baldwin, S.A., Yao, S.Y., Hyde, R.J., Ng, A.M., Foppolo, S., Barnes, K., Ritzel, M.W., Cass, C.E., Young, J.D. Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. The Journal of Biological Chemistry, 2005, 280, 15880-15887. Balimane, P.V., Chong, S., Morrison, R.A. Current methodologies used for evaluation of intestinal permeability and absorption. Journal of Pharmacological and Toxicological Methods, 2000, 44, 301-312. Ballarin, M., Fredholm, B.B., Ambrosio, S., Mahy, N. Extracellular levels of adenosine and its metabolites in the striatum of awake rats: inhibition of uptake and metabolism. Acta physiologica Scandinavica, 1991, 142, 97-103. Barnes, K., Dobrzynski, H., Foppolo, S., Beal, P.R., Ismat, F., Scullion, E.R., Sun, L., Tellez, J., Ritzel, M.W., Claycomb, W.C., Cass, C.E., Young, J.D., Billeter-Clark, R., Boyett, M.R., Baldwin, S.A. Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic Ph. Circulation Research, 2006, 99, 510-519. Blum, D., Hourez, R., Galas, M.C., Popoli, P., Schiffmann, S.N. Adenosine receptors and Huntington’s disease: implications for pathogenesis and therapeutics. Lancet Neurology, 2003, 2, 366-374 Center for Drug Evaluation and Research. Guidance for industry, Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. Food and Drug Administration, 2000. Chen, J.F., Eltzschig, H.K., Fredholm, B.B. Adenosine receptors as drug targets – what are the challenges? Nature Reviews. Drug Discovery, 2013, 12, 265-286. Corvol, J.C., Studler, J.M., Schonn, J.S., Girault, J.A., Herve, D. Gαolf is necessary for coupling D1 and A2A receptors to adenylyl cyclase in the striatum. Journal of Neurochemistry, 2001, 76, 1585-1588. Curran, P.F., and Solomon, A.K. Ion and water fluxes in the ileum of rats. The Journal of General Physiology, 1957, 41, 143-168. Fagerholm, U., Johansson, M., Lennernas, U. Comparison between permeability coefficients in rat and human jejunum. Pharmaceutical Research, 1996, 13, 1336-1342. Fredholm, B.B., Ijzerman, A.P., Jacobson, K.A., Klotz, K.N., Linden, J. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacological Reviews, 2011, 63, 1-34. Fukatsu, K., Ueno, C., Maeshima, Y., Mochizuki, H., Saitoh, D. Detrimental effects of early nutrition administration after severe gut ischemia-reperfusion. Journal of Surgical Research, 2008, 149, 31-38. Hidalgo, I.J., Raub, T.J., Borchardt, R.T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 1989, 96, 736-749. Huang, N.K., Lin, J.H., Lin, J.T., Lin, C.I., Liu, E.M., Lin, C.J., Chen, W.P., Shen, Y.C., Chen, H.M., Chen, J.B., Lai, H.L., Yang, C.W., Chiang, M.C., Wu, Y.S., Chang, C., Chen, J.F., Fang, J.M., Lin, Y.L., Chern, Y. A new drug design targeting the adenosinergic system for Huntington’s disease. PLoS One, 2011, 6, e20934. Incecayir, T., Tsume, Y., Amidon, G.L. Comparison of the permeability of metoprolol and labetalol in rat, mouse, and Caco-2: use as a reference standard for BCS classification. Molecular Pharmaceutics, 2013, 10, 958-966. Karlsson, L., Schmitt, U., Josefsson, M., Carlsson, B., Ahlner, J., Bengtsson, F., Kugelberg, F.C., Hiemke, C. Blood-brain barrier penetration of the enatiomers of venlafaxine and its metabolites in mice lacking P-glycoprotein. European Neuropsychopharmacology, 2010, 20, 632-640. Kim, J.S., Mitchell, S., Kijek, P., Tsume, Y., Hilfinger, J., Amidon, G.L. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Molecular Pharmaceutics, 2006, 3, 686-694. King, A.E., Ackley, M.A., Cass, C.E., Young, J.D., Baldwin, S.A. Nucleoside transporters: from scavengers to novel therapeutic targets. Trends in Pharmacological Sciences, 2006, 27, 416-425. Komiya, I., Park, J.Y., Kamani, A., Ho, N.F.H., Higuchi, W.I. Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes. International Journal of Pharmaceutics, 1980, 4, 249-262. Kramer, S.D. Absorption prediction from physicochemical parameters. Pharmaceutical Science and Technology Today, 1999, 2, 373-380. Kulisevsky, J., and Poyurovsky, M. Adenosine A2A- receptors antagonism and pathophysiology of Parkinson’s disease and drug-induced movement disorders. European Neurology, 2012, 67, 4-11. Kull, B., Svenningsson, P., Fredholm, B.B. Adenosine A2A receptors are colocalized with and activate Golf in rat striatum. Molecular Pharmacology, 2000, 58, 771-777. Lennernas, H., Ahrenstedt, O., Hallgren, R., Knutson, L., Ryde, M., Paalzow, L.K. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharmaceutical Research, 1992, 9, 1243-1251. Levitt, M.D., Kneip, J.M., Levitt, D.G. Use of laminar flow and unstirred layer models to predict intestinal absorption in the rat. The Journal of Clinical Investigation, 1988, 81, 1365-1369. Linden, J. Adenosine in tissue protection and tissue regeneration. Molecular Pharmacology, 2005, 67, 1385-1387. Little, J.M. A modified diphenylamine procedure for the determination of inulin. The Journal of Biological Chemistry, 1949, 180, 747-754. Miller, D.L., and Schedl, H.P. Nonabsorbed indicators: a comparison of phenol red and inlulin-14C and effects of perfusion technique. Gastroenterology, 1972, 62, 48-55. Mitchell, I.J., Cooper, A.J., Griffiths, M.R. The selective vulnerability of striatopallidal neurons. Progress in Neurobiology, 1999, 59, 691-719. Parkinson, F.E., Damaraju, V.L., Graham, K., Yao, S.Y., Baldwin, S.A., Cass, C.E., Young, J.D. Molecular biology of nucleoside transporters and their distributions and functions in the brain. Current Topics in Medicinal Chemistry, 2011, 11, 948-972. Patrizia, P., David, B., Alberto, M., Catherine, L., Stefania, C., Maria, P.A. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Progress in Neurobiology, 2007, 81, 331-348. Paxinos, G., and Watson, C. The Rat Brain in Stereotaxic Coordinates, 2005, 5th edition, 209 pages. Podgorska, M., Kocbuch, K., Pawelczyk, T. Recent advances in studies on biochemical and structural properties of equilibrative and concentrative nucleoside transporters. Acta Biochimica Polonica, 2005, 52, 749-758. Quaroni, A., and Hochman, J. Development of intestinal cell culture models for drug transport and metabolism studies. Advanced Drug Delivery Reviews, 1996, 22, 3-52. Rivkees, S.A., Price, S.L., Zhou, F.C. Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Research, 1995, 677, 193-203. Salphati, L., Childers, K., Pan, L., Tsutsui, K., Takahashi, L. Evaluation of a single-pass intestinal-perfusion method in rat for the prediction of absorption in man. Journal of Pharmacy and Pharmacology, 2001, 53, 1007-1013. Shugarts, S., and Benet, L.Z. The role of transporters in the pharmacokinetics of orally administered drugs. Pharmaceutical Research, 2009, 26, 2039-2054. Sinko, P.J., Leesman, G.D., Amidon, G.L. Predicting fraction dose absorbed in humans using a macroscopic mass balance approach. Pharmaceutical Research, 1991, 8, 979-988. Soldado, P.C., and Anglada, M.P. Transporters that translocate nucleoside and structural similar drugs: structural requirements for substrate recognition. Medicinal Research Review, 2012, 32, 428-457. Varma, M.V., and Panchagnula, R. Prediction of in vivo intestinal absorption enhancement on P-glycoprotein inhibition, from rat in situ permeability. Journal of Pharmaceutical Sciences, 2005, 94, 1694-1704. Verma, A., and Marangos, P.J. Nitrobenzylthioinosine binding in brain: an interspecies study. Life Sciences, 1985, 36, 283-290. Visser, F., Vickers, M.F., Ng, A.M., Baldwin, S.A., Young, J.D., Cass, C.E. Mutation of residue 33 of human equilibrative nucleoside transporters 1 and 2 alters sensitivity to inhibition of transport by dilazep and dipyridamole. The Journal of Biological Chemistry, 2002, 277, 395-401. Wu, C.Y., and Benet, L.Z. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharmaceutical Research, 2005, 22, 11-23. Young, J.D., Yao-Sylvia, Y.M., Baldwin, J.M., Cass, C.E., Baldwin, S.A. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Molecular Aspects of Medicine, 2013, 34, 529-547. Zakeri-Milani, P., Valizadeh, H., Tajerzadeh, H., Azarmi, Y., Islambolchilar, Z., Barzegar, S., Barzegar-Jalali, M. human intestinal permeability using single-pass intestinal perfusion in rat. Journal of Pharmaceutical Sciences, 2007, 10, 368-379. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55191 | - |
dc.description.abstract | 亨丁頓舞蹈症 (Huntington’s disease; HD) 為huntingtin基因上CAG三核酸重覆序列擴增所導致的神經退化性疾病,至今亨丁頓舞蹈症仍然無藥可治,因此許多研究致力於尋找標的物以改善症狀,近來更有研究指出藉由調控腺苷 (adenosine) 的系統或許是一個可行的策略。 化合物A是從天麻所萃取出來的腺苷衍生物,它本身具有抑制ENT1及活化A2A受體的雙重功效,除了化合物A之外,也經由結構修改合成了另外兩個腺苷衍生物化合物B及化合物C。有鑑於口服藥物之便利性,所以本研究以MDCK II細胞攝取實驗、原位小腸灌流試驗及生體可用率試驗去評估這三種化合物的口服吸收效果。在腦部分佈的部分,以ARBEC細胞攝取實驗去評估這三種化合物在血腦障壁 (blood-brain barrier; BBB) 的通透程度,更以ICR小鼠給予尾靜脈注射化合物後,測量其血液中至腦部組織的比例 (brain/blood ratio),最後則是以Wistar大鼠腹腔注射化合物後,利用腦部微透析去分析紋狀體內化合物及腺苷的濃度。 預測之人類腸道吸收分率在化合物A、化合物B及化合物C分別為0.41 ± 0.12、0.77 ± 0.07、0.87 ± 0.01,而化合物於小鼠的生體可用率在化合物A、化合物B及化合物C分別為5.48 %、7.13 %、25.99 %。對於化合物腦部分佈而言,在ICR小鼠化合物C自血液中至腦部組織的比例會隨著時間而上升,其餘兩者則是下降,然而在Wistar大鼠腦部微透析實驗中則發現腹腔注射化合物C之後,紋狀體內化合物C及adenosine並無變化的跡象,反倒是腹腔注射化合物A及化合物B之後,化合物本身及adenosine在紋狀體內有上升的趨勢,關於化合物C在brain/blood ratio與微透析實驗結果之矛盾,推測是其組織結合力 (tissue binding) 太高所致。總而言之,藥物動力學性質研究顯示基於口服吸收性質而言化合物C最有潛力發展為口服藥物,但是其腦部分佈特性仍須進一步加以釐清。 | zh_TW |
dc.description.abstract | Huntington’s disease (HD) is a neurodegenerative disease caused by the CAG trinucleotide expansion in the huntingtin gene. So far, there is no effective drug for HD treatment and many studies have been carried out to explore the therapeutic targets to alleviate the symptoms of HD. Recently, some studies indicated that modulating the adenosinergic system may be a feasible strategy. Compound A, an adenosine analogue extracted from Gastrodia elata (GE), has the dual function of ENT1 inhibition and A2A receptor activation. In addition to compound A, two adenosine analogues derived from compound A, compound B and compound C, were synthesized. Considering the fact that oral drug is convenient, in this study, MDCK II uptake study, in situ intestinal perfusion, and bioavailability (BA) study were performed to evaluate oral absorption of these compounds. For brain distribution, ARBEC uptake study was conducted to investigate the ability of these compounds to pass through the blood-brain barrier (BBB). Blood to brain ratios (brain/blood ratios) were measured in ICR mice given compounds by tail vein injection. Also, compounds were administrated to the Wistar rats by intraperitoneal injection and the concentrations of compounds and adenosine in striatum were detected by in-vivo brain microdialysis. The predicted fraction absorbed (Fa) in human of compound A, compound B and compound C were 0.41 ± 0.12, 0.77 ± 0.07 and 0.87 ± 0.01, respectively. The bioavailability (BA) values in mice were 5.48 %, 7.13 %, and 25.99 % for compound A, compound B and compound C, respectively. With regard to the distribution in the brain, the blood to brain ratio of compound C was increased over time in the ICR mice, whereas the blood to brain ratio was decreased over time in other two compounds. In the brain microdialysis study, the concentrations of compound C and adenosine are unchanged, but the concentrations of compound A, compound B and adenosine have the trend of increase after intraperitoneal injection of these compounds. The discrepancy between blood to brain ratio and microdialysis for compound C may attribute to its high tissue binding. In conclusion, the pharmacokinetic study suggests that compound C may have the potential to be developed as an oral drug with respect to oral absorption property, whereas its distribution in the brain need to be further elucidated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:50:41Z (GMT). No. of bitstreams: 1 ntu-104-R01423013-1.pdf: 1784831 bytes, checksum: 28e402f08d27ebce1912313ae72dfffc (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Abstract i 摘要............................................................................................................................. iii 目錄............................................................................................................................. iv 圖目錄 viii 表目錄 ix 附圖目錄 x 附表目錄 xi 第一章 文獻回顧 1 1.1. 亨丁頓舞蹈症 1 1.2. mHTT造成紋狀體內神經細胞死亡之機轉 1 1.3. 基底核與運動功能 2 1.4. 核苷轉運蛋白 3 1.5. 腺苷受體 4 1.6. 藥物腸道吸收研究方法 6 1.7. 大鼠腸道有效穿透率與人體腸道吸收分率 9 第二章 研究目的 15 第三章 實驗材料 17 3.1. MDCK II細胞攝取實驗 17 3.2. 原位小腸灌流穿透性試驗 19 3.3. 生體可用率試驗 21 3.4. NBTI與dipyridamole抑制化合物在ARBEC攝取量之研究 22 3.5. 腦部化合物含量測定 25 3.6. 腦部微透析試驗 26 3.7. 蛋白質濃度測定 28 3.8. 高效能液相層析試驗 28 3.9. 超高效能液相層析串聯質譜儀定量分析 29 3.10. 核苷衍生物 30 第四章 實驗方法 31 4.1. MDCK II細胞攝取實驗 31 4.1.1. MDCK II細胞培養 31 4.1.2. MDCK II化合物攝取實驗 31 4.2. 原位小腸灌流穿透性試驗 32 4.2.1. 原位小腸分離手術 32 4.2.2. 原位小腸灌流給藥及取樣 33 4.2.3. 菊糖濃度測定 33 4.3. 生體可用率試驗 34 4.3.1. 給藥及採血步驟 35 4.3.2. 血樣萃取方法 35 4.4. NBTI與dipyridamole抑制化合物在ARBEC攝取量之研究 36 4.4.1. ARBEC細胞培養 36 4.4.2. ARBEC化合物攝取實驗 37 4.5. 腦部化合物含量測定 37 4.5.1. 給藥、採血及取腦步驟 38 4.5.2. 血樣萃取方法 38 4.5.3. 腦部檢品萃取方法 38 4.6. 腦部微透析試驗 39 4.6.1. 透析膜清洗 39 4.6.2. 體外回收率試驗 40 4.6.3. 腦部定位及微透析探針外管置入 40 4.6.4. 腦部微透析流程 41 4.7. 蛋白質濃度測定 42 4.8. 高效能液相層析試驗 42 4.8.1. MDCK II細胞攝取實驗檢品濃度測定 42 4.8.2. 原位小腸灌流穿透性試驗檢品濃度測定 43 4.8.3. ARBEC細胞攝取實驗檢品濃度測定 43 4.9. 超高效能液相層析串聯質譜儀定量分析 43 4.9.1. 血樣濃度測定 43 4.9.2. 腦部檢品含量測定 44 4.9.3. 腦部微透析檢品濃度測定 44 4.10. 藥物動力學分析及計算 45 4.10.1. 靜脈給藥WinNonlin之設定及藥物動力學參數之計算 46 4.10.2. 口服給藥WinNonlin之設定及藥物動力學參數之計算 47 4.10.3. 口服給藥生體可用率之計算 48 4.11. 統計分析 48 第五章 實驗結果 49 5.1. MDCK II細胞攝取實驗結果 49 5.2. 化合物小腸穿透性之研究 49 5.3. 生體可用率試驗 49 5.4. NBTI與dipyridamole抑制化合物在ARBEC攝取量之研究 50 5.5. 腦部化合物含量測定 50 5.6. 腦部微透析試驗結果 51 5.6.1. 化合物B藥動藥效模組 53 第六章 結果討論 56 6.1. 化合物腸道吸收性質之探討 56 6.2. 化合物腦部分佈性質之探討 60 6.3. 化合物B對於ENT1的IC50之探討 64 第七章 結論 65 第八章 參考文獻 80 第九章 附錄 86 附錄A 附圖 86 附錄B 附表 92 | |
dc.language.iso | zh-TW | |
dc.title | 治療亨丁頓舞蹈症的核苷衍生物之藥物動力學性質研究 | zh_TW |
dc.title | Pharmacokinetic study of nucleoside analogues for the treatment of Huntington's disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳儀莊,林雲蓮 | |
dc.subject.keyword | 亨丁頓舞蹈症, | zh_TW |
dc.subject.keyword | Huntington's disease, | en |
dc.relation.page | 98 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-01-21 | |
dc.contributor.author-college | 藥學專業學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。