Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55185
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張震東
dc.contributor.authorCheng-Han Yuen
dc.contributor.author余承翰zh_TW
dc.date.accessioned2021-06-16T03:50:27Z-
dc.date.available2020-01-28
dc.date.copyright2015-01-28
dc.date.issued2015
dc.date.submitted2015-01-22
dc.identifier.citation1. Lomenick, B., Olsen, R. W., and Huang, J. (2011) Identification of direct protein targets of small molecules. ACS chemical biology 6, 34-46
2. Lee, C. U., and Grossmann, T. N. (2012) Reversible covalent inhibition of a protein target. Angewandte Chemie 51, 8699-8700
3. Singh, J., Petter, R. C., Baillie, T. A., and Whitty, A. (2011) The resurgence of covalent drugs. Nature reviews. Drug discovery 10, 307-317
4. Niphakis, M. J., and Cravatt, B. F. (2014) Enzyme inhibitor discovery by activity-based protein profiling. Annual review of biochemistry 83, 341-377
5. Martell, J., and Weerapana, E. (2014) Applications of copper-catalyzed click chemistry in activity-based protein profiling. Molecules 19, 1378-1393
6. Tonks, N. K. (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nature reviews. Molecular cell biology 7, 833-846
7. Zhang, Z. Y., Wang, Y., and Dixon, J. E. (1994) Dissecting the catalytic mechanism of protein-tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America 91, 1624-1627
8. Barford, D., Flint, A. J., and Tonks, N. K. (1994) Crystal structure of human protein tyrosine phosphatase 1B. Science 263, 1397-1404
9. Lee, S. R., Kwon, K. S., Kim, S. R., and Rhee, S. G. (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. The Journal of biological chemistry 273, 15366-15372
10. Meng, T. C., Fukada, T., and Tonks, N. K. (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular cell 9, 387-399
11. Meng, T. C., Buckley, D. A., Galic, S., Tiganis, T., and Tonks, N. K. (2004) Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. The Journal of biological chemistry 279, 37716-37725
12. Capasso, M., Bhamrah, M. K., Henley, T., Boyd, R. S., Langlais, C., Cain, K., Dinsdale, D., Pulford, K., Khan, M., Musset, B., Cherny, V. V., Morgan, D., Gascoyne, R. D., Vigorito, E., DeCoursey, T. E., MacLennan, I. C., and Dyer, M. J. (2010) HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nature immunology 11, 265-272
13. Singh, D. K., Kumar, D., Siddiqui, Z., Basu, S. K., Kumar, V., and Rao, K. V. (2005) The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell 121, 281-293
14. Hsu, M. F., and Meng, T. C. (2010) Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. The Journal of biological chemistry 285, 7919-7928
15. Barrett, D. M., Black, S. M., Todor, H., Schmidt-Ullrich, R. K., Dawson, K. S., and Mikkelsen, R. B. (2005) Inhibition of protein-tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation. The Journal of biological chemistry 280, 14453-14461
16. Hendriks, W. J., Elson, A., Harroch, S., Pulido, R., Stoker, A., and den Hertog, J. (2013) Protein tyrosine phosphatases in health and disease. The FEBS journal 280, 708-730
17. Robertson, S. C., Tynan, J., and Donoghue, D. J. (2000) RTK mutations and human syndromes: when good receptors turn bad. Trends in genetics : TIG 16, 368
18. Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A. L., Normandin, D., Cheng, A., Himms-Hagen, J., Chan, C. C., Ramachandran, C., Gresser, M. J., Tremblay, M. L., and Kennedy, B. P. (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544-1548
19. Klaman, L. D., Boss, O., Peroni, O. D., Kim, J. K., Martino, J. L., Zabolotny, J. M., Moghal, N., Lubkin, M., Kim, Y. B., Sharpe, A. H., Stricker-Krongrad, A., Shulman, G. I., Neel, B. G., and Kahn, B. B. (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Molecular and cellular biology 20, 5479-5489
20. Muise, A. M., Walters, T., Wine, E., Griffiths, A. M., Turner, D., Duerr, R. H., Regueiro, M. D., Ngan, B. Y., Xu, W., Sherman, P. M., Silverberg, M. S., and Rotin, D. (2007) Protein-tyrosine phosphatase sigma is associated with ulcerative colitis. Current biology : CB 17, 1212-1218
21. Fousteri, G., Liossis, S. N., and Battaglia, M. (2013) Roles of the protein tyrosine phosphatase PTPN22 in immunity and autoimmunity. Clinical immunology 149, 556-565
22. Vang, T., Miletic, A. V., Bottini, N., and Mustelin, T. (2007) Protein tyrosine phosphatase PTPN22 in human autoimmunity. Autoimmunity 40, 453-461
23. Martin, K. R., Narang, P., Medina-Franco, J. L., Meurice, N., and MacKeigan, J. P. (2014) Integrating virtual and biochemical screening for protein tyrosine phosphatase inhibitor discovery. Methods 65, 219-228
24. Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake, P. G., Iversen, L. F., Olsen, O. H., Jansen, P. G., Andersen, H. S., Tonks, N. K., and Moller, N. P. (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and cellular biology 21, 7117-7136
25. Mestres, J., Gregori-Puigjane, E., Valverde, S., and Sole, R. V. (2008) Data completeness--the Achilles heel of drug-target networks. Nature biotechnology 26, 983-984
26. Futamura, Y., Muroi, M., and Osada, H. (2013) Target identification of small molecules based on chemical biology approaches. Molecular bioSystems 9, 897-914
27. Liu, S., Zhou, B., Yang, H., He, Y., Jiang, Z. X., Kumar, S., Wu, L., and Zhang, Z. Y. (2008) Aryl vinyl sulfonates and sulfones as active site-directed and mechanism-based probes for protein tyrosine phosphatases. Journal of the American Chemical Society 130, 8251-8260
28. Citri, A., and Yarden, Y. (2006) EGF-ERBB signalling: towards the systems level. Nature reviews. Molecular cell biology 7, 505-516
29. Tao, R. H., and Maruyama, I. N. (2008) All EGF(ErbB) receptors have preformed homo- and heterodimeric structures in living cells. Journal of cell science 121, 3207-3217
30. Mendelsohn, J., and Baselga, J. (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19, 6550-6565
31. Barf, T., and Kaptein, A. (2012) Irreversible protein kinase inhibitors: balancing the benefits and risks. Journal of medicinal chemistry 55, 6243-6262
32. Hirsh, V. (2011) Afatinib (BIBW 2992) development in non-small-cell lung cancer. Future oncology 7, 817-825
33. Solca, F., Dahl, G., Zoephel, A., Bader, G., Sanderson, M., Klein, C., Kraemer, O., Himmelsbach, F., Haaksma, E., and Adolf, G. R. (2012) Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. The Journal of pharmacology and experimental therapeutics 343, 342-350
34. Li, D., Ambrogio, L., Shimamura, T., Kubo, S., Takahashi, M., Chirieac, L. R., Padera, R. F., Shapiro, G. I., Baum, A., Himmelsbach, F., Rettig, W. J., Meyerson, M., Solca, F., Greulich, H., and Wong, K. K. (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702-4711
35. Brockstein, B. E. (2011) Management of recurrent head and neck cancer: recent progress and future directions. Drugs 71, 1551-1559
36. Harbeck, N., Solca, F., and Gauler, T. C. (2014) Preclinical and clinical development of afatinib: a focus on breast cancer and squamous cell carcinoma of the head and neck. Future oncology 10, 21-40
37. Burtness, B., Bourhis, J. P., Vermorken, J. B., Harrington, K. J., and Cohen, E. E. (2014) Afatinib versus placebo as adjuvant therapy after chemoradiation in a double-blind, phase III study (LUX-Head & Neck 2) in patients with primary unresected, clinically intermediate-to-high-risk head and neck cancer: study protocol for a randomized controlled trial. Trials 15, 469
38. Zhang, X., and Munster, P. N. (2014) New protein kinase inhibitors in breast cancer: afatinib and neratinib. Expert opinion on pharmacotherapy 15, 1277-1288
39. Hurvitz, S. A., Shatsky, R., and Harbeck, N. (2014) Afatinib in the treatment of breast cancer. Expert opinion on investigational drugs 23, 1039-1047
40. Huyer, G., Liu, S., Kelly, J., Moffat, J., Payette, P., Kennedy, B., Tsaprailis, G., Gresser, M. J., and Ramachandran, C. (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. The Journal of biological chemistry 272, 843-851
41. Liljebris, C., Baranczewski, P., Bjorkstrand, E., Bystrom, S., Lundgren, B., Tjernberg, A., Warolen, M., and James, S. R. (2004) Oxidation of protein tyrosine phosphatases as a pharmaceutical mechanism of action: a study using 4-hydroxy-3,3-dimethyl-2H-benzo[g]indole-2,5(3H)-dione. The Journal of pharmacology and experimental therapeutics 309, 711-719
42. Lazo, J. S., Nemoto, K., Pestell, K. E., Cooley, K., Southwick, E. C., Mitchell, D. A., Furey, W., Gussio, R., Zaharevitz, D. W., Joo, B., and Wipf, P. (2002) Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Molecular pharmacology 61, 720-728
43. van Montfort, R. L., Congreve, M., Tisi, D., Carr, R., and Jhoti, H. (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423, 773-777
44. Salmeen, A., Andersen, J. N., Myers, M. P., Meng, T. C., Hinks, J. A., Tonks, N. K., and Barford, D. (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769-773
45. Goldstein, B. J., Mahadev, K., and Wu, X. (2005) Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 54, 311-321
46. Messana, I., Cabras, T., Iavarone, F., Vincenzoni, F., Urbani, A., and Castagnola, M. (2013) Unraveling the different proteomic platforms. Journal of separation science 36, 128-139
47. Go, Y. M., Duong, D. M., Peng, J., and Jones, D. P. (2011) Protein Cysteines Map to Functional Networks According to Steady-state Level of Oxidation. Journal of proteomics & bioinformatics 4, 196-209
48. Weerapana, E., Wang, C., Simon, G. M., Richter, F., Khare, S., Dillon, M. B., Bachovchin, D. A., Mowen, K., Baker, D., and Cravatt, B. F. (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790-795
49. Paulsen, C. E., and Carroll, K. S. (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chemical reviews 113, 4633-4679
50. Winterbourn, C. C., and Hampton, M. B. (2008) Thiol chemistry and specificity in redox signaling. Free radical biology & medicine 45, 549-561
51. Nicholson, T. B., Chen, T., and Richard, S. (2009) The physiological and pathophysiological role of PRMT1-mediated protein arginine methylation. Pharmacological research : the official journal of the Italian Pharmacological Society 60, 466-474
52. Tang, J., Kao, P. N., and Herschman, H. R. (2000) Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. The Journal of biological chemistry 275, 19866-19876
53. Wang, H., Huang, Z. Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B. D., Briggs, S. D., Allis, C. D., Wong, J., Tempst, P., and Zhang, Y. (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293, 853-857
54. Strahl, B. D., Briggs, S. D., Brame, C. J., Caldwell, J. A., Koh, S. S., Ma, H., Cook, R. G., Shabanowitz, J., Hunt, D. F., Stallcup, M. R., and Allis, C. D. (2001) Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Current biology : CB 11, 996-1000
55. Cheng, D., Yadav, N., King, R. W., Swanson, M. S., Weinstein, E. J., and Bedford, M. T. (2004) Small molecule regulators of protein arginine methyltransferases. The Journal of biological chemistry 279, 23892-23899
56. Heinke, R., Spannhoff, A., Meier, R., Trojer, P., Bauer, I., Jung, M., and Sippl, W. (2009) Virtual screening and biological characterization of novel histone arginine methyltransferase PRMT1 inhibitors. ChemMedChem 4, 69-77
57. Karplus, P. A., and Schulz, G. E. (1989) Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution. Journal of molecular biology 210, 163-180
58. Begara-Morales, J. C., Lopez-Jaramillo, F. J., Sanchez-Calvo, B., Carreras, A., Ortega-Munoz, M., Santoyo-Gonzalez, F., Corpas, F. J., and Barroso, J. B. (2013) Vinyl sulfone silica: application of an open preactivated support to the study of transnitrosylation of plant proteins by S-nitrosoglutathione. BMC plant biology 13, 61
59. Morales-Sanfrutos, J., Lopez-Jaramillo, J., Ortega-Munoz, M., Megia-Fernandez, A., Perez-Balderas, F., Hernandez-Mateo, F., and Santoyo-Gonzalez, F. (2010) Vinyl sulfone: a versatile function for simple bioconjugation and immobilization. Organic & biomolecular chemistry 8, 667-675
60. Liu, Q., Sabnis, Y., Zhao, Z., Zhang, T., Buhrlage, S. J., Jones, L. H., and Gray, N. S. (2013) Developing irreversible inhibitors of the protein kinase cysteinome. Chemistry & biology 20, 146-159
61. Johnson, D. S., Weerapana, E., and Cravatt, B. F. (2010) Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future medicinal chemistry 2, 949-964
62. Yang, J. C., Hirsh, V., Schuler, M., Yamamoto, N., O'Byrne, K. J., Mok, T. S., Zazulina, V., Shahidi, M., Lungershausen, J., Massey, D., Palmer, M., and Sequist, L. V. (2013) Symptom control and quality of life in LUX-Lung 3: a phase III study of afatinib or cisplatin/pemetrexed in patients with advanced lung adenocarcinoma with EGFR mutations. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 31, 3342-3350
63. Wang, M. L., Rule, S., Martin, P., Goy, A., Auer, R., Kahl, B. S., Jurczak, W., Advani, R. H., Romaguera, J. E., Williams, M. E., Barrientos, J. C., Chmielowska, E., Radford, J., Stilgenbauer, S., Dreyling, M., Jedrzejczak, W. W., Johnson, P., Spurgeon, S. E., Li, L., Zhang, L., Newberry, K., Ou, Z., Cheng, N., Fang, B., McGreivy, J., Clow, F., Buggy, J. J., Chang, B. Y., Beaupre, D. M., Kunkel, L. A., and Blum, K. A. (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. The New England journal of medicine 369, 507-516
64. Sequist, L. V., Yang, J. C., Yamamoto, N., O'Byrne, K., Hirsh, V., Mok, T., Geater, S. L., Orlov, S., Tsai, C. M., Boyer, M., Su, W. C., Bennouna, J., Kato, T., Gorbunova, V., Lee, K. H., Shah, R., Massey, D., Zazulina, V., Shahidi, M., and Schuler, M. (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 31, 3327-3334
65. Dungo, R. T., and Keating, G. M. (2013) Afatinib: first global approval. Drugs 73, 1503-1515
66. Byrd, J. C., Furman, R. R., Coutre, S. E., Flinn, I. W., Burger, J. A., Blum, K. A., Grant, B., Sharman, J. P., Coleman, M., Wierda, W. G., Jones, J. A., Zhao, W., Heerema, N. A., Johnson, A. J., Sukbuntherng, J., Chang, B. Y., Clow, F., Hedrick, E., Buggy, J. J., James, D. F., and O'Brien, S. (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. The New England journal of medicine 369, 32-42
67. Cravatt, B. F., Wright, A. T., and Kozarich, J. W. (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annual review of biochemistry 77, 383-414
68. Evans, M. J., and Cravatt, B. F. (2006) Mechanism-based profiling of enzyme families. Chemical reviews 106, 3279-3301
69. Edgington, L. E., Berger, A. B., Blum, G., Albrow, V. E., Paulick, M. G., Lineberry, N., and Bogyo, M. (2009) Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nature medicine 15, 967-973
70. Hang, H. C., Loureiro, J., Spooner, E., van der Velden, A. W., Kim, Y. M., Pollington, A. M., Maehr, R., Starnbach, M. N., and Ploegh, H. L. (2006) Mechanism-based probe for the analysis of cathepsin cysteine proteases in living cells. ACS chemical biology 1, 713-723
71. Speers, A. E., Adam, G. C., and Cravatt, B. F. (2003) Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. Journal of the American Chemical Society 125, 4686-4687
72. Su, Y., Ge, J., Zhu, B., Zheng, Y. G., Zhu, Q., and Yao, S. Q. (2013) Target identification of biologically active small molecules via in situ methods. Current opinion in chemical biology 17, 768-775
73. Yang, P. Y., Liu, K., Ngai, M. H., Lear, M. J., Wenk, M. R., and Yao, S. Q. (2010) Activity-based proteome profiling of potential cellular targets of Orlistat--an FDA-approved drug with anti-tumor activities. Journal of the American Chemical Society 132, 656-666
74. Kumar, S., Zhou, B., Liang, F., Yang, H., Wang, W. Q., and Zhang, Z. Y. (2006) Global analysis of protein tyrosine phosphatase activity with ultra-sensitive fluorescent probes. Journal of proteome research 5, 1898-1905
75. Kumar, S., Zhou, B., Liang, F., Wang, W. Q., Huang, Z., and Zhang, Z. Y. (2004) Activity-based probes for protein tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America 101, 7943-7948
76. Pierce, J. W., Schoenleber, R., Jesmok, G., Best, J., Moore, S. A., Collins, T., and Gerritsen, M. E. (1997) Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. The Journal of biological chemistry 272, 21096-21103
77. Krishnan, N., Bencze, G., Cohen, P., and Tonks, N. K. (2013) The anti-inflammatory compound BAY-11-7082 is a potent inhibitor of protein tyrosine phosphatases. The FEBS journal 280, 2830-2841
78. Strickson, S., Campbell, D. G., Emmerich, C. H., Knebel, A., Plater, L., Ritorto, M. S., Shpiro, N., and Cohen, P. (2013) The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. The Biochemical journal 451, 427-437
79. Gersch, M., Kreuzer, J., and Sieber, S. A. (2012) Electrophilic natural products and their biological targets. Natural product reports 29, 659-682
80. Singh, J., Petter, R. C., and Kluge, A. F. (2010) Targeted covalent drugs of the kinase family. Current opinion in chemical biology 14, 475-480
81. Nishimura, Y., Bereczky, B., and Ono, M. (2007) The EGFR inhibitor gefitinib suppresses ligand-stimulated endocytosis of EGFR via the early/late endocytic pathway in non-small cell lung cancer cell lines. Histochemistry and cell biology 127, 541-553
82. Ewald, B., Sampath, D., and Plunkett, W. (2007) H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Molecular cancer therapeutics 6, 1239-1248
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55185-
dc.description.abstract藥物的發展一直以來都是一個重要但又令人卻步的領域,但是還是吸引了許多科學家前仆後繼的進入這個領域來研究。這幾年來,一個以活性機制為基礎的藥物目標蛋白建檔的方法出現,這是一個有邏輯性的方法去找尋具有選擇性且在生物體內是有效的酵素藥物的篩選方法。然而,這個方法受限於必需去對藥物進行進一步的修飾,才能加上一些官能基讓我們來偵測或是純化。因此我們在這裡提供且驗證了一個以抗體為基礎的方法,不需要進行進一步的化籌修飾就可以針對藥物研究提供一個新方式。首先,我們針對我們有興趣的藥物製做抗體,我們挑選了苯乙烯碸 (Phenyl Vinyl Sulfone) 和妥復克 (Afatinib) 來製作會特別辨認他們的抗體。苯乙烯碸是酪氨酸磷酸酶 (Tyrosine Phosphatase) 的抑制劑,具有一個比較簡單的結構;妥復克是一個上皮細胞生長因子受體 (EGFR) 的抑制劑,一種酪氨酸激酶 (Tyrosine Kinase)。這樣會辨認特殊藥物的抗體,在我們的實驗裡證明是可以被用在西方墨點法的針測,或是可以被用在螢光染色法上來用顯微鏡觀察。此外,我們可以進一步利用免疫沉澱法和質譜分析的方法來確認在細胞裡面這些共價藥物的目標蛋白的身份,經由這些目標蛋白身份的確認,我們也許可以提供一些藥物上的機制來說明藥物為何針對某些症狀或是某些疾病有效,甚至我們可以透過這些目標蛋白的身份來開發這個藥物的新的適應症。在這裡,我們發現苯乙烯碸和它的類似藥物在試管中或是在細胞中可以被用來抑制精氨酸甲基轉移酶一號的活性,同時,在試管中也可以被用來抑制麩胱甘肽還原酶的活性。另一方面,我們發現妥復克和它的非共價類似藥物,艾瑞莎 (Gefitinib) 和得舒緩 (Erlotinib),不只是上皮細胞生長因子受體的抑制劑,更有潛力是核醣核苷酸還原酶的抑制劑。在這些實驗中,我們在針對這些共價藥物上的偵測有更近一步的發展,我們可以針對一個特殊有興趣被挑選蛋白來偵測它和藥物的複合體的結合,而不需要透過按鍵化學法來達成,在這裡我們舉苯乙烯碸和酪氨酸磷酸酶為例子。最後我們想強調的是,以這種以抗體為基礎的方法,提供了有力的且直接正向的方法來針對這些共價藥物的目標蛋白進行身份上的確認。zh_TW
dc.description.abstractDrug development is always a vital and daunting field for many scientists to participate in one after another. Recently, activity-based protein profiling has emerged as a logical tool to discover selective and in vivo active inhibitors for enzymes. However, it has been limited by the need of further chemical modification to these covalent inhibitors with the handle for detection and enrichment. Thus, we have offered and confirmed an antibody-based approach herein named target identification by specific tagging and antibody detection (TISTA) to the chemocentric approach without chemically further modifying these covalent inhibitors. First, we have successfully raised the antisera against the phenyl vinyl sulfone (PVS) and afatinib that PVS is a covalent tyrosine phosphatase inhibitor with simple structure and afatinib is a well-known covalent receptor tyrosine kinase EGFR inhibitor with more complex structure. The data showed that the antiserum can be used in the immunoblotting and immunofluorescence staining. In addition, we can use the immunoprecipitation method to identify the in cellulo target proteins and explain the mechanisms behind the chosen inhibitor and to find a new therapeutic indication based on the candidates identified by the Mass spectrometry following the immunoprecipitation. Here, we found that the PVS and its analogs can be used to inhibit protein arginine methyltranferase 1 and glutathione reductase, and afatinib and its non-covalent analogs, gefitinib and erlotinib, are not only inhibitors of EGFR but also potential inhibitors of ribonucleotide reductase. In these experiments, we also have an advance in raising an antiserum against PVS-tagged catalytic cysteine of PTP1B to individually monitor the redox status of cysteine in the PTP1B. Finally, we must to emphasize the importance that TISTA is a powerful approach and a positive selection method to identify the target proteins of covalent drugs and their non-covalent analogs.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:50:27Z (GMT). No. of bitstreams: 1
ntu-104-D97b46002-1.pdf: 3451179 bytes, checksum: 1ccb539e54380b78ca9bd24a3b5243b4 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContents
中文摘要…………………………………………………………………………………i
Abstract…………..………………………………………………………….…….…….ii
Lists of Figures and Tables……………………………………….……………………..vi
Lists of Appendixes………………………………………………………………….…..x
Lists of Abbreviations………….....................................................................................xii
1. Introduction………………………………………………...………..………………..1
1.1 Development of covalent drugs…………………………………...………..………..1
1.2 An example of protein tyrosine phosphatase ( A simple drug)………...…………….3
1.3 An example of protein tyrosine kinase ( A sophisticated drug)………...……………4
2. Materials and Methods…………………………..……………………………………7
2.1 Materials………………………….………………………………………………….7
2.2 Methods……………………………………………………………..……………….8
3. Results…………………………………………………………………….…………17
3.1 Phenyl vinyl sulfone (A porotein tyrosine phosphatase inhibitor)…………………17
3.1.1 Production and Characterization of anti-PVS antiserum…………………………17
3.1.2 Application of anti-PVS antiserum……………………………………………….19
3.1.3 Characterization and applications of anti-PVS-PTP1B antiserum……………….20
3.1.4 Use of anti-PVS-PTP1B in monitoring the redox status of PTP1B active site cysteine…………………………………………………………………………………21
3.1.5 PVS-and PVSN-tagged proteins in HeLa cells…………………………………..22
3.1.6 PVS, PVSN and Bay 11-7082 as PRMT1 inhibitors……………………….…….25
3.1.7 Applications of PVS labeling in monitoring cellular redox status…….…………27
3.2 Afatinib (A protein tyrosine kinase inhibitor)………………………………………29
3.2.1 Production and characterization of anti-afatinib antiserum………………………29
3.3.2 Phenotypic observation of cell cycle arrest………………………………………31
3.3.3 Afatinib-tagged proteins in PC14 cells……………………….………...………...31
3.3.4 Ribonucleotide reducatase as a target protein of afatinib……….………………..32
3.3.5 Decline of ribonucleotide reductase protein level in cells treated with afatinib.…32
3.3.6 Effect of afatinib on cell cycle regulation and DNA damage response….……….34
3.3.7 Treatment of afatinib in combination with another cancer drug…………………35
3.3.8 Identification of afatinib-tagged sites of ribonucleotide reductase………………37
4. Discussion……………………………………………………………………………40
4.1 Phenyl vinyl sulfone (A porotein tyrosine phosphatase inhibitor)…………………40
4.2 Afatinib (A protein tyrosine kinase inhibitor)………………………………………43
References…………………………………..………………………………………...106

Lists of Figures and Tables
Figure 1. PVS as a covalent protein tyrosine phosphatase inhibitor in cellulo could be recognized by anti-PVS antiserum…………………………………….……………….47
Figure 2. Competition of PVS labeling by EVS blocking in cellulo…………………...48
Figure 3. Competition of PVS labeling by a PTP inhibitor pervanadate (PVD) in cellulo (A) and in vitro (B)………………………………………………………………..……49
Figure 4. PVS tagging to the proteins in cellulo in a time-dependent manner………....51
Figure 5. Competition of PVS labeling by PTP inhibitors BVT 948 (A) and NSC 95357 (B) in vitro and in cellulo…………………………………………………………...….52
Figure 6. Applications of anti-PVS antiserum in immunofluorescence staining and immunoprecipitation experiments……………………………………………………...54
Figure 7. Use of the anti-PVS antiserum in recognition of PVSN and Bay 11-7082 adducts…………………………………………………………………………...……..55
Figure 8. Applications of anti-PVS antiserum in immunoprecipitation experiment with PVSN labelling………………..………………………………………………………..56
Figure 9. Characterization of anti-PVS-PTP1B antibody…………………...…………57
Figure 10. In vitro tagging of PVS to recombinant PTP1B…………………….………58
Figure 11. Changes in redox status of PTP1B following insulin (A) and EGF treatment (B) in HeLa cells………………………………………………………………………..59
Figure 12. Confirmation of PVS and PVSN tagging by immunoprecipitation followed by immunoblotting…………………………………………………..…………………60
Figure 13. Effects of PVS, PVSN, Bay 11-7082 and AMI-1 on the in vitro enzyme activity of protein arginine methyltransferase 1 (PRMT1, A) and anti-PVS detection of PVS, PVSN and Bay 11-7082 tagging of PRMT1 (B)…………………………………13
Figure 14. LC-MS analysis of reaction products of PVS, PVSN and Bay 11-7082 with cysteine…………………………………………………………………………………14
Figure 15. Mechanism of PVS, PVSN, and BAY 11-7082 reacting to cysteine……….65
Figure 16. Effects of PVS, PVSN, BAY 11-7082 and AMI-1 on the cellular arginine asymmetric dimethylation levels……………………………………………………….66
Figure 17. Structure comparison between Bay 11-7082 and C-7280948………………67
Figure 18. Effects of PVS, PVSN, and Bay 11-7082 on the in vitro enzyme activity of glutathione reductase…………………………………………………...………………68
Figure 19. Detection of anti-PVS antiserum of PVS, PVSN and Bay 11-7082 tagging of glutathione reductase (GR)……………………………………………………..……69
Figure 20. PVS used in monitoring the redox statue in cellulo…………...……………70
Figure 21. Characterization of afatinib labeling in dose-dependent and time-dependent manners………………………...……………………………………………………….71
Figure 22. Effect of pH on afatinib labeling………………………………………..…..72
Figure 23. Characterization of anti-afatinib antiserum on afatinib-like covalent drugs..73
Figure 24. Patterns of afatinib labeling in several lung cell lines………………………74
Figure 25. Cell cycle arrest induced by afatinib………………………………………..75
Figure 26. Applications of anti-afatinib antiserum in immunoprecipitation experiment………………………………………………………………………….…..76
Figure 27. Effect of afatinib and its non-covalent analog erlotinib on ribonucleotide reductase and EGFR in PC14 cells……………………………………………………..77
Figure 28. Effect of treatment of afatinib on cell cycle in PC14 cells………………….79
Figure 29. Effect of treatment of afatinib on DNA damage response in PC14 cells…...80
Figure 30. MTT assay of treatment of afatinib in PC14 cells………………………….81
Figure 31. MTT assay of treatment of cisplatin in PC14 cells………………………....82
Figure 32. MTT assay of combined treatment of cisplatin and afatinib in PC14 cells...83
Figure 33. MTT assay of treatment of doxorubicin in PC14 cells……………………..84
Figure 34. MTT assay of combined treatment of doxorubicin and afatinib in PC14 cells……………………………………………………………………………………..85
Figure 35. MTT assay of combined treatment of gemcitabine and afatinib in PC14 cells……………………………………………………………………………………..86
Figure 36. Effect of combined treatment of gemcitabine and afatinib on ribonucleotide reductase in PC14 cells…………………………………………………………………87
Figure 37. Effect of combined treatment of gemcitabine and afatinib on ribonucleotide reductase in HeLa cells…………………………………………………………………88
Figure 38. In vitro tagging of afatinib to recombinant ribonucleotide purified from human cell line………………………………………………………………………….89
Figure 39. Effect of ADP competition for substrate-binding site with afatinib………...90
Figure 40. Effect of Gemcitabine competition for substrate-binding site with afatinib..91
Table 1. Identified PVS-and PVSN-tagged proteins in HeLa cells…………………….92
Table 2. Identified Modification Sites of PVS-tagged Proteins………………………..98
Table 3. Identified Modification Sites of PVSN-tagged Proteins……………………..100
Table 4. PVS-modified peptides of Hela cell lysate treated with GSNO……………..102
Table 5. PVS-modified peptides of Hela cell lysate treated with SNAP……………...103
Table 6. Identified afatinib-tagged proteins in PC14 cells……………………………104
Table 7. Identified modification sites of afatinib-tagged ribonucleotide reductase…...105



Lists of Appendixes
Appendix A1. Comparison of affinity chromatography and drug affinity responsive target stability…………………………………………...…………………………….114
Appendix A2. Timeline of covalent drugs…………………………………………….115
Appendix A3. Representation of protein-targeting strategies…………………………115
Appendix A4. Mechanism of covalent inhibitor………………………………………115
Appendix A5. Reactions of click chemistry…………………………………………..116
Appendix A6. Structure of four sulfone-based phosphatase inhibitors……………….116
Appendix A7. Mechanism of YopH phosphotase inactivation by PVSN……………..116
Appendix A8. Structure of erlotinib and gefitinib…………………………………….117
Appendix A9. Structure of afatinib, canertinib, dacomitinib, and neratinib………….117
Appendix B1. Competition of PVS labeling by PRL-3 inhibitor in vitro and in cellulo…………………………………………………………………………………118
Appendix B2. Competition of PVS labeling by PTP1B inhibitor CinnGEL 2Me in cellulo…………………………………………………………………………………119
Appendix B3. Competition of PVS labeling by PP2A inhibitor Cantharidin in cellulo…………………………………………………………………………………120
Appendix B4. Competition of PVS labeling by PP1 and PP2A inhibitor okadaic acid in cellulo…………………………………………………………………………………121
Appendix B5. Competition of PVS labeling by PTP1B inhibitor RK-682 in cellulo...122
Appendix B6. Competition of PVS labeling by PTP1B and SH-PTP1 inhibitor dephostatin in cellulo………………………………………………………………….123
Appendix B7. PVS labeling in NGF-induced PC12 cell differentiation……………...124
Appendix B8. Model of recognization of anti-PVS antiserum against PVS, PVSN and Bay 11-7082………………………………………………………………………...…125
Appendix B9. Model of recognization of anti-PVS-PTP1B antiserum……….………126
Appendix B10. Applications of anti-afatinib antiserum in immunofluorescence staining…………………………………………………………………...……………127
dc.language.isoen
dc.subject苯乙烯?zh_TW
dc.subject妥復克zh_TW
dc.subjectPhenyl Vinyl Sulfoneen
dc.subjectAfatiniben
dc.title利用 Phenyl Vinyl Sulfone 和 Afatinib 的抗體來尋找細胞中的目標蛋白及其應用zh_TW
dc.titleUsing the Antisera Against Phenyl Vinyl Sulfone and Afatinib to Identify the Target Proteins in the Cells and Their Applicationsen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee李明亭,蕭超隆,陳宏文,張茂山
dc.subject.keyword苯乙烯?,妥復克,zh_TW
dc.subject.keywordPhenyl Vinyl Sulfone,Afatinib,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2015-01-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
Appears in Collections:生化科學研究所

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
3.37 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved