Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55180
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 劉瑞芬(Ruey-Fen Liou) | |
dc.contributor.author | Ping-Feng Lee | en |
dc.contributor.author | 李秉峰 | zh_TW |
dc.date.accessioned | 2021-06-16T03:50:13Z | - |
dc.date.available | 2020-01-28 | |
dc.date.copyright | 2015-01-28 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-01-22 | |
dc.identifier.citation | 彭淑貞。2004。甜椒常見病害及防治。苗栗區農業專訊。苗栗區農業改良場
郭孚燿。1998。甜椒栽培技術。台中區農推專訊。台中區農業改良場 Andrivon, D. 1995. Inhibition by aluminum of mycelial growth and of sporangial production and germination in Phytophthora infestans. Eur. J. Plant Pathol. 101: 527–533. Ann, P. J. 1994. Survey of soils suppressive to three species of Phytophthora in Taiwan. Soil Biol. Biochem. 26: 1239–1248. Ann, P. J., Tsai, J. N., Wong, I. T., Hsieh, T. F., and Lin, C. Y. 2009. A simple technique, concentration and application schedule for using neutralized phosphorous acid to control Phytophthora diseases. Plant Pathol. Bull. 18: 155–165. Bae, H., Roberts, D. P., Lim, H. S., Strem, M. D., Park, S. C., Ryu, C. M., Melnick, R. L., and Bailey, B. A. 2011. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol. Plant. Microbe Interact. 24: 336–351. Bode, A. M., and Dong, Z. 2011. The two faces of capsaicin. Cancer Res. 71: 2809–2814. Boer, A. S., Priest, F., and Diderichsen, B. 1994. On the industrial use of Bacillus licheniformis: a review. Appl. Microbiol. Biotechnol. 40: 595–598. Bull, C. T., Shetty, K. G., and Subbarao, K. V. 2002. Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis. 86: 889–896. Cafe-Filho, D. 1995. Effects of the frequency of furrow irrigation on root and fruit rots of squash caused by Phytophthora capsici. Plant Dis. 79: 39–44. Chaurasia, B., Pandey, A., Palni, L. M. S., Trivedi, P., Kumar, B., and Colvin, N. 2005. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol. Res. 160: 75–81. Choudhary, D. K., Prakash, A., and Johri, B. N. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J. Microbiol. 47:289–297. Chiang, C. J. 2011. Identification for biocontrol agents of mango anthracnose and design of their pilot-scale fermenting nutrient recipes for the disease control. Unpublished master’s thesis, National Chung Hsing University, Taichung, Taiwan. (In Chinese) Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-Alfaro, A., Kuske, C. R., and Tiedje, J. M. 2014. Ribosomal Database Project: data and tools for high throughput rDNA analysis. Nucl. Acids Res. 42: 633–642. Davidson, C. R., Carroll, R. B., Evans, T. A., Mulrooney, R. P., and Kim, S. H. 2002. First report of Phytophthora capsici infecting lima bean (Phaseolus lunatus) in the mid-atlantic region. Plant Dis. 86: 1049–1049. Duvenhage, J. A., Kotzé, J. M., and Maas, E. M. 1991. Suppressive soils and biological control of Phytophthora root rot. South Afr. Avocado Grow. Assoc. Yearb. 14: 6–11. Erwin, D. C. and Ribeiro, O. K. 1996. Phytophthora diseases worldwide. Saint Paul, Minnesota: The American Phytopathological Society. Eshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G. E. S., and O’Brien, P. A. 2011. Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathol. 60: 1086–1095. Fenn, M. E. and Coffey, M. D. 1984. Studies on the in vitro and in vivo antifungal activity of fosetyl-Al and phosphorous acid. Phytopathology 74: 606. Galkiewicz, J. P. and Kellogg, C. A. 2008. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology. Appl. Environ. Microbiol. 74: 7828–7831. Gisi, U. and Cohen, Y. 1996. Resistance to phenylamide fungicides: a case study with Phytophthora infestans involving mating type and race structure. Annu. Rev. Phytopathol. 34: 549–572. Guest, D. and Grant, B. 1991. The complex action of phosphonates as antifungal agents. Biol. Rev. 66: 159–187. Hausbeck, M. K. and Lamour, K. H. 2004. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis. 88: 1292–1303. Higgins, D. and Dworkin, J. 2012. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36: 131–148. Ho, W. C. and Ko, W. H. 1980. A simple medium for selective isolation and enumeration of soil actinomycetes. Jpn. J. Phytopathol. 46: 634–638. Huang, C. H., Chang, M. T., Huang, L., and Chu, W. S. 2012. Development of a novel PCR assay based on the gyrase B gene for species identification of Bacillus licheniformis. Mol. Cell. Probes 26: 215–217. Hwang, S. C., Ko, W. H., and Aragaki, M. 1976. A simplified method for sporangial production by Phytophthora cinnamomi. Mycologia 68: 1233–1234. Jellouli, K., Ghorbel-Bellaaj, O., Ayed, H. B., Manni, L., Agrebi, R., and Nasri, M. 2011. Alkaline-protease from Bacillus licheniformis MP1: Purification, characterization and potential application as a detergent additive and for shrimp waste deproteinization. Process Biochem. 46: 1248–1256. Jiang, Z. Q., Guo, Y. H., Li, S. M., Qi, H. Y., and Guo, J. H. 2006. Evaluation of biocontrol efficiency of different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. Biol. Control 36: 216–223. Kayalvizhi, N. and Gunasekaran, P. 2010. Purification and characterization of a novel broad-spectrum bacteriocin from Bacillus licheniformis MKU3. Biotechnol. Bioprocess Eng. 15: 365–370. Kim, J. H., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. G., Kim, D. W., Lee, S. W., and Moon, B. J. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17: 438–444. Ko, W. H. and Nishijima, K. A. 1985. Nature of suppression of Phytophthora capsici in a Hawaiian soil. Phytopathology 75: 683–685. Ko, W. H. and Ho, W. C. 1983. Screening soils for suppressiveness to Rhizoctonia solani and Pythium splendens. Ann. Phytopathol. Soc. Jpn. 49: 1–9. Kuhn, P. J., Pitt, D., Lee, S. A., Wakley, G., and Sheppard, A. N. 1991. Effects of dimethomorph on the morphology and ultrastructure of Phytophthora. Mycol. Res. 95: 333–340. Lafontaine, P. J. and Benhamou, N. 1996. Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f.sp. radicis-lycopersici. Biocontrol Sci. Technol. 6: 111–124. Lamour, K. H. and Hausbeck, M. K. 2001. The dynamics of mefenoxam insensitivity in a recombining population of Phytophthora capsici characterized with amplified fragment length polymorphism markers. Phytopathology 91: 553–557. Lamour, K. H., Stam, R., Jupe, J., and Huitema, E. 2012. The oomycete broad-host-range pathogen Phytophthora capsici. Mol. Plant Pathol. 13: 329–337. Lee, E. T., Lim, S. K., Nam, D. H., Khang, Y. H., and Kim, S. D. 2003. Pyoverdin2112 of Pseudomonas fluorescens 2112 inhibits Phytophthora capsici, a red-pepper blight-causing fungus. J. Microbiol. Biotechnol. 13: 415–421. Leonian, L. H. 1922. Stem and fruit blight of Peppers caused by Phytophthora capsici. Phytopathology 12: 401–408. Li, J., Yang, Q., Zhao, L., Zhang, S., Wang, Y., and Zhao, X. 2009. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J. Zhejiang Univ. Sci. B 10: 264–272. Lim, J. H. and Kim, S. D. 2009. Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. J. Korean Soc. Appl. Biol. Chem. 52: 531–538. Lim, J. H. and Kim, S. D. 2010. Biocontrol of phytophthora blight of red pepper caused by Phytophthora capsici using Bacillus subtilis AH18 and B. licheniformis K11 formulations. J. Korean Soc. Appl. Biol. Chem. 53: 766–773. Lin, C. P. 2009. Investigation of the mechanism underlying phosphonate-induced plant resistance. Unpublished master’s thesis, National Taiwan University, Taipei, Taiwan. (In Chinese) Lin, X., Lee, C. G., Casale, E. S., and Shih, J. C. H. 1992. Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis Strain. Appl. Environ. Microbiol. 58: 3271–3275. Luttringer, M. and De Cormis, L. 1985. Absorption, dégradation et transport du phoséthyl-Al et de son métabolite chez la tomate (Lycopersicon esculentum Mill.). Agronomie 5: 423–430. Mazzola, M. 2002. Mechanisms of natural soil suppressiveness to soilborne diseases. A. Van Leeuw. 81: 557–564. Mchau, G. R. A. and Coffey, M. D. 1995. Evidence for the existence of two subpopulations in Phytophthora capsici and a redescription of the species. Mycol. Res. 99: 89–102. Meldau, D. G., Meldau, S., Hoang, L. H., Underberg, S., Wunsche, H., and Baldwin, I. T. 2013. Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp. B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25: 2731–2747. Mercier, J. and Manker, D. C. 2005. Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Prot. 24: 355–362. Milgroom, M. G. and Cortesi, P. 2004. Biological control of chestnut blight with hypovirulence: A critical analysis. Annu. Rev. Phytopathol. 42: 311–338. Minerdi, D., Bossi, S., Gullino, M. L., and Garibaldi, A. 2009. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ. Microbiol. 11: 844–854. Minerdi, D., Bossi, S., Maffei, M. E., Gullino, M. L., and Garibaldi, A. 2011. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol. Ecol. 76: 342–351. Morath, S. U., Hung, R., and Bennett, J. W. 2012. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biol. Rev. 26: 73–83. Muchovej, J. J., Maffia, L. A., and Muchovej, R. M. C. 1980. Effect of exchangeable soil aluminum and alkaline calcium salts on the pathogenicity and growth of Phytophthora capsici from green pepper. Phytopathology 70: 1212–1214. Ni, H. F., Hsu, S. L., Chen, R. S., and Yang, H. R. 2010. Screening of Trichoderma spp. from Soils in Taiwan for Antagonism on Fungal Plant Pathogens. J. Taiwan Agric. Res. 59: 29–41. Pal, K. K. and McSpadden Gardener, B. 2006. Biological control of plant pathogens. Plant Health Instr. 1: 1-25. Patel, V. J., Tendulkar, S. R., and Chattoo, B. B. 2004. Bioprocess development for the production of an antifungal molecule by Bacillus licheniformis BC98. J. Biosci. Bioeng. 98: 231–235. Phae, C. G., Shoda, M., and Kubota, H. 1990. Suppressive effect of Bacillus subtilis and it’s products on phytopathogenic microorganisms. J. Ferment. Bioeng. 69: 1–7. Ristaino, J. B. 1990. Intraspecific variation among isolates of Phytophthora capsici from pepper and cucurbit fields in North Carolina. Phytopathology 80: 1253–1259. Ristaino, J. B. and Johnston, S. A. 1999. Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Dis. 83: 1080–1089. Ristaino, J. B., Parra, G., and Campbell, C. L. 1997. Suppression of Phytophthora blight in bell pepper by a no-till wheat cover crop. Phytopathology 87: 242–249. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Paré, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017–1026. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. 100: 4927–4932. Schlub, R. L. 1983. Epidemiology of Phytophthora capsici on bell pepper. J. Agric. Sci. 100: 7–11. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., and Dean, D. H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775–806. Schofield, R. K. and Taylor, A. W. 1955. The measurement of soil pH. Soil Sci. Soc. Proc. 19: 164–167. Sellami-Kamoun, A., Haddar, A., Ali, N. E. H., Ghorbel-Frikha, B., Kanoun, S., and Nasri, M. 2008. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 163: 299–306. Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J., and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60: 2023–2030. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729. Tendulkar, S. R., Saikumari, Y. K., Patel, V., Raghotama, S., Munshi, T. K., Balaram, P., and Chattoo, B. B. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol. 103: 2331–2339. US EPA. 1997. Bacillus licheniformis Final Risk Assessment | Biotechnology Program Under Toxic Substances Control Act (TSCA) | US EPA. Van Den Oever, R. U., Roosels, D., and Lahaye, D. 1982. Actual hazard of methyl bromide fumigation in soil disinfection. Br. J. Ind. Med. 39: 140–144. Van de Peer, Y. and De Wachter, R. 1997. Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rDNA. J. Mol. Evol. 45: 619–630. Veith, B., Herzberg, C., Steckel, S., Feesche, J., Maurer, K. H., Ehrenreich, P., Baumer, S., Henne, A., Liesegang, H., Merkl, R., Ehrenreich, A., and Gottschalk, G. 2004. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J. Mol. Microbiol. Biotechnol. 7: 204–211. Xu, D. and Côté, J. C. 2003. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3′ end 16S rDNA and 5′ end 16S–23S ITS nucleotide sequences. Int. J. Syst. Evol. Microbiol. 53: 695–704. Yuan, J., Raza, W., Shen, Q., and Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 78: 5942–5944. Zhang, R., Wu, Q., and Xu, Y. (2013). Aroma characteristics of Moutai-flavour liquor produced with Bacillus licheniformis by solid-state fermentation. Lett. Appl. Microbiol. 57: 11–18. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55180 | - |
dc.description.abstract | 甜椒為臺灣重要經濟作物,主要種植於南投、嘉義、雲林及屏東等地,年產量約26,000公噸,年產值約新臺幣10億元。甜椒屬於茄科作物,易受病害感染,重要病害包括疫病、青枯病、細菌性斑點病及炭疽病等。甜椒疫病由Phytophthora capsici (Leonian) 引起,其寄主範圍廣泛,包括茄科、瓜類及部分豆科作物,且其為半殺生性病原菌,感染植物後迅速造成組織細胞壞死萎凋,常造成農民損失慘重。疫病的主要感染源為孢囊、游走子及菌絲,於雨季高濕時造成嚴重病害,且其有性繁殖構造-卵孢子可於土壤中殘存很久,易造成連作障礙。目前防治甜椒疫病的方法主要為輪作、清園、耕作防治、藥劑防治、抗病育種等,然而,傳統的防治方法對於土媒性疫病菌效果有限,因此本研究的目的為開發甜椒疫病菌的生物防治技術。本研究於宜蘭、臺中、南投及雲林等地之有機田區收集44個土壤樣本,經由評估對孢囊發芽抑制效果來篩選可能含有拮抗微生物之抑病土,並自其中獲得一株拮抗菌,以16S rDNA及gyrase B基因序列鑑定後,定名為Bacillus licheniformis (31-1)。此菌於固態培養基可釋放抗生物質以及揮發性有機物抑制P. capsici菌絲生長,另以對峙培養實驗發現其可抑制引起番茄疫病、番茄萎凋病、香蕉黃葉病、草莓炭疽病、褐根病、水稻徒長病及稻熱病等病原菌之生長,其中又以對甜椒疫病菌及草莓炭疽病菌之抑制效果最好。測試以不同碳素源對B. licheniformis (31-1) 生長之影響發現此菌於黃豆粉-玉米澱粉培養基生長最佳。植物生長箱試驗中,澆灌B. licheniformis (31-1) 於栽培介質可降低甜椒疫病及青枯病的發病嚴重度。此外,持續澆灌此菌亦可促進甜椒根系發展及增加其乾重,顯示其具有促進植物生長的效用。這些研究結果顯示B. licheniformis (31-1) 於植物生長箱試驗中,具有防治甜椒疫病及促進甜椒生長之潛力。 | zh_TW |
dc.description.abstract | Bell pepper (Capsicum annuum L.), a member of Solanaceae, is an important economic crop in Taiwan, with the main crop regions encompassing Nantou, Chiayi, Yunlin, and Pingtung. The average annual yield of pepper is 26,000 tons and the output value is about one billion New Taiwan Dollars. Bell pepper is susceptible to various diseases including Phytophthora root rot caused by Phytophthora capsici (Leonian), bacterial wilt caused by Ralstonia solanacearum, and anthracnose caused by Colletotrichum gloeosporioides, to mention only the most important ones. P. capsici is a very aggressive pathogen known to cause severe diseases in a wide variety of plant species such as beans, cucumber, and crops of the solanaceae family. A variety of strategies have been developed for the control of Phytophthora root rot including crop rotation, exclusion, cultural control, fungicides, and genetic resistance. However, these methods have limitation for controlling this soil-borne disease. The purpose of this study is to develop a biocontrol method for Phytophthora root rot of bell pepper. Soil samples collected from 44 organic farms in Yilan, Taichung, Nantou, and Yunlin were screened for their ability to suppress sporangia germination of P. capsici. Subsequent analyses based on gene sequences of both 16S rDNA and gyrase B led to the identification of one potential biocontrol agent, Bacillus licheniformis (31-1). When grown in the V8 agar plates, B. licheniformis (31-1) was able to produce antibiotics and volatile organic compounds which inhibited the growth of P. capsici. Moreover, dual culture analysis indicated that B. licheniformis (31-1) could inhibit the growth of other pathogens including Phytophthora parasitica, C. gloeosporioides, Phellinus noxius, Magnaporthe grisea, Fusarium moniliforme, Fusarium oxysporum f. sp. lycopersici, and F. oxysporum f. sp. cubense. When cultured in different carbon sources, B. licheniformis (31-1) grew best in a medium consisting of soybean and corn starch. Applications of B. licheniformis (31-1) by soil drench reduced the disease severity of Phytophthora root rot and bacterial wilt of bell pepper. Furthermore, B. licheniformis (31-1) was able to enhance root growth and increase the dry weight of bell pepper, indicative of its potential to promote plant growth. These results show that B. licheniformis (31-1) may serve as an effective biocontrol agent for Phytophthora root rot of bell pepper. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:50:13Z (GMT). No. of bitstreams: 1 ntu-104-R01645008-1.pdf: 2329779 bytes, checksum: 93de6fed71bc2013485fe199135d4e12 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 V Abstract VI 壹、 前言 1 一、 甜椒簡介 1 二、 甜椒疫病 3 三、 P. capsici之防治方法 6 四、 生物防治 10 五、 抑病土 15 貳、 材料與方法 18 一、 抑病土壤收集與分析 18 二、 拮抗微生物分離與鑑定 19 三、 拮抗微生物特性試驗 21 四、 植物生長箱試驗 24 五、 大型盆栽試驗 26 參、 結果 27 一、 抑病土壤收集與分析 27 二、 拮抗微生物分離與鑑定 29 三、 拮抗微生物特性試驗 30 四、 植物生長箱試驗 33 五、 大型盆栽試驗 36 肆、 討論 37 一、 抑病土之抑病因子探討與應用 37 二、 B. licheniformis之特性 39 三、 B. licheniformis拮抗能力分析 40 四、 B. licheniformis (31-1) 於甜椒栽培的應用 42 伍、 參考文獻 46 陸、 附表 52 柒、 附圖 55 | |
dc.language.iso | zh-TW | |
dc.title | 評估 Bacillus licheniformis (31-1) 對於甜椒疫病之生物防治潛力 | zh_TW |
dc.title | Assess the potential of Bacillus licheniformis (31-1) as a biocontrol agent of Phytophthora root rot of bell pepper | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 安寶貞,洪挺軒,曾敏南 | |
dc.subject.keyword | 甜椒,地衣芽孢桿菌,疫病菌,生物防治,植物促生根圈細菌, | zh_TW |
dc.subject.keyword | Bacillus licheniformis,bell pepper,biocontrol,Phytophthora capsici,plant-growth-promoting rhizobacteria, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-01-22 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物醫學碩士學位學程 | zh_TW |
dc.date.embargo-lift | 2300-01-01 | - |
Appears in Collections: | 植物醫學碩士學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-104-1.pdf Restricted Access | 2.28 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.