請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5516完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林法勤(Fa-Qin Lin) | |
| dc.contributor.author | Chung-Cheng Chiu | en |
| dc.contributor.author | 邱仲呈 | zh_TW |
| dc.date.accessioned | 2021-05-15T18:01:21Z | - |
| dc.date.available | 2015-09-12 | |
| dc.date.available | 2021-05-15T18:01:21Z | - |
| dc.date.copyright | 2014-09-12 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-21 | |
| dc.identifier.citation | 王松永(1993),木材物理學,徐氏基金會出版。
童士恆、郭瑞昭、施明祥、蔡源福(2006),校正由影像扭曲所導致數位影像關係法分析誤差之研究,中華民國第八屆結構工程研討會,編號L-017。 施明祥,宋文沛,童士恒,郭瑞昭,楊婕(2006),數位影像相關係數法於非均質材料應變分析及裂縫觀測之應用,中華民國第八屆結構工程研討會, 編號M-008。 王茂恭(2008),使用三維數位影像相關係數法建立成形極限圖之研究貢獻者,國立高雄大學土木與環境工程學研究所碩士論文。 Anderson, T. L.(1991). Fracture Mechanics, Taylor and Francis Buksnowitz, C., Hackspiel, C., Hofstetter, K., Mueller, U., Gindl, W., Teischinger, A. (2010). Knots in trees: strain distribution in a naturally optimised structure. Wood Science and Technology, 44: 389-398. Lanvermann, C., Hass, P., Wittel, F. K., and Niemz, P.(2013). Mechanical Properties of Norway Spruce: Intra-Ring Variation and Generic Behavior of Earlywood and Latewood until Failure. BioResources, 9(1): 105-119. Chu, T. C., Ranson, W. F., and Sutton, M. A.(1985). Applications of digital-image-correlation techniques to experimental mechanics. Experimental mechanics, 25(3): 232-244. Dill-Langer, G., Lutze, S., and Aicher, S.(2002). Microfracture in wood monitored by confocal laser scanning microscopy. Wood Science and Technology, 36(6): 487-499. Dost M., Rummler N., Kieselstein E., Erb R., Hillmann V., Groser V.(1999). Correlation analysis at grey scale patterns in an in-situ measuring module for microsystem technology. Materials mechanics Fracture mechanics micromechanics, pp. 259–266. Dubois, F., Meite, M., Pop, O. and Absi, J.(2012). Characterization of timber fracture using the Digital Image Correlation technique and Finite Element Method. Engineering Fracture Mechanics, 96: 107-121. Eder, M., Terziev, N., Daniel, G. and Burgert, I.(2008). The effect of(induced)dislocations on the tensile properties of individual Norway spruce fibres. Holzforschung, 62(1): 77-81. Farruggia, F. and Perre, P.(2000). Microscopic tensile tests in the transverse plane of earlywood and latewood parts of spruce. Wood Science and Technology, 34(2): 65-82. Griffith, A. A.(1920). The Phenomena of Rupture and Flow in Solids. Philosophical Transactions, 221: 163-198. Irwin, G. R.(1956). Onset of Fast Crack Propagation in High Strength Steel and Aluminum Alloys. Sagamore Research Conference Proceedings, 2: 289-305. Jernkvist, L. O. and Thuvander, F.(2001). Experimental determination of stiffness variation across growth rings in Picea abies. Holzforschung, 55(3): 309-317. Keunecke, D., Eder, M., Burgert, I. and Niemz, P.(2008). Micromechanical properties of common yew(Taxus baccata)and Norway spruce(Picea abies)transition wood fibers subjected to longitudinal tension. Journal of Wood Science, 54(5): 420–422. Onraet, S., Vellinga, W. P., Luff, D. and Geers, M.(2000). Measurement of strain fields in the micron range. Proceedings of the joint Meeting of the BVM and the NVvM 2000, Papendal. Lecompte, D., Smits, A., Bossuyt, S., Sol, H., Vantomme, J., Van Hemelrijck, D. and Habraken, A. M.(2006). Quality assessment of speckle patterns for digital image correlation. Optics and lasers in Engineering, 44(11): 1132-1145. Nardin, A., Bostrom, L. and Zaupa, F.(2000). The effect of knots on the fracture of wood. World Conference on Timber Engineering Whistler Resort, British Columbia. Oscarsson, J., Olsson, A. and Enquist, B.(2012). Strain fields around knots in Norway spruce specimens exposed to tensile forces. Wood Science and Technology, 46: 593-610. Samarasinghe, S. and Kulasiri, G. D.(2000). Displacement fields of wood in tension based on image processing: Part 1. Silva Fennica, 34(3): 251-259. Samarasinghe, S. and Kulasiri, D.(2004). Stress intensity factor of wood from crack-tip displacement fields obtained from digital image processing. Silva Fennica, 38(3): 267-278. Schreier, H., Orteu, J. J. and Sutton, M. A.(2009). Image Correlation for Shape, Motion and Deformation Measurements : Basic Concepts,Theory and Applications. Springer, NewYork. Song, H., Zhang, H., Fu, D., Kang, Y., Huang, G., Qu, C. and Cai, Z.(2013). Experimental study on damage evolution of rock under uniform and concentrated loading conditions using digital image correlation. Fatigue and Fracture of Engineering Materials and Structure, 36(8): 760-768. Sutton, M. A., Turner, J. L., Bruck, H. A., and Chae, T. A.(1991). Full-field representation of discretely sampled surface deformation for displacement and strain analysis. Experimental Mechanics, 31(2): 168-177. Sutton, M. A., Ke, X., Lessner, S. M., Goldbach, M., Yost, M., Zhao, F. and Schreier, H. W.(2008). Strain field measurements on mouse carotid arteries using microscopic three‐dimensional digital image correlation. Journal of Biomedical Materials Research Part A, 84(1): 178-190. Thomason, P. F.(1990). Ductile Fracture of Metals, Pergamon Press. Oxford. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5516 | - |
| dc.description.abstract | 木材是低環境衝擊之材料,然而其力學行為因構造與生成方式,顯得複雜而具有高變異性。為解決材料特性難以掌握的問題,本研究目的在於藉由木材的應變分布與構造破壞型態預測強度。試驗以杉木(Cunninghamia lanceolata)之橫向拉伸為主軸,採用數位影像相關法(Digital Image Correlation, DIC)的非接觸式全域應變量測技術進行,所得之應變分布圖再以「應變面積累加曲線」和「基準應變定位曲線」量化應變集中的程度。
不同取位之試材會有構造上相對弱點,依重大性排序包括髓心、春秋材交界、春材部到秋材部,髓心最大應變達0.36mm/mm,遠大於僅0.002mm/mm的秋材。此外,當缺點並存時,最重大的缺點會使其餘缺點的應變集中情形不明顯,也因此缺點若包覆於內部則難以觀察。「應變面積累加曲線」所計算的「應變積分面積比」隨時間的變化圖,因無法考慮空間相對位置造成的構造細節差異,依取位分組後組間曲線趨勢個別差異大,僅含髓心者可歸類明顯圖形樣式。若排除缺點不在表面之試材,可得到最終「應變積分面積比」與強度成線性正相關。「基準應變定位曲線」應變將縱斷面相對位置的落差更清楚描繪出各組差異。計算瀕臨破壞時最大應變區與破壞位置的「應變梯度」與強度迴歸,得到指數相關且R-square值分別為0.78和0.68。最大「應變梯度」隨時間為近似線性成長,取得對時變化率與強度亦為指數負相關,R-square值高達0.82,具有在試材破壞前預測強度的潛力。「應變梯度」與強度的關係,驗證構造過渡造成的應變集中,是決定破壞形態與時機的重要因素。 基於DIC克服傳統難以取得瀕臨破壞之應變及全域應變分布的量測範圍拓展,取得木材強度預測的相關資訊。未來若進行三維技術及內部透視的應變觀測,能更精確地探討木材力學行為的全貌。 | zh_TW |
| dc.description.abstract | Wood is the low-environment-impact material. However such a biological material is hard to well use on engineering because of its complicated and highly variable mechanical behavior. To solve the problem, this study attempt to predict wood strength through analysis of strain distribution. Transversal tension test with specimens of China fir(Cunninghamia lanceolata)was conducted and global strain was measured by DIC(Digital image correlation)technology without contact on material surface. After then we used the data to draw Strain-area cumulative curve and datum strain location curve that could quantize strain concentration.
There are a few defects of wood structure ordered by relative severity that lead to strain concentration, including pith, growth-ring transition, earlywood and latewood. The maximum strain at pith is 0.36mm/mm, far greater than that at latewood 0.002mm/mm. Besides the most severe defect would deteriorate the strain concentration of coexist ones so that to observe the strain concentration of defects beneath surface was difficult. For the first analysis method, it was hard to categorize the characteristic of each specimen group from different cutting location by area ratio of strain integral-time curve calculated from strain-area cumulative curve. In fact the only obvious curve type that could be found was specimens with pith. Because of ignorance of effect on relative position, individual variation led to no significant positive linear correlation between ultimate area ratio of strain integral and strength unless we excluded the specimens with defects beneath surface. The second method of datum strain location curve was used to calculate ultimate strain gradient at area near the maximum strain and the crack that regress to strength with R-square values of 0.78 and 0.68. It was also potential to predict strength before failure by rate of maximum strain gradient-time curve which was linear according to the high R-square value of 0.82 of curve rate-strength regression. Thus, the results indicated that strain concentration owing to structure transition determined the fracture type and failure time. Consequently DIC measures global strain distribution, even close to damage that is hard to acquire on conventional measurement. This study prove that wood strength were possible to predict by strain concentration analysis. Strain observation by 3D technology and fluoroscopy will lead to much more accurate analysis on wood mechanical behavior in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T18:01:21Z (GMT). No. of bitstreams: 1 ntu-103-R01625037-1.pdf: 11249795 bytes, checksum: acdb9e257816b86a5aae7658d1f8ec6e (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝………………………...…………………………………………………………..I
摘要………………………...…………………………………………………………II ABSTRACT………………...…………………………………………………...…...III 圖目錄………………………………………………………………………………VII LIST OF FIGURE…………………………………………..………………………...X 表目錄……………………………………………………………………………...XIV LIST OF TABLE……………………………………………………………………XV I、 前言 1 II、 文獻回顧 4 III、 材料與方法 17 (I)研究材料 17 (II)試驗設備 19 (III)應變集中之量化分析 20 1. 應變面積累加曲線 20 2. 基準應變定位曲線 22 IV、 結果與討論 24 (I)強度之影響因子與基本性質探討 24 1. 強度分布 24 2. 楊氏係數 28 3. 比重與含水率 31 (II)應變分布圖對強度之相關性 33 1. 各類構造弱點與應變集中 33 2. 0層取位(B0)之應變分布圖 38 3. 1層取位(A1、B1)之應變分布圖 39 4. 2層取位(A2、B2)與3層取位(A3)之應變分布圖 41 (III) 應變面積累加曲線 42 1. 曲線特徵因子與強度之相關性 42 2. 應變積分面積比對時間變化曲線 47 (IV)基準應變定位曲線 54 1. 0層取位(B0)之基準應變定位曲線 55 2. 1層取位(A1、B1)之基準應變定位曲線 57 3. 3層取位(A3)之基準應變定位曲線 59 4. 2層取位(A2、B2)之基準應變定位曲線 60 5. 應變梯度與強度之相關性 62 V、 結語 71 參考文獻 73 附錄1:全試材應變分布圖.………………………………………………………..77 附錄2:全試材應變面積累加曲線…………….…………………………………..85 附錄3:全試材基準應變定位曲線………………………………………………..101 | |
| dc.language.iso | zh-TW | |
| dc.title | 數位影像相關法分析木材橫向拉伸力學行為 | zh_TW |
| dc.title | Analysis of Wood Transversal Tension Mechanical Behavior by Digital Image Correlation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張豐丞(Feng-Cheng Chang) | |
| dc.contributor.oralexamcommittee | 葉仲基(Chung-Kee Yeh),廖國基(Kuo-Chi Liao) | |
| dc.subject.keyword | 數位影像相關法,應變分布,木材缺點,橫向拉伸強度, | zh_TW |
| dc.subject.keyword | Digital image correlation,strain distribution,wood defects,transversal tensile strength, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-08-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 10.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
