Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55167
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖秀娟(Vivian Hsiu-Chuan Liao)
dc.contributor.authorChi-Wei Huangen
dc.contributor.author黃紀惟zh_TW
dc.date.accessioned2021-06-16T03:49:43Z-
dc.date.available2018-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-01-23
dc.identifier.citationAbernathy, C.O., Liu, Y.P., Longfellow, D., Aposhian, H.V., Beck, B., Fowler, B., Goyer, R., Menzer, R., Rossman, T., Thompson, C., Waalkes, M., 1999. Arsenic: Health effects, mechanisms of actions, and research issues. Environmental Health Perspectives 107, 593-597.
Agency for Toxic Substances and Disease Registry (ATSDR). U. S. Department of Health and Human Services, P. H. S., 2013. Priority list of hazardous substances.
Ahmann, D., Krumholz, L.R., Hemond, H.F., Lovley, D.R., Morel, F.M.M., 1997. Microbial mobilization of arsenic from sediments of the Aberjona Watershed. Environmental Science and Technology 31, 2923-2930.
Al Lawati, W.M., Jean, J.S., Kulp, T.R., Lee, M.K., Polya, D.A., Liu, C.C., van Dongen, B.E., 2013. Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan. Journal of Hazardous Materials 262, 970-979.
Aposhian, H.V., Aposhian, M.M., 2006. Arsenic toxicology: five questions. Chemical Research in Toxicology 19, 1-15.
Aposhian, H.V., Gurzau, E.S., Le, X.C., Gurzau, A., Healy, S.M., Lu, X., Ma, M., Yip, L., Zakharyan, R.A., Maiorino, R.M., Dart, R.C., Tircus, M.G., Gonzalez-Ramirez, D., Morgan, D.L., Avram, D., Aposhian, M.M., 2000. Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. Chemical Research in Toxicology 13, 693-697.
Argos, M., Kalra, T., Rathouz, P.J., Chen, Y., Pierce, B., Parvez, F., Islam, T., Ahmed, A., Rakibuz-Zaman, M., Hasan, R., Sarwar, G., Slavkovich, V., van Geen, A., Graziano, J., Ahsan, H., 2010. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376, 252-258.
Arora, K., Prabhakar, N., Chand, S., Malhotra, B.D., 2007. Immobilization of single stranded DNA probe onto polypyrrole-polyvinyl sulfonate for application to DNA hybridization biosensor. Sensor Actuat B-Chem 126, 655-663.
Assinder, S.J., Williams, P.A., 1990. The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Advances in Microbial Physiology 31, 1-69.
B'Hymer, C., Caruso, J.A., 2004. Arsenic and its speciation analysis using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. Journal of Chromatography A 1045, 1-13.
Baghel, A., Singh, B., Pandey, P., Sekhar, K., 2007. A rapid field detection method for arsenic in drinking water. Analytical Sciences : The International Journal of The Japan Society for Analytical Chemistry 23, 135-137.
Bakhrat, A., Eltzov, E., Finkelstein, Y., Marks, R.S., Raveh, D., 2011. UV and arsenate toxicity: a specific and sensitive yeast bioluminescence assay. Cell Biology and Toxicology 27, 227-236.
Beard, S.J., Hashim, R., MembrilloHernandez, J., Hughes, M.N., Poole, R.K., 1997. Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Molecular Microbiology 25, 883-891.
Belkin, S., Smulski, D.R., Vollmer, A.C., VanDyk, T.K., LaRossa, R.A., 1996. Oxidative stress detection with Escherichia coli harboring a katG'::lux fusion. Applied and Environmental Microbiology 62, 2252-2256.
Bhattacharya, S., Gupta, K., Debnath, S., Ghosh, U.C., Chattopadhyay, D., Mukhopadhyay, A., 2012. Arsenic bioaccumulation in rice and edible plants and subsequent transmission through food chain in Bengal basin: a review of the perspectives for environmental health. Environmental Toxicology and Chemistry 94, 429-441.
Billard, P., DuBow, M.S., 1998. Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories. Clinical Biochemistry 31, 1-14.
Biran, I., Klimentiy, L., Hengge-Aronis, R., Ron, E.Z., Rishpon, J., 1999. On-line monitoring of gene expression. Microbiology 145 (Pt 8), 2129-2133.
Bjerketorp, J., Hakansson, S., Belkin, S., Jansson, J.K., 2006. Advances in preservation methods: keeping biosensor microorganisms alive and active. Current Opinion in Biotechnology 17, 43-49.
Bontidean, I., Lloyd, J.R., Hobman, J.L., Wilson, J.R., Csoregi, E., Mattiasson, B., Brown, N.L., 2000. Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. Journal of Inorganic Biochemistry 79, 225-229.
Bontidean, I., Mortari, A., Leth, S., Brown, N.L., Karlson, U., Larsen, M.M., Vangronsveld, J., Corbisier, P., Csoregi, E., 2004. Biosensors for detection of mercury in contaminated soils. Environmental Pollution 131, 255-262.
Branco, R., Cristovao, A., Morais, P.V., 2013. Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. PloS one 8, e54005.
Bruins, M.R., Kapil, S., Oehme, F.W., 2000. Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety 45, 198-207.
Buffi, N., Merulla, D., Beutier, J., Barbaud, F., Beggah, S., van Lintel, H., Renaud, P., van der Meer, J.R., 2011. Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples. Lab on A Chip 11, 2369-2377.
Caceres, L., Gruttner, E., Contreras, R., 1992. Water recycling in arid regions - Chilean case. AMBIO 21, 138-144.
Cassidy, M.B., Leung, K.T., Lee, H., Trevors, J.T., 1995. Survival of lac-lux marked Pseudomonas-Aeruginosa Ug2lr cells encapsulated in kappa-carrageenan and alginate. Journal of Microbiological Methods 23, 281-290.
Cervantes, C., Ji, G., Ramirez, J.L., Silver, S., 1994. Resistance to arsenic compounds in microorganisms. FEMS Microbiology Reviews 15, 355-367.
Cha, H.J., Srivastava, R., Vakharia, V.M., Rao, G., Bentley, W.E., 1999. Green fluorescent protein as a noninvasive stress probe in resting Escherichia coli cells. Applied and Environmental Microbiology 65, 409-414.
Chen, C.M., Misra, T.K., Silver, S., Rosen, B.P., 1986. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. The Journal of Biological Chemistry 261, 15030-15038.
Chen, D.H., Huang, C.Z., He, M., Hu, B., 2009. Separation and preconcentration of inorganic arsenic species in natural water samples with 3-(2-aminoethylamino) propyltrimethoxysilane modified ordered mesoporous silica micro-column and their determination by inductively coupled plasma optical emission spectrometry. Journal of Hazardous Materials 164, 1146-1151.
Chen, Y.C., Lin-Shiau, S.Y., Lin, J.K., 1998. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. Journal of Cellular Physiology 177, 324-333.
Chen, Z., Lu, M., Zou, D., Wang, H., 2012. An E. coli SOS-EGFP biosensor for fast and sensitive detection of DNA damaging agents. Journal of Environmental Sciences 24, 541-549.
Choe, S.I., Gravelat, F.N., Al Abdallah, Q., Lee, M.J., Gibbs, B.F., Sheppard, D.C., 2012. Role of Aspergillus niger acrA in arsenic resistance and its use as the basis for an arsenic biosensor. Applied and Environmental Microbiology 78, 3855-3863.
Cortes-Salazar, F., Beggah, S., van der Meer, J.R., Girault, H.H., 2013. Electrochemical As(III) whole-cell based biochip sensor. Biosensors and Bioelectronics 47, 237-242.
Craig, D., Arriaga, E.A., Banks, P., Zhang, Y., Renborg, A., Palcic, M.M., Dovichi, N.J., 1995. Fluorescence-based enzymatic assay by capillary electrophoresis laser-induced fluorescence detection for the determination of a few beta-galactosidase molecules. Analytical Biochemistry 226, 147-153.
Cuebas, M., Villafane, A., McBride, M., Yee, N., Bini, E., 2011. Arsenate reduction and expression of multiple chromosomal ars operons in Geobacillus kaustophilus A1. Microbiology 157, 2004-2011.
Cullen, W.R., Reimer, K.J., 1989. Arsenic speciation in the environment. Chemical Reviews 89, 713-764.
Date, A., Pasini, P., Daunert, S., 2007. Construction of spores for portable bacterial whole-cell biosensing systems. Analytical Chemistry 79, 9391-9397.
Daunert, S., Barrett, G., Feliciano, J.S., Shetty, R.S., Shrestha, S., Smith-Spencer, W., 2000. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chemical Reviews 100, 2705-2738.
Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., Greenberg, E.P., 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298.
Del Razo, L.M., Quintanilla-Vega, B., Brambila-Colombres, E., Calderon-Aranda, E.S., Manno, M., Albores, A., 2001. Stress proteins induced by arsenic. Toxicology and Applied Pharmacology 177, 132-148.
Diorio, C., Cai, J., Marmor, J., Shinder, R., Dubow, M.S., 1995. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. Journal of Bacteriology 177, 2050-2056.
Driscoll, J.N., 2002. Determination of ppb levels of metals in water by XRF. American Laboratory 34, 16-21.
Duker, A.A., Carranza, E.J., Hale, M., 2005. Arsenic geochemistry and health. Environment International 31, 631-641.
Durand, M.J., Thouand, G., Dancheva-Ivanova, T., Vachon, P., DuBow, M., 2003. Specific detection of organotin compounds with a recombinant luminescent bacteria. Chemosphere 52, 103-111.
Eltzov, E., Marks, R.S., Voost, S., Wullings, B.A., Heringa, M.B., 2009. Flow-through real time bacterial biosensor for toxic compounds in water. Sensors and Actuators B: Chemical 142, 11-18.
Erickson, B.E., 2003. Field kits fail to provide accurate measure of arsenic in groundwater. Environmental Science and Technology 37, 35A-38A.
Eustice, D.C., Feldman, P.A., Colberg-Poley, A.M., Buckery, R.M., Neubauer, R.H., 1991. A sensitive method for the detection of beta-galactosidase in transfected mammalian cells. BioTechniques 11, 739-740, 742-733.
Fontcuberta, M., Calderon, J., Villabi, J.R., Centrich, F., Portana, S., Espelt, A., Duran, J., Nebot, M., 2011. Total and inorganic arsenic in marketed food and associated health risks for the Catalan (Spain) population. Journal of Agricultural and Food Chemistry 59, 10013-10022.
Frankenberger, W.T., 2001. Environmental chemistry of arsenic, Taylor and Francis.
Fujimoto, H., Wakabayashi, M., Yamashiro, H., Maeda, I., Isoda, K., Kondoh, M., Kawase, M., Miyasaka, H., Yagi, K., 2006. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Applied Microbiology and Biotechnology 73, 332-338.
Gambello, M.J., Iglewski, B.H., 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. Journal of Bacteriology 173, 3000-3009.
Gebel, T., 2000. Confounding variables in the environmental toxicology of arsenic. Toxicology 144, 155-162.
George, C.M., Zheng, Y., Graziano, J.H., Rasul, S.B., Hossain, Z., Mey, J.L., van Geen, A., 2012. Evaluation of an arsenic test kit for rapid well screening in Bangladesh. Environmental Science and Technology 46, 11213-11219.
Gladysheva, T.B., Oden, K.L., Rosen, B.P., 1994. Properties of the arsenate reductase of plasmid R773. Biochemistry 33, 7288-7293.
Gu, M.B., Choi, S.H., Kim, S.W., 2001. Some observations in freeze-drying of recombinant bioluminescent Escherichia coli for toxicity monitoring. Journal of Biotechnology 88, 95-105.
Gu, M.B., Mitchell, R.J., Kim, B.C., 2004. Whole-cell-based biosensors for environmental biomonitoring and application. Advances in Biochemical Engineering/Biotechnology 87, 269-305.
Hall, L.L., George, S.E., Kohan, M.J., Styblo, M., Thomas, D.J., 1997. In vitro methylation of inorganic arsenic in mouse intestinal cecum. Toxicology and Applied Pharmacology 147, 101-109.
Hassan, S.H., Van Ginkel, S.W., Oh, S.E., 2013. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor. Chemosphere 90, 965-970.
Hay, A.G., Rice, J.F., Applegate, B.M., Bright, N.G., Sayler, G.S., 2000. A bioluminescent whole-cell reporter for detection of 2, 4-dichlorophenoxyacetic acid and 2,4-dichlorophenol in soil. Applied and Environmental Microbiology 66, 4589-4594.
Heitzer, A., Malachowsky, K., Thonnard, J.E., Bienkowski, P.R., White, D.C., Sayler, G.S., 1994. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Applied and Environmental Microbiology 60, 1487-1494.
Honschopp, S., Brunken, N., Nehrhorn, A., Breunig, H.J., 1996. Isolation and characterization of a new arsenic methylating bacterium from soil. Microbiological Research 151, 37-41.
Hossain, M.F., 2006. Arsenic contamination in Bangladesh - an overview. Agriculture, Ecosystems and Environment 113, 1-16.
Hsueh, Y.M., Cheng, G.S., Wu, M.M., Yu, H.S., Kuo, T.L., Chen, C.J., 1995. Multiple risk-factors associated with arsenic-induced skin-cancer - effects of chronic liver-disease and malnutritional status. British Journal of Cancer 71, 109-114.
Ikariyama, Y., Nishiguchi, S., Koyama, T., Kobatake, E., Aizawa, M., Tsuda, M., Nakazawa, T., 1997. Fiber-optic-based biomonitoring of benzene derivatives by recombinant E. coli bearing luciferase gene-fused TOL-plasmid immobilized on the fiber-optic end. Analytical Chemistry 69, 2600-2605.
Jain, V.K., Magrath, I.T., 1991. A chemiluminescent assay for quantitation of beta-galactosidase in the femtogram range - application to quantitation of beta-galactosidase in Iacz-transfected Cells. Analytical Biochemistry 199, 119-124.
Jennings, T.A., 1999. Lyophilization: introduction and basic principles, Taylor and Francis.
Ji, G., Silver, S., 1992. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. Journal of Bacteriology 174, 3684-3694.
Jiang, Q.Q., Singh, B.R., 1994. Effect of different forms and sources of arsenic on crop yield and arsenic concentration. Water, Air, and Soil Pollution 74, 321-343.
Joe, M.H., Lee, K.H., Lim, S.Y., Im, S.H., Song, H.P., Lee, I.S., Kim, D.H., 2012. Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans. Bioprocess and Biosystems Engineering 35, 265-272.
Jones, C.A., Langner, H.W., Anderson, K., McDermott, T.R., Inskeep, W.P., 2000. Rates of microbially mediated arsenate reduction and solubilization. Soil Science Society of America Journal 64, 600-608.
Jouanneau, S., Durand, M.J., Thouand, G., 2012. Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors. Environmental Science and Technology 46, 11979-11987.
Karim, M., 2000. Arsenic in groundwater and health problems in Bangladesh. Water Research 34, 304-310.
Kaur, H., Kumar, R., Babu, J.N., Mittal, S., 2015. Advances in arsenic biosensor development - a comprehensive review. Biosensors and Bioelectronics 63, 533-545.
Kay, P., 2011. Arsenic pollution: a global synthesis. Area 43, 118-119.
Kim, B.C., Gu, M.B., 2003. A bioluminescent sensor for high throughput toxicity classification. Biosensors and Bioelectronics 18, 1015-1021.
Kinniburgh, D.G., Kosmus, W., 2002. Arsenic contamination in groundwater: some analytical considerations. Talanta 58, 165-180.
Kostal, J., Yang, R., Wu, C.H., Mulchandani, A., Chen, W., 2004. Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Applied and Environmental Microbiology 70, 4582-4587.
Kostrzynska, M., Leung, K.T., Lee, H., Trevors, J.T., 2002. Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds. Journal of Microbiological Methods 48, 43-51.
Kuppardt, A., Chatzinotas, A., Breuer, U., van der Meer, J.R., Harms, H., 2009. Optimization of preservation conditions of As (III) bioreporter bacteria. Applied Microbiology and Biotechnology 82, 785-792.
Lerda, D.E., Prosperi, C.H., 1996. Water mutagenicity and toxicology in Rio Tercero (Cordoba, Argentina). Water Research 30, 819-824.
Lewis, J.C., Feltus, A., Ensor, C.M., Ramanathan, S., Daunert, S., 1998. Applications of reporter genes. Analytical Chemistry 70, 579A-585A.
Li, X., Krumholz, L.R., 2007. Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene. Journal of Bacteriology 189, 3705-3711.
Li, Y.F., Li, F.Y., Ho, C.L., Liao, V.H., 2008. Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environmental Pollution 152, 123-129.
Liao, V.H., Ou, K.L., 2005. Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environmental Toxicology and Chemistry 24, 1624-1631.
Liu, H.S., Jan, M.S., Chou, C.K., Chen, P.H., Ke, N.J., 1999. Is green fluorescent protein toxic to the living cells? Biochemical and Biophysical Research Communications 260, 712-717.
Ma, J., Sengupta, M.K., Yuan, D., Dasgupta, P.K., 2014. Speciation and detection of arsenic in aqueous samples: a review of recent progress in non-atomic spectrometric methods. Analytica Chimica Acta 831, 1-23.
Maharjan, M., Watanabe, C., Ahmad, S.A., Ohtsuka, R., 2005. Arsenic contamination in drinking water and skin manifestations in lowland Nepal: the first community-based survey. The American Journal of Tropical Medicine and Hygiene 73, 477-479.
Mandal, B.K., Chowdhury, T.R., Samanta, G., Basu, G.K., Chowdhury, P.P., Chanda, C.R., Lodh, D., Karan, N.K., Dhar, R.K., Tamili, D.K., Das, D., Saha, K.C., Chakraborti, D., 1996. Arsenic in groundwater in seven districts of West Bengal, India - The biggest arsenic calamity in the world. Current Science 70, 976-986.
Mandal, B.K., Suzuki, K.T., 2002. Arsenic round the world: a review. Talanta 58, 201-235.
Masscheleyn, P.H., Delaune, R.D., Patrick, W.H., 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology 25, 1414-1419.
McBride, B.C., Wolfe, R.S., 1971. Biosynthesis of dimethylarsine by methanobacterium. Biochemistry 10, 4312-4317.
Meighen, E.A., 1991. Molecular biology of bacterial bioluminescence. Microbiological Reviews 55, 123-142.
Melamed, D., 2004. Monitoring arsenic in the environment: A review of science and technologies for field measurements and sensors, EPA 542/R-04/002. U.S. Environmental Protection Agency, Washington, DC, 20460
Miller, J.H., 1972. Experiments in molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
Mitchell, R.J., Gu, M.B., 2004. An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Applied Microbiology and Biotechnology 64, 46-52.
Mobley, H.L., Rosen, B.P., 1982. Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 79, 6119-6122.
Morin, J.G., Hastings, J.W., 1971. Energy transfer in a bioluminescent system. Journal of Cellular Physiology 77, 313-318.
Morise, H., Shimomura, O., Johnson, F.H., Winant, J., 1974. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13, 2656-2662.
Mukhopadhyay, R., Rosen, B.P., Phung, L.T., Silver, S., 2002. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiology Reviews 26, 311-325.
Naranmandura, H., Ibata, K., Suzuki, K.T., 2007. Toxicity of dimethylmonothioarsinic acid toward human epidermoid carcinoma A431 cells. Chemical Research in Toxicology 20, 1120-1125.
Naylor, L.H., 1999. Reporter gene technology: the future looks bright. Biochemical Pharmacology 58, 749-757.
Nealson, K.H., Platt, T., Hastings, J.W., 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology 104, 313-322.
Nies, D.H., Silver, S., 1995. Ion efflux systems involved in bacterial metal resistances. Journal of Industrial Microbiology 14, 186-199.
Nordstrom, D.K., 2002. Public health. Worldwide occurrences of arsenic in ground water. Science 296, 2143-2145.
Novick, R.P., Murphy, E., Gryczan, T.J., Baron, E., Edelman, I., 1979. Penicillinase plasmids of Staphylococcus aureus: restriction-deletion maps. Plasmid 2, 109-129.
Nriagu, J.O., Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333, 134-139.
Nucifora, G., Chu, L., Misra, T.K., Silver, S., 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 86, 3544-3548.
Oremland, R.S., Kulp, T.R., Blum, J.S., Hoeft, S.E., Baesman, S., Miller, L.G., Stolz, J.F., 2005. A microbial arsenic cycle in a salt-saturated, extreme environment. Science 308, 1305-1308.
Oremland, R.S., Stolz, J.F., 2003. The ecology of arsenic. Science 300, 939-944.
Oremland, R.S., Stolz, J.F., Hollibaugh, J.T., 2004. The microbial arsenic cycle in Mono Lake, California. FEMS Microbiology Ecology 48, 15-27.
Outten, C.E., Outten, F.W., O'Halloran, T.V., 1999. DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. The Journal of Biological Chemistry 274, 37517-37524.
Outten, F.W., Outten, C.E., Hale, J., O'Halloran, T.V., 2000. Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. The Journal of Biological Chemistry 275, 31024-31029.
Pedahzur, R., Rosen, R., Belkin, S., 2004. Stabilization of recombinant bioluminescent bacteria for biosensor bpplications. Cell Preservation Technology 2, 260-269.
Peraniemi, S., Ahlgren, M., 1995. Optimized arsenic, selenium and mercury determinations in aqueous-solutions by energy-dispersive X-ray-fluorescence after preconcentration onto zirconium-koaded activated-charcoal. Analytica Chimica Acta 302, 89-95.
Petrick, J.S., Ayala-Fierro, F., Cullen, W.R., Carter, D.E., Vasken Aposhian, H., 2000. Monomethylarsonous acid (MMAIII) is more toxic than arsenite in chang human hepatocytes. Toxicology and Applied Pharmacology 163, 203-207.
Petursdottir, A.H., Gunnlaugsdottir, H., Jorundsdottir, H., Mestrot, A., Krupp, E.M., Feldmann, J., 2012. HPLC-HG-ICP-MS: a sensitive and selective method for inorganic arsenic in seafood. Analytical and Bioanalytical Chemistry 404, 2185-2191.
Polyak, B., Geresh, S., Marks, R.S., 2004. Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromolecules 5, 389-396.
Potts, P.J., Ramsey, M.H., Carlisle, J., 2002. Portable X-ray fluorescence in the characterisation of arsenic contamination associated with industrial buildings at a heritage arsenic works site near Redruth, Cornwall, UK. Journal of Environmental Monitoring 4, 1017-1024.
Premkumar, J.R., Rosen, R., Belkin, S., Lev, O., 2002a. Sol-gel luminescence biosensors: Encapsulation of recombinant E-coli reporters in thick silicate films. Analytica Chimica Acta 462, 11-23.
Premkumar, J.R., Sagi, E., Rozen, R., Belkin, S., Modestov, A.D., Lev, O., 2002b. Fluorescent bacteria encapsulated in sol-gel derived silicate films. Chemistry of Materials 14, 2676-2686.
Rahman, M.M., Mukherjee, D., Sengupta, M.K., Chowdhury, U.K., Lodh, D.C., Roy, S., Selim, M., Quamruzzaman, Q., Milton, A.H., Shahidullah, S.M., Rahman, M.T., Chakraborti, D., 2002. Effectiveness and reliability of arsenic field testing kits: are the million dollar screening projects effective or not? Environmental Science and Technology 36, 5385-5394.
Rensing, C., Fan, B., Sharma, R., Mitra, B., Rosen, B.P., 2000. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 97, 652-656.
Rensing, C., Mitra, B., Rosen, B.P., 1997. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 94, 14326-14331.
Reza, A.H.M.S., Jean, J.S., Yang, H.J., Lee, M.K., Hsu, H.F., Liu, C.C., Lee, Y.C., Bundschuh, J., Lin, K.H., Lee, C.Y., 2011. A comparative study on arsenic and humic substances in alluvial aquifers of Bengal delta plain (NW Bangladesh), Chianan plain (SW Taiwan) and Lanyang plain (NE Taiwan): implication of arsenic mobilization mechanisms. Environmental Geochemistry and Health 33, 235-258.
Richter, J., Lischka, S., Piechotta, C., 2012. Analysis of arsenic species in fish after derivatization by GC-MS. Talanta 101, 524-529.
Riether, K.B., Dollard, M.A., Billard, P., 2001. Assessment of heavy metal bioavailability using Escherichia coli zntAp :: lux and copAp :: lux-based biosensors. Applied Microbiology and Biotechnology 57, 712-716.
Roberto, F.F., Barnes, J.M., Bruhn, D.F., 2002. Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 58, 181-188.
Rogers, K.R., 2006. Recent advances in biosensor techniques for environmental monitoring. Analytica Chimica Acta 568, 222-231.
Rosen, B.P., 2002. Biochemistry of arsenic detoxification. FEBS Letters 529, 86-92.
Rosenstein, R., Peschel, A., Wieland, B., Gotz, F., 1992. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. Journal of Bacteriology 174, 3676-3683.
Samal, A.C., Kar, S., Bhattacharya, P., Santra, S.C., 2011. Human exposure to arsenic through foodstuffs cultivated using arsenic contaminated groundwater in areas of West Bengal, India. Journal of Environmental Science and Health 46, 1259-1265.
Sarkar, P., Banerjee, S., Bhattacharyay, D., Turner, A.P., 2010. Electrochemical sensing systems for arsenate estimation by oxidation of L-cysteine. Ecotoxicology and Environmental Safety 73, 1495-1501.
Saunders, J.A., Lee, M.K., Uddin, A., Mohammad, S., Wilkin, R.T., Fayek, M., Korte, N.E., 2005. Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochemistry Geophysics Geosystems 6.
Sbarato, V.M., Sanchez, H.J., 2001. Analysis of arsenic pollution in groundwater aquifers by X-ray fluorescence. Applied Radiation and Isotopes 54, 737-740.
Schweizer, H.P., Chuanchuen, R., 2001. Small broad-host-range lacZ operon fusion vector with low background activity. BioTechniques 31, 1258, 1260, 1262.
Scott, D.L., Ramanathan, S., Shi, W.P., Rosen, B.P., Daunert, S., 1997. Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Analytical Chemistry 69, 16-20.
Sele, V., Sloth, J.J., Lundebye, A.K., Larsen, E.H., Berntssen, M.H.G., Amlund, H., 2012. Arsenolipids in marine oils and fats: a review of occurrence, chemistry and future research needs. Food Chemistry 133, 618-630.
Sharma, P., Asad, S., Ali, A., 2013. Bioluminescent bioreporter for assessment of arsenic contamination in water samples of India. Journal of Biosciences 38, 251-258.
Shin, H.J., Park, H.H., Lim, W.K., 2005. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. Journal of Biotechnology 119, 36-43.
Siegfried, K., Endes, C., Bhuiyan, A.F.M.K., Kuppardt, A., Mattusch, J., van der Meer, J.R., Chatzinotas, A., Harms, H., 2012. Field testing of arsenic in groundwater samples of Bangladesh using a test kit based on lyophilized bioreporter bacteria. Environmental Science and Technology 46, 3281-3287.
Silver, S., 1996. Bacterial resistances to toxic metal ions - a review. Gene 179, 9-19.
Singh, M.P., Greenstein, M., 2006. A simple, rapid, sensitive method detecting homoserine lactone (HSL)-related compounds in microbial extracts. Journal of Microbiological Methods 65, 32-37.
Singh, R., Singh, S., Parihar, P., Singh, V.P., Prasad, S.M., 2015. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety 112C, 247-270.
Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17, 517-568.
Smirnova, I.A., Dian, C., Leonard, G.A., McSweeney, S., Birse, D., Brzezinski, P., 2004. Development of a bacterial biosensor for nitrotoluenes: the crystal structure of the transcriptional regulator DntR. Journal of Molecular Biology 340, 405-418.
Smith, E., Naidu, R., Alston, A.M., 1998. Arsenic in the soil environment: a review. Advances in Agronomy 64, 149-195.
Sticher, P., Jaspers, M.C., Stemmler, K., Harms, H., Zehnder, A.J., van der Meer, J.R., 1997. Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Applied and Environmental Microbiology 63, 4053-4060.
Stocker, J., Balluch, D., Gsell, M., Harms, H., Feliciano, J., Daunert, S., Malik, K.A., van der Meer, J.R., 2003. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environmental Science and Technology 37, 4743-4750.
Stoytcheva, M., Sharkova, V., Panayotova, M., 1998. Electrochemical approach in studying the inhibition of acetylcholinesterase by arsenate (III): analytical characterisation and application for arsenic determination. Analytica Chimica Acta 364, 195-201.
Struss, A., Pasini, P., Ensor, C.M., Raut, N., Daunert, S., 2010. Paper strip whole cell biosensors: a portable test for the semiquantitative detection of bacterial quorum signaling molecules. Analytical Chemistry 82, 4457-4463.
Tamas, M.J., Wysocki, R., 2001. Mechanisms involved in metalloid transport and tolerance acquisition. Current Genetics 40, 2-12.
Tang, X., Pikal, M.J., 2004. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharmaceutical Research 21, 191-200.
Tani, C., Inoue, K., Tani, Y., Harun-ur-Rashid, M., Azuma, N., Ueda, S., Yoshida, K., Maeda, I., 2009. Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter-reporter units in tandem for detection of arsenic. Journal of Bioscience and Bioengineering 108, 414-420.
Tauriainen, S., Karp, M., Chang, W., Virta, M., 1997. Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Applied and Environmental Microbiology 63, 4456-4461.
Tibazarwa, C., Corbisier, P., Mench, M., Bossus, A., Solda, P., Mergeay, M., Wyns, L., van der Lelie, D., 2001. A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environmental Pollution 113, 19-26.
Trang, P.T., Berg, M., Viet, P.H., Van Mui, N., Van Der Meer, J.R., 2005. Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environmental Science and Technology 39, 7625-7630.
Truffer, F., Buffi, N., Merulla, D., Beggah, S., van Lintel, H., Renaud, P., van der Meer, J.R., Geiser, M., 2014. Compact portable biosensor for arsenic detection in aqueous samples with Escherichia coli bioreporter cells. The Review of Scientific Instruments 85, 015120.
Tseng, C.H., 2002. An overview on peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Angiology 53, 529-537.
Van Dyk, T.K., Majarian, W.R., Konstantinov, K.B., Young, R.M., Dhurjati, P.S., LaRossa, R.A., 1994. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Applied and Environmental Microbiology 60, 1414-1420.
Van Ginkel, S.W., Hassan, S.H.A., Ok, Y.S., Yang, J.E., Kim, Y.S., Oh, S.E., 2011. Detecting oxidized contaminants in water using sulfur-oxidizing bacteria. Environmental Science and Technology 45, 3739-3745.
Wackwitz, A., Harms, H., Chatzinotas, A., Breuer, U., Vogne, C., van der Meer, J.R., 2008. Internal arsenite bioass
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55167-
dc.description.abstract砷為重金屬污染物之一,為已知人體致癌物。許多研究指出,使用含砷地下水做為飲用水、灌溉水已在世界各地造成人類健康危害。現行砷污染檢測技術雖具有相當高的靈敏度與準確度,但應用於大規模即時檢測及其價格,仍有其限制性。因此,本研究開發快速及經濟現地檢測地下水中砷之細菌生物感測器。本研究使用非致病菌E. coli DH5α為宿主(host cell),利用arsR與lacZ之基因組合建構,以顏色改變為其訊號基礎,發展利用目測或光度計檢測水樣中砷之生物感測器。本研究建構之生物感測器,其定量範圍為10至500 μg/l之間,檢測時間約為1到3小時。本研究亦分析細菌數量(以OD600值表示)對於生物感測器呈色能力之差異,結果顯示,較高OD600值之生物感測器,呈色強度亦較高,且檢測時間較短,但量測值變動較大。本研究所建構之生物感測器應用於含砷地下水樣品分析,成功檢測三價砷濃度。另外,本研究分析不同保存條件,以及不同OD600值,在保存期限上的差異。結果顯示,不同OD600值對於保存期限影響不明顯;其中,以液體保存於4℃,具有最長之保存期限,約為九天,其餘保存方式之保存期限,約為三至四天左右。本研究建構之生物感測器,具有低成本、可定量,以及操作簡單等優勢,能應用於砷污染調查檢測,結合現有化學檢測技術,可提升環境污染管理之效率。zh_TW
dc.description.abstractArsenic is one of the heavy metal pollutants and a known human carcinogen. Using arsenic contaminated groundwater for drinking or irrigation has caused major health problems for humans around the world. Current arsenic detecting techniques based on physicochemical methods have high sensitivity and accuracy. Yet, in addition to high cost, the applications to large scale detection were still limited. Therefore, this study developed a color-based bacterial biosensor which is easy and inexpensive for arsenic screening and could be complementary to physicochemical methods. The arsR-lacZ recombinant gene cassette in nonpathogenic strain E. coli DH5α was used in the color-based biosensor which could be measured by eyes or spectrometer. The developed bacterial biosensor demonstrates a quantitative ranging from 10 - 500 μg/l in 1 - 3 hours reaction time. In addition, the result showed that biosensor with higher OD600 has higher induction and lower response time, but lower accuracy. Furthermore, the biosensor was able to successfully detect and estimate arsenic concentration in groundwater samples. The result further showed that OD600 did not affect the shelf life of biosensor. Among different storage methods, biosensor in liquid at 4℃ showed the longest shelf life about 9 days, whereas others were about 3 - 4 days. In conclusion, this study showed that the arsenic biosensor with reliable color signal makes it useful for large scale rapid screening of arsenic pollutants providing the potential for better management strategies for environmental quality control.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:49:43Z (GMT). No. of bitstreams: 1
ntu-104-R01622048-1.pdf: 4942006 bytes, checksum: c5d08580711b6b0e71f75c948b0f96bd (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖次 VII
表次 VIII
縮寫表 IX
第一章 研究動機 1
第二章 文獻回顧 2
2.1 砷 2
2.1.1 砷在環境中的流布 2
2.1.2 砷的危害性 3
2.1.3 細菌體內砷的調控機制 4
2.1.4 傳統化學法檢測砷污染 5
2.2 生物感測器(biosensor) 6
2.2.1 無細胞型生物感測器(cell-free-based biosensor) 7
2.2.2 廣效性生物感測器(non-specific biosensor) 7
2.2.3 專一性生物感測器(specific biosensor) 8
2.2.4 報告基因(reporter gene) 10
2.2.5 生物感測器的保存(preservation) 12
第三章 研究目的 13
第四章 材料與方法 14
4.1 實驗流程圖 14
4.2 實驗藥品 15
4.3 生物感測器設計與建構 15
4.3.1 菌種與質體 15
4.3.2 勝任細胞製備 15
4.3.3 重組質體建構與轉型 16
4.4 生物感測器劑量與反應關係測試 16
4.5 不同OD600值造成生物感測器之反應差異分析 17
4.6 生物感測器應用於地下水樣品測試 17
4.6.1 採樣與化學分析 17
4.6.2 生物感測器分析 17
4.7 保存條件與時間(shelf life)分析與比較 19
4.7.1 液體保存 19
4.7.2 Cell pellet保存 19
4.8 統計分析 19
第五章 結果 20
5.1 砷生物感測器質體架構 20
5.2 生物感測器與砷劑量及反應關係 20
5.3 不同OD600值對生物感測器呈色能力之影響 25
5.4 生物感測器應用於含砷地下水樣品檢測 27
5.5 不同保存條件對生物感測器保存期限之影響 31
第六章 討論 36
6-1 其他砷污染檢測技術與本研究成果之比較 36
6-1-1 本研究成果概述 36
6-1-2 與傳統化學法之比較 36
6-1-3 與其他研究之生物感測器之比較 38
6-2 本研究成果之應用性 40
6-2-1 OD600值對生物感測器呈色能力之影響 40
6-2-2 保存條件對於生物感測器之應用性分析 40
6-2-3 生物感測器與化學分析法之成本分析比較 41
第七章 結論 43
第八章 建議 44
第九章 參考文獻 45
第十章 附錄 59
dc.language.isozh-TW
dc.title研發可利用顏色差異檢測砷之細菌生物感測器zh_TW
dc.titleDevelopment of Color-Based Bacterial Biosensor for Arsenic Detectionen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳昭瑩(Chao-Ying Chen),沈偉強(Wei-Chiang Shen),童心欣(Hsin-Hsin Tung)
dc.subject.keyword生物感測器,砷污染,顏色差異訊號,保存期限,地下水,zh_TW
dc.subject.keywordbiosensor,arsenic pollutants,color-based detection,shelf life,groundwater,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2015-01-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
4.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved