請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55165完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡敦仁(Tun-Jun Tsai),郭明良(Min-Liang Kuo) | |
| dc.contributor.author | Chun-Fu Lai | en |
| dc.contributor.author | 賴俊夫 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:49:38Z | - |
| dc.date.available | 2015-03-12 | |
| dc.date.copyright | 2015-03-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-23 | |
| dc.identifier.citation | Ali, T., I. Khan, W. Simpson, G. Prescott, J. Townend, W. Smith and A. Macleod. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol. 2007; 18: 1292-1298.
Amdur, R. L., L. S. Chawla, S. Amodeo, P. L. Kimmel and C. E. Palant. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 2009; 76: 1089-1097. Anders, H. J. and M. Ryu. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 2011; 80: 915-925. Armulik, A., A. Abramsson and C. Betsholtz. Endothelial/pericyte interactions. Circ Res. 2005; 97: 512-523. Babic, A. M., M. L. Kireeva, T. V. Kolesnikova and L. F. Lau. CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A. 1998; 95: 6355-6360. Bai, T., C. C. Chen and L. F. Lau. Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. J Immunol. 2010; 184: 3223-3232. Bartholin, L., L. L. Wessner, J. M. Chirgwin and T. A. Guise. The human Cyr61 gene is a transcriptional target of transforming growth factor beta in cancer cells. Cancer Lett. 2007; 246: 230-236. Bascands, J. L. and J. P. Schanstra. Obstructive nephropathy: insights from genetically engineered animals. Kidney Int. 2005; 68: 925-937. Basile, D. P. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 2007; 72: 151-156. Basile, D. P., K. Fredrich, B. Chelladurai, E. C. Leonard and A. R. Parrish. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol. 2008; 294: F928-936. Basile, D. P., J. L. Friedrich, J. Spahic, N. Knipe, H. Mang, E. C. Leonard, S. Changizi-Ashtiyani, R. L. Bacallao, B. A. Molitoris and T. A. Sutton. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Renal Physiol. 2011; 300: F721-733. Belcher, J. M., C. L. Edelstein and C. R. Parikh. Clinical applications of biomarkers for acute kidney injury. Am J Kidney Dis. 2011; 57: 930-940. Bellomo, R., C. Ronco, J. A. Kellum, R. L. Mehta, P. Palevsky and w. Acute Dialysis Quality Initiative. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004; 8: R204-212. Berl, T. Angiotensin-converting enzyme inhibitors versus AT1 receptor antagonist in cardiovascular and renal protection: the case for AT1 receptor antagonist. J Am Soc Nephrol. 2004; 15 Suppl 1: S71-76. Blouza, S., S. Dakhli, H. Abid, M. Aissaoui, I. Ardhaoui, N. Ben Abdallah, S. Ben Brahim, I. Ben Ghorbel, N. Ben Salem, S. Beji, S. Chamakhi, A. Derbel, F. Derouiche, F. Djait, T. Doghri, Y. Fourti, F. Gharbi, K. Jellouli, N. Jellazi, K. Kamoun, A. Khedher, A. Letaief, R. Limam, A. Mekaouer, R. Miledi, K. Nagati, M. Naouar, S. Sellem, H. Tarzi, S. Turki, B. Zidi, A. Achour and Davet. Efficacy of low-dose oral sulodexide in the management of diabetic nephropathy. J Nephrol. 2010; 23: 415-424. Bonventre, J. V. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol. 2003; 14 Suppl 1: S55-61. Bonventre, J. V. Pathophysiology of acute kidney injury: roles of potential inhibitors of inflammation. Contrib Nephrol. 2007; 156: 39-46. Bonventre, J. V., V. S. Vaidya, R. Schmouder, P. Feig and F. Dieterle. Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol. 2010; 28: 436-440. Bonventre, J. V. and L. Yang. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011; 121: 4210-4221. Bonventre, J. V. and A. Zuk. Ischemic acute renal failure: an inflammatory disease? Kidney Int. 2004; 66: 480-485. Boor, P., A. Konieczny, L. Villa, A. L. Schult, E. Bucher, S. Rong, U. Kunter, C. R. van Roeyen, T. Polakowski, H. Hawlisch, S. Hillebrandt, F. Lammert, F. Eitner, J. Floege and T. Ostendorf. Complement C5 mediates experimental tubulointerstitial fibrosis. J Am Soc Nephrol. 2007; 18: 1508-1515. Border, W. A. and N. A. Noble. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994; 331: 1286-1292. Bottinger, E. P., J. J. Letterio and A. B. Roberts. Biology of TGF-beta in knockout and transgenic mouse models. Kidney Int. 1997; 51: 1355-1360. Brenner, B. M., T. W. Meyer and T. H. Hostetter. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982; 307: 652-659. Brigstock, D. R. The CCN family: a new stimulus package. J Endocrinol. 2003; 178: 169-175. Campanholle, G., G. Ligresti, S. A. Gharib and J. S. Duffield. Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis. Am J Physiol Cell Physiol. 2013; 304: C591-603. Castano, A. P., S. L. Lin, T. Surowy, B. T. Nowlin, S. A. Turlapati, T. Patel, A. Singh, S. Li, M. L. Lupher, Jr. and J. S. Duffield. Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo. Sci Transl Med. 2009; 1: 5ra13. Cerda, J., N. Lameire, P. Eggers, N. Pannu, S. Uchino, H. Wang, A. Bagga and A. Levin. Epidemiology of acute kidney injury. Clin J Am Soc Nephrol. 2008; 3: 881-886. Chaqour, B. and M. Goppelt-Struebe. Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 2006; 273: 3639-3649. Chawla, L. S., R. L. Amdur, S. Amodeo, P. L. Kimmel and C. E. Palant. The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int. 2011; 79: 1361-1369. Chen, C. C. and L. F. Lau. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol. 2009; 41: 771-783. Chen, C. C., F. E. Mo and L. F. Lau. The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts. J Biol Chem. 2001; 276: 47329-47337. Chen, C. C., J. L. Young, R. I. Monzon, N. Chen, V. Todorovic and L. F. Lau. Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J. 2007; 26: 1257-1267. Chen, N., C. C. Chen and L. F. Lau. Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J Biol Chem. 2000; 275: 24953-24961. Chen, P. M., T. S. Lai, P. Y. Chen, C. F. Lai, V. Wu, W. C. Chiang, Y. M. Chen, K. D. Wu and T. J. Tsai. Renoprotective effect of combining pentoxifylline with angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker in advanced chronic kidney disease. J Formos Med Assoc. 2014; 113: 219-226. Chen, Y. and X. Y. Du. Functional properties and intracellular signaling of CCN1/Cyr61. J Cell Biochem. 2007; 100: 1337-1345. Chen, Y. M., C. T. Chien, M. I. Hu-Tsai, K. D. Wu, C. C. Tsai, M. S. Wu and T. J. Tsai. Pentoxifylline attenuates experimental mesangial proliferative glomerulonephritis. Kidney Int. 1999; 56: 932-943. Chen, Y. M., S. L. Lin, C. W. Chen, W. C. Chiang, T. J. Tsai and B. S. Hsieh. Tumor necrosis factor-alpha stimulates fractalkine production by mesangial cells and regulates monocyte transmigration: down-regulation by cAMP. Kidney Int. 2003; 63: 474-486. Chen, Y. M., Y. Y. Ng, S. L. Lin, W. C. Chiang, H. Y. Lan and T. J. Tsai. Pentoxifylline suppresses renal tumour necrosis factor-alpha and ameliorates experimental crescentic glomerulonephritis in rats. Nephrol Dial Transplant. 2004; 19: 1106-1115. Chen, Y. T., F. C. Chang, C. F. Wu, Y. H. Chou, H. L. Hsu, W. C. Chiang, J. Shen, Y. M. Chen, K. D. Wu, T. J. Tsai, J. S. Duffield and S. L. Lin. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 2011; 80: 1170-1181. Chertow, G. M., E. Burdick, M. Honour, J. V. Bonventre and D. W. Bates. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005; 16: 3365-3370. Chevalier, R. L., M. S. Forbes and B. A. Thornhill. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009; 75: 1145-1152. Chintalapudi, M. R., M. Markiewicz, N. Kose, V. Dammai, K. J. Champion, R. S. Hoda, M. Trojanowska and T. Hsu. Cyr61/CCN1 and CTGF/CCN2 mediate the proangiogenic activity of VHL-mutant renal carcinoma cells. Carcinogenesis. 2008; 29: 696-703. Chiu, Y. L., K. L. Chien, S. L. Lin, Y. M. Chen, T. J. Tsai and K. D. Wu. Outcomes of stage 3-5 chronic kidney disease before end-stage renal disease at a single center in Taiwan. Nephron Clin Pract. 2008; 109: c109-118. Coca, S. G., B. Yusuf, M. G. Shlipak, A. X. Garg and C. R. Parikh. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009; 53: 961-973. Derynck, R. and Y. E. Zhang. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003; 425: 577-584. Duffield, J. S. Macrophages and immunologic inflammation of the kidney. Semin Nephrol. 2010; 30: 234-254. Eddy, A. A. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol. 1996; 7: 2495-2508. El Chaar, M., J. Chen, S. V. Seshan, S. Jha, I. Richardson, S. R. Ledbetter, E. D. Vaughan, Jr., D. P. Poppas and D. Felsen. Effect of combination therapy with enalapril and the TGF-beta antagonist 1D11 in unilateral ureteral obstruction. Am J Physiol Renal Physiol. 2007; 292: F1291-1301. Fligny, C. and J. S. Duffield. Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction. Curr Opin Rheumatol. 2013; 25: 78-86. Floege, J., M. W. Burns, C. E. Alpers, A. Yoshimura, P. Pritzl, K. Gordon, R. A. Seifert, D. F. Bowen-Pope, W. G. Couser and R. J. Johnson. Glomerular cell proliferation and PDGF expression precede glomerulosclerosis in the remnant kidney model. Kidney Int. 1992; 41: 297-309. Gambaro, G., I. Kinalska, A. Oksa, P. Pont'uch, M. Hertlova, J. Olsovsky, J. Manitius, D. Fedele, S. Czekalski, J. Perusicova, J. Skrha, J. Taton, W. Grzeszczak and G. Crepaldi. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J Am Soc Nephrol. 2002; 13: 1615-1625. Gammelager, H., C. F. Christiansen, M. B. Johansen, E. Tonnesen, B. Jespersen and H. T. Sorensen. Five-year risk of end-stage renal disease among intensive care patients surviving dialysis-requiring acute kidney injury: a nationwide cohort study. Crit Care. 2013; 17: R145. Garcia-Sanchez, O., F. J. Lopez-Hernandez and J. M. Lopez-Novoa. An integrative view on the role of TGF-beta in the progressive tubular deletion associated with chronic kidney disease. Kidney Int. 2010; 77: 950-955. Geng, H., R. Lan, G. Wang, A. R. Siddiqi, M. C. Naski, A. I. Brooks, J. L. Barnes, P. Saikumar, J. M. Weinberg and M. A. Venkatachalam. Inhibition of autoregulated TGFbeta signaling simultaneously enhances proliferation and differentiation of kidney epithelium and promotes repair following renal ischemia. Am J Pathol. 2009; 174: 1291-1308. Go, A. S., C. R. Parikh, T. A. Ikizler, S. Coca, E. D. Siew, V. M. Chinchilli, C. Y. Hsu, A. X. Garg, M. Zappitelli, K. D. Liu, W. B. Reeves, N. Ghahramani, P. Devarajan, G. B. Faulkner, T. C. Tan, P. L. Kimmel, P. Eggers and J. B. Stokes. The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS-AKI) study: design and methods. BMC Nephrol. 2010; 11: 22. Grande, M. T. and J. M. Lopez-Novoa. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol. 2009; 5: 319-328. Grgic, I., G. Campanholle, V. Bijol, C. Wang, V. S. Sabbisetti, T. Ichimura, B. D. Humphreys and J. V. Bonventre. Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int. 2012; 82: 172-183. Grote, K., G. Salguero, M. Ballmaier, M. Dangers, H. Drexler and B. Schieffer. The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration. Blood. 2007; 110: 877-885. Group, T. G. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet. 1997; 349: 1857-1863. Grzeszkiewicz, T. M., V. Lindner, N. Chen, S. C. Lam and L. F. Lau. The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology. 2002; 143: 1441-1450. Guha, M., Z. G. Xu, D. Tung, L. Lanting and R. Natarajan. Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J. 2007; 21: 3355-3368. Haase, M., R. Bellomo, P. Devarajan, P. Schlattmann, A. Haase-Fielitz and N. M.-a. I. Group. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009; 54: 1012-1024. Haase, M., R. Bellomo, G. Matalanis, P. Calzavacca, D. Dragun and A. Haase-Fielitz. A comparison of the RIFLE and Acute Kidney Injury Network classifications for cardiac surgery-associated acute kidney injury: a prospective cohort study. J Thorac Cardiovasc Surg. 2009; 138: 1370-1376. Han, W. K., S. S. Waikar, A. Johnson, R. A. Betensky, C. L. Dent, P. Devarajan and J. V. Bonventre. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008; 73: 863-869. Harel, Z., R. Wald, J. M. Bargman, M. Mamdani, E. Etchells, A. X. Garg, J. G. Ray, J. Luo, P. Li, R. R. Quinn, A. Forster, J. Perl and C. M. Bell. Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int. 2013; 83: 901-908. Hobson, C. E., S. Yavas, M. S. Segal, J. D. Schold, C. G. Tribble, A. J. Layon and A. Bihorac. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009; 119: 2444-2453. Hoshino, T. and T. Ikeda. Inhibitory effect of ibudilast on urinary albumin excretion in type 2 diabetes mellitus with microalbuminuria. Nephron. 2002; 90: 154-157. Hsu, C. Y. Where is the epidemic in kidney disease? J Am Soc Nephrol. 2010; 21: 1607-1611. Hsu, C. Y., G. M. Chertow, C. E. McCulloch, D. Fan, J. D. Ordonez and A. S. Go. Nonrecovery of kidney function and death after acute on chronic renal failure. Clin J Am Soc Nephrol. 2009; 4: 891-898. Hsu, C. Y., C. E. McCulloch, D. Fan, J. D. Ordonez, G. M. Chertow and A. S. Go. Community-based incidence of acute renal failure. Kidney Int. 2007; 72: 208-212. Hsu, R. K., C. E. McCulloch, R. A. Dudley, L. J. Lo and C. Y. Hsu. Temporal changes in incidence of dialysis-requiring AKI. J Am Soc Nephrol. 2013; 24: 37-42. Huang, T. M., V. C. Wu, G. H. Young, Y. F. Lin, C. C. Shiao, P. C. Wu, W. Y. Li, H. Y. Yu, F. C. Hu, J. W. Lin, Y. S. Chen, Y. H. Lin, S. S. Wang, R. B. Hsu, F. C. Chang, N. K. Chou, T. S. Chu, Y. C. Yeh, P. R. Tsai, J. W. Huang, S. L. Lin, Y. M. Chen, W. J. Ko, K. D. Wu and F. National Taiwan University Hospital Study Group of Acute Renal. Preoperative proteinuria predicts adverse renal outcomes after coronary artery bypass grafting. J Am Soc Nephrol. 2011; 22: 156-163. Isaka, Y., M. Tsujie, Y. Ando, H. Nakamura, Y. Kaneda, E. Imai and M. Hori. Transforming growth factor-beta 1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int. 2000; 58: 1885-1892. Ishani, A., J. L. Xue, J. Himmelfarb, P. W. Eggers, P. L. Kimmel, B. A. Molitoris and A. J. Collins. Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol. 2009; 20: 223-228. James, M. T., W. A. Ghali, M. L. Knudtson, P. Ravani, M. Tonelli, P. Faris, N. Pannu, B. J. Manns, S. W. Klarenbach and B. R. Hemmelgarn. Associations between acute kidney injury and cardiovascular and renal outcomes after coronary angiography. Circulation. 2011; 123: 409-416. James, M. T., W. A. Ghali, M. Tonelli, P. Faris, M. L. Knudtson, N. Pannu, S. W. Klarenbach, B. J. Manns and B. R. Hemmelgarn. Acute kidney injury following coronary angiography is associated with a long-term decline in kidney function. Kidney Int. 2010; 78: 803-809. James, M. T., B. R. Hemmelgarn, N. Wiebe, N. Pannu, B. J. Manns, S. W. Klarenbach, M. Tonelli and N. Alberta Kidney Disease. Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study. Lancet. 2010; 376: 2096-2103. Jones, L. K., K. M. O'Sullivan, T. Semple, M. P. Kuligowski, K. Fukami, F. Y. Ma, D. J. Nikolic-Paterson, S. R. Holdsworth and A. R. Kitching. IL-1RI deficiency ameliorates early experimental renal interstitial fibrosis. Nephrol Dial Transplant. 2009; 24: 3024-3032. Jun, J. I. and L. F. Lau. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010; 12: 676-685. Kanellis, J., K. Paizis, A. J. Cox, S. A. Stacker, R. E. Gilbert, M. E. Cooper and D. A. Power. Renal ischemia-reperfusion increases endothelial VEGFR-2 without increasing VEGF or VEGFR-1 expression. Kidney Int. 2002; 61: 1696-1706. Kasiske, B. L., R. S. Kalil, J. Z. Ma, M. Liao and W. F. Keane. Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med. 1993; 118: 129-138. KDIGO. Section 2: AKI Definition. Kidney Int Suppl (2011). 2012; 2: 19-36. Kim, K. H., C. C. Chen, R. I. Monzon and L. F. Lau. Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol. 2013; 33: 2078-2090. Kireeva, M. L., F. E. Mo, G. P. Yang and L. F. Lau. Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol Cell Biol. 1996; 16: 1326-1334. Kitagawa, K., T. Wada, K. Furuichi, H. Hashimoto, Y. Ishiwata, M. Asano, M. Takeya, W. A. Kuziel, K. Matsushima, N. Mukaida and H. Yokoyama. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol. 2004; 165: 237-246. Klahr, S. and J. Morrissey. Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol. 2002; 283: F861-875. Klahr, S., G. Schreiner and I. Ichikawa. The progression of renal disease. N Engl J Med. 1988; 318: 1657-1666. Ko, G. J., C. S. Boo, S. K. Jo, W. Y. Cho and H. K. Kim. Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant. 2008; 23: 842-852. Ko, G. J., D. N. Grigoryev, D. Linfert, H. R. Jang, T. Watkins, C. Cheadle, L. Racusen and H. Rabb. Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition. Am J Physiol Renal Physiol. 2010; 298: F1472-1483. Kok, S. H., K. L. Hou, C. Y. Hong, J. S. Wang, P. C. Liang, C. C. Chang, M. Hsiao, H. Yang, E. H. Lai and S. K. Lin. Simvastatin inhibits cytokine-stimulated Cyr61 expression in osteoblastic cells: a therapeutic benefit for arthritis. Arthritis Rheum. 2011; 63: 1010-1020. Kular, L., J. Pakradouni, P. Kitabgi, M. Laurent and C. Martinerie. The CCN family: a new class of inflammation modulators? Biochimie. 2011; 93: 377-388. Kuncio, G. S., E. G. Neilson and T. Haverty. Mechanisms of tubulointerstitial fibrosis. Kidney Int. 1991; 39: 550-556. Lai, C. F., V. C. Wu, T. M. Huang, Y. C. Yeh, K. C. Wang, Y. Y. Han, Y. F. Lin, Y. J. Jhuang, C. T. Chao, C. C. Shiao, P. R. Tsai, F. C. Hu, N. K. Chou, W. J. Ko, K. D. Wu and F. the National Taiwan University Hospital Study Group on Acute Renal. Kidney function decline after a non-dialysis-requiring acute kidney injury is associated with higher long-term mortality in critically ill survivors. Crit Care. 2012; 16: R123. Lan, R., H. Geng, A. J. Polichnowski, P. K. Singha, P. Saikumar, D. G. McEwen, K. A. Griffin, R. Koesters, J. M. Weinberg, A. K. Bidani, W. Kriz and M. A. Venkatachalam. PTEN loss defines a TGF-beta-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Renal Physiol. 2012; 302: F1210-1223. Leask, A. and D. J. Abraham. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006; 119: 4803-4810. Lech, M., C. Rommele, R. Grobmayr, H. Eka Susanti, O. P. Kulkarni, S. Wang, H. J. Grone, B. Uhl, C. Reichel, F. Krombach, C. Garlanda, A. Mantovani and H. J. Anders. Endogenous and exogenous pentraxin-3 limits postischemic acute and chronic kidney injury. Kidney Int. 2013; 83: 647-661. Lee, S., S. Huen, H. Nishio, S. Nishio, H. K. Lee, B. S. Choi, C. Ruhrberg and L. G. Cantley. Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 2011; 22: 317-326. Leu, S. J., S. C. Lam and L. F. Lau. Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem. 2002; 277: 46248-46255. Li, P. K. T., E. A. Burdmann and R. L. Mehta. Acute kidney injury: global health alert. Acta Nephrologica. 2013; 27: 5-10. Liangos, O., M. C. Perianayagam, V. S. Vaidya, W. K. Han, R. Wald, H. Tighiouart, R. W. MacKinnon, L. Li, V. S. Balakrishnan, B. J. Pereira, J. V. Bonventre and B. L. Jaber. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol. 2007; 18: 904-912. Lin, M. T., I. H. Kuo, C. C. Chang, C. Y. Chu, H. Y. Chen, B. R. Lin, M. Sureshbabu, H. J. Shih and M. L. Kuo. Involvement of hypoxia-inducing factor-1alpha-dependent plasminogen activator inhibitor-1 up-regulation in Cyr61/CCN1-induced gastric cancer cell invasion. J Biol Chem. 2008; 283: 15807-15815. Lin, M. T., C. Y. Zuon, C. C. Chang, S. T. Chen, C. P. Chen, B. R. Lin, M. Y. Wang, Y. M. Jeng, K. J. Chang, P. H. Lee, W. J. Chen and M. L. Kuo. Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappaB/cyclooxygenase-2 signaling pathway. Clin Cancer Res. 2005; 11: 5809-5820. Lin, S. L., A. P. Castano, B. T. Nowlin, M. L. Lupher, Jr. and J. S. Duffield. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol. 2009; 183: 6733-6743. Lin, S. L., F. C. Chang, C. Schrimpf, Y. T. Chen, C. F. Wu, V. C. Wu, W. C. Chiang, F. Kuhnert, C. J. Kuo, Y. M. Chen, K. D. Wu, T. J. Tsai and J. S. Duffield. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am J Pathol. 2011; 178: 911-923. Lin, S. L., R. H. Chen, Y. M. Chen, W. C. Chiang, C. F. Lai, K. D. Wu and T. J. Tsai. Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. J Am Soc Nephrol. 2005; 16: 2702-2713. Lin, S. L., Y. M. Chen, W. C. Chiang, K. D. Wu and T. J. Tsai. Effect of pentoxifylline in addition to losartan on proteinuria and GFR in CKD: a 12-month randomized trial. Am J Kidney Dis. 2008; 52: 464-474. Lin, S. L., Y. M. Chen, C. T. Chien, W. C. Chiang, C. C. Tsai and T. J. Tsai. Pentoxifylline attenuated the renal disease progression in rats with remnant kidney. J Am Soc Nephrol. 2002; 13: 2916-2929. Lin, S. L. and J. S. Duffield. Macrophages in kidney injury and repair. Acta Nephrologica. 2012; 26: 45-57. Lin, S. L., T. Kisseleva, D. A. Brenner and J. S. Duffield. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008; 173: 1617-1627. Lin, S. L., B. Li, S. Rao, E. J. Yeo, T. E. Hudson, B. T. Nowlin, H. Pei, L. Chen, J. J. Zheng, T. J. Carroll, J. W. Pollard, A. P. McMahon, R. A. Lang and J. S. Duffield. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A. 2010; 107: 4194-4199. Lin, Y. C., C. Y. Hsu, C. C. Kao, T. W. Chen, H. H. Chen, C. C. Hsu and M. S. Wu. Incidence and prevalence of ESRD in Taiwan Renal Registry Data System (TWRDS): 2005-2012. Acta Nephrologica. 2014; 28: 65-68. Lin, Y. F., W. J. Ko, T. S. Chu, Y. S. Chen, V. C. Wu, Y. M. Chen, M. S. Wu, Y. W. Chen, C. W. Tsai, C. C. Shiao, W. Y. Li, F. C. Hu, P. R. Tsai, T. J. Tsai, K. D. Wu and N. S. Group. The 90-day mortality and the subsequent renal recovery in critically ill surgical patients requiring acute renal replacement therapy. Am J Surg. 2009; 198: 325-332. Lin, Y. F., W. J. Ko, V. C. Wu, Y. S. Chen, Y. M. Chen, F. C. Hu, C. C. Shiao, M. S. Wu, Y. W. Chen, W. Y. Li, T. M. Huang, K. D. Wu and T. S. Chu. A modified sequential organ failure assessment score to predict hospital mortality of postoperative acute renal failure patients requiring renal replacement therapy. Blood Purif. 2008; 26: 547-554. Ling, H., X. Li, S. Jha, W. Wang, L. Karetskaya, B. Pratt and S. Ledbetter. Therapeutic role of TGF-beta-neutralizing antibody in mouse cyclosporin A nephropathy: morphologic improvement associated with functional preservation. J Am Soc Nephrol. 2003; 14: 377-388. Liu, K. D. and P. R. Brakeman. Renal repair and recovery. Crit Care Med. 2008; 36: S187-192. Lo, L. J., A. S. Go, G. M. Chertow, C. E. McCulloch, D. Fan, J. D. Ordonez and C. Y. Hsu. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 2009; 76: 893-899. Lobel, M., S. Bauer, C. Meisel, A. Eisenreich, R. Kudernatsch, J. Tank, U. Rauch, U. Kuhl, H. P. Schultheiss, H. D. Volk, W. Poller and C. Scheibenbogen. CCN1: a novel inflammation-regulated biphasic immune cell migration modulator. Cell Mol Life Sci. 2012; 69: 3101-3113. Ma, L. J. and A. B. Fogo. PAI-1 and kidney fibrosis. Front Biosci (Landmark Ed). 2009; 14: 2028-2041. McCormick, B. B., A. Sydor, A. Akbari, D. Fergusson, S. Doucette and G. Knoll. The effect of pentoxifylline on proteinuria in diabetic kidney disease: a meta-analysis. Am J Kidney Dis. 2008; 52: 454-463. Menendez, J. A., I. Mehmi, D. W. Griggs and R. Lupu. The angiogenic factor CYR61 in breast cancer: molecular pathology and therapeutic perspectives. Endocr Relat Cancer. 2003; 10: 141-152. Menke, J., Y. Iwata, W. A. Rabacal, R. Basu, Y. G. Yeung, B. D. Humphreys, T. Wada, A. Schwarting, E. R. Stanley and V. R. Kelley. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest. 2009; 119: 2330-2342. Miyajima, A., J. Chen, C. Lawrence, S. Ledbetter, R. A. Soslow, J. Stern, S. Jha, J. Pigato, M. L. Lemer, D. P. Poppas, E. D. Vaughan and D. Felsen. Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int. 2000; 58: 2301-2313. Mo, F. E., A. G. Muntean, C. C. Chen, D. B. Stolz, S. C. Watkins and L. F. Lau. CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol. 2002; 22: 8709-8720. Muramatsu, Y., M. Tsujie, Y. Kohda, B. Pham, A. O. Perantoni, H. Zhao, S. K. Jo, P. S. Yuen, L. Craig, X. Hu and R. A. Star. Early detection of cysteine rich protein 61 (CYR61, CCN1) in urine following renal ischemic reperfusion injury. Kidney Int. 2002; 62: 1601-1610. Navarro, J. F., C. Mora, M. Muros and J. Garcia. Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: a short-term, randomized, controlled trial. J Am Soc Nephrol. 2005; 16: 2119-2126. Nejat, M., J. W. Pickering, P. Devarajan, J. V. Bonventre, C. L. Edelstein, R. J. Walker and Z. H. Endre. Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney Int. 2012; 81: 1254-1262. Newsome, B. B., D. G. Warnock, W. M. McClellan, C. A. Herzog, C. I. Kiefe, P. W. Eggers and J. J. Allison. Long-term risk of mortality and end-stage renal disease among the elderly after small increases in serum creatinine level during hospitalization for acute myocardial infarction. Arch Intern Med. 2008; 168: 609-616. Nguyen, T. Q. and R. Goldschmeding. Bone morphogenetic protein-7 and connective tissue growth factor: novel targets for treatment of renal fibrosis? Pharm Res. 2008; 25: 2416-2426. 'National Health Insurance Research Database, National Health Research Institutes (NHRI), R.O.C.(Taiwan).' Retrieved February 23, 2011, from http://nhird.nhri.org.tw. Norman, J. T. and L. G. Fine. Intrarenal oxygenation in chronic renal failure. Clin Exp Pharmacol Physiol. 2006; 33: 989-996. Praga, M. Slowing the progression of renal failure. Kidney Int Suppl. 2002: 18-22. Praga, M., C. F. Andrade, J. Luno, M. Arias, R. Poveda, J. Mora, M. V. Prat, F. Rivera, J. M. Galceran, J. M. Ara, R. Aguirre, C. Bernis, R. Marin and J. M. Campistol. Antiproteinuric efficacy of losartan in comparison with amlodipine in non-diabetic proteinuric renal diseases: a double-blind, randomized clinical trial. Nephrol Dial Transplant. 2003; 18: 1806-1813. Qi, W., X. Chen, J. Holian, E. Mreich, S. Twigg, R. E. Gilbert and C. A. Pollock. Transforming growth factor-beta1 differentially mediates fibronectin and inflammatory cytokine expression in kidney tubular cells. Am J Physiol Renal Physiol. 2006; 291: F1070-1077. Qi, W., X. Chen, P. Poronnik and C. A. Pollock. Transforming growth factor-beta/connective tissue growth factor axis in the kidney. Int J Biochem Cell Biol. 2008; 40: 9-13. Rao, S., I. B. Lobov, J. E. Vallance, K. Tsujikawa, I. Shiojima, S. Akunuru, K. Walsh, L. E. Benjamin and R. A. Lang. Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development. 2007; 134: 4449-4458. Remuzzi, G. and T. Bertani. Pathophysiology of progressive nephropathies. N Engl J Med. 1998; 339: 1448-1456. Rennke, H. G., S. Anderson and B. M. Brenner (1994). The progression of renal disease: structural and functional correlation. Renal pathology. C. C. Tisher and B. M. Brenner. Philadelphia, J.B.Lippincott Company: 116-150. Ricardo, S. D., H. van Goor and A. A. Eddy. Macrophage diversity in renal injury and repair. J Clin Invest. 2008; 118: 3522-3530. Ricci, Z., D. Cruz and C. Ronco. The RIFLE criteria and mortality in acute kidney injury: A systematic review. Kidney Int. 2008; 73: 538-546. Ronco, C. and M. H. Rosner. Acute kidney injury and residual renal function. Crit Care. 2012; 16: 144. Rother, M., S. Krohn, G. Kania, D. Vanhoutte, A. Eisenreich, X. Wang, D. Westermann, K. Savvatis, N. Dannemann, C. Skurk, D. Hilfiker-Kleiner, T. Cathomen, H. Fechner, U. Rauch, H. P. Schultheiss, S. Heymans, U. Eriksson, C. Scheibenbogen and W. Poller. Matricellular signaling molecule CCN1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulator. Circulation. 2010; 122: 2688-2698. Ruggenenti, P., A. Perna, G. Gherardi, F. Gaspari, R. Benini and G. Remuzzi. Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up trial. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). Ramipril Efficacy in Nephropathy. Lancet. 1998; 352: 1252-1256. Ruhrberg, C. and M. De Palma. A double agent in cancer: deciphering ma | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55165 | - |
| dc.description.abstract | 全球的末期腎臟病發生率與盛行率仍然持續增加,其中的一個重要原因是,即使以目前最完善的治療,仍無法完全阻止慢性腎臟病的病程進展。動物實驗與臨床研究都發現,不論原發的病因為何,進行性腎臟病最後都會進展為相似的病理機轉,亦即慢性的腎小管間質纖維化。此外,近來的研究也顯示,急性腎損傷以後腎臟無法完全修復,可能會導致持續性的病理變化,並且演變為慢性腎臟病。為了進一步發展更完善的腎臟疾病治療,需要進行更深入的研究,來了解腎小管間質纖維化與急性腎損傷轉換為慢性腎臟病之詳細病理機轉。
富含半胱氨酸61蛋白(Cysteine-rich protein 61,Cyr61)是一個與細胞外間質密切相關的分泌性蛋白質,具有多樣的功能。目前已知Cyr61參與了控制細胞循環、改造細胞外間質、促進血管生成、以及調控發炎反應。過去的臨床研究與動物實驗曾報告過,Cyr61會在正常與疾病狀態的腎臟中表現。然而,目前仍不清楚Cyr61在腎臟疾病中的角色。吾人的研究假說為Cyr61在急性與慢性腎臟疾病病理機轉中具有關鍵性的功能,目的在於探究Cyr61在慢性進行性腎臟纖維化的致病角色,以及探究Cyr61在急性腎臟缺血再灌流損傷後的致病角色。 第一部分吾人利用單側輸尿管阻塞動物模式,探究Cyr61在進行性腎臟纖維化中之表現。相對於偽病組而言,輸尿管阻塞後第一天腎臟的Cyr61基因表現與蛋白質產生量就顯著地增高,並且持續到第十天。腎臟切片的組織免疫染色檢查,發現Cyr61蛋白質主要的表現位置在腎小管上皮細胞。而在細胞實驗中,我們發現transforming growth factor-β1(TGF-β1)可以刺激近端腎小管上皮細胞表現Cyr61。在單側輸尿管阻塞前給予小鼠注射抗TGF-β單株抗體,則可顯著地將術後第1天腎臟Cyr61的過度表現給壓抑下來,此結果支持了細胞實驗的發現。此外,在時序性的研究中,吾人觀察到單側輸尿管阻塞後monocyte chemoattractant protein-1(MCP-1)基因的增加表現緊跟在Cyr61之後,若以anti-Cyr61抗體治療單側輸尿管阻塞的小鼠,可顯著地減少腎臟的MCP-1基因表現,以及阻塞後第四天腎臟中巨噬細胞的浸潤。體外實驗以合成的Cyr61蛋白質處理近端腎小管上皮細胞,可刺激細胞表現MCP-1。這些結果共同揭示了腎小管上皮細胞中TGF-β1 → Cyr61 → MCP-1作用軸的機轉,也顯示出Cyr61具有促進發炎反應的功能。最後,接受了anti-Cyr61抗體治療的單側輸尿管阻塞小鼠,術後第四天腎臟的collagen type 1-α1(Col 1-α1)與α-smooth muscle actin (α-SMA)基因表現量減輕,picrosirius red染色下膠原纖維的組織累積減少,而且α-SMA蛋白質產生量也下降。然而,這個阻斷Cyr61帶來的抗纖維化效應並無法持續到疾病的後期。 第二部分吾人利用腎臟缺血再灌流損傷動物模式,來探究Cyr61在急性腎損傷後的表現。在嚴重單側腎臟缺血再灌流損傷後,腎臟的Cyr61基因表現自手術後第1天起就明顯地增加,直到第14天仍持續高於偽病組。組織免疫螢光染色發現Cyr61主要表現在近端腎小管上皮細胞,而遠端腎小管並無顯著表現。細胞實驗將近端腎小管上皮細胞培養於缺氧/再復氧的狀況下,的確也會增加Cyr61基因表現。以合成的Cyr61蛋白質處理近端腎小管上皮細胞,可觀察到MCP-1與interleukin(IL)-6的基因表現增加,顯示出Cyr61的促發炎功能。再者,吾人以anti-Cyr61抗體治療單側腎臟缺血再灌流損傷的小鼠,術後第七天與第十四天腎臟的MCP-1、IL-6、IL-1β、macrophage inflammatory protein-2基因表現明顯受到抑制,腎臟中巨噬細胞的浸潤也顯著減少。在術後第十四天,anti-Cyr61抗體治療也減輕了腎臟中Col 1-α1、Col 3-α1、TGF-β1、與plasminogen activator inhibitor-1的基因表現,減少picrosirius red染色下膠原纖維的組織累積,以及降低α-SMA蛋白質產生量。同時,我們發現anti-Cyr61抗體治療也可減輕損傷後腎臟的腎小管周圍微血管循環稀薄現象。這些結果顯示,即時地阻斷受傷後的近端腎小管上皮細胞所分泌的促發炎訊息(例如Cyr61),可以減輕急性腎損傷後病理變化所導致的腎小管間質纖維化。此外,我們的臨床研究發現,急性腎損傷病患尿液中,Cyr61蛋白質的排出量顯著增加,印證了基礎實驗的發現。至於Cyr61是否能發展成為一個實用的急性腎損傷生物標誌,以及是否急性腎損傷病患尿液的Cyr61排出量能用來預測日後產生慢性腎臟病,仍需要後續進行臨床研究來加以探究。 總結本研究的結果,吾人的動物實驗發現在單側輸尿管阻塞後透過TGF-β1的刺激造成Cyr61快速地在腎小管上皮細胞增加表現,也觀察到在急性腎臟缺血再灌流損傷後近端腎小管上皮細胞的Cyr61活化。這些結果在細胞實驗與臨床研究中都獲得印證。Cyr61在急性缺血性腎臟病與進行性腎臟纖維化的病程中,主要的功能是促進發炎反應,而非直接影響纖維化或血管生成。Cyr61是一個關鍵性的因子,聯繫了上皮細胞的傷害、發炎反應、微循環稀薄現象、以及腎臟纖維化。這些研究結果擴展了吾人對進行性腎臟纖維化與急性腎損傷轉換為慢性腎臟病之病理機轉的了解,符合臨床上觀察到的現象。未來還需要繼續探究Cyr61在不同疾病期程中與微環境的交互作用,對不同腎臟細胞造成的不同作用,以及對巨噬細胞極化方向的影響,以期能夠針對Cyr61的功能與訊息傳遞途徑,找出治療與預防慢性腎臟病的目標。 | zh_TW |
| dc.description.abstract | End-stage renal disease is still increasingly prevalent. One of the reasons for this phenomenon is the imperfect renoprotective therapy for chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. Furthermore, emerging data have suggested that acute kidney injury (AKI) is often incompletely repaired and can lead to CKD. Understandings the exact cellular mechanisms of tubulointerstitial fibrosis and AKI-to-CKD transition, and identifying potential modifiable factors warrant further studies.
Cysteine-rich protein 61 (Cyr61) is a secreted matrix-associated protein that participates in cell cycle control, cell matrix remodeling, angiogenesis, and inflammation. Animal and human studies have demonstrated Cyr61 expression in normal and diseased kidneys. However, the role of Cyr61 in renal disease remains largely unknown. We hypothesized that Cyr61 contributes to the pathogenesis of acute and chronic kidney diseases. This study aimed to understand the pathogenetic role of Cyr61 in progressive renal fibrosis and ischemic renal injury. First, we investigated the role of Cyr61 in progressive kidney fibrosis induced by unilateral ureteral obstruction (UUO) surgery in mice. The expression of Cyr61 transcripts and proteins in the obstructed kidneys were increased from day 1 and remained high until day 10 after surgery. Immunohistochemistry indicated that Cyr61 was expressed mainly in renal tubular epithelial cells. The upregulated Cyr61 in UUO kidneys was reduced in mice treated with pan-transforming growth factor-β1 (TGF-β1) antibody. The role of TGF-β1 in tubular Cyr61 upregulation after obstructive kidney injury was further supported by experiments showing that TGF-β1 stimulated Cyr61 expression in cultured tubular epithelial cells. Notably, the upregulation of Cyr61 in UUO kidneys was followed by a marked increase in monocyte chemoattractant protein 1 (MCP-1) transcripts and macrophage infiltration, which were attenuated in mice treated with anti-Cyr61 antibodies. This proinflammatory property of Cyr61 in inducing MCP-1 expression was further confirmed in tubular epithelial cells cultured with recombinant Cyr61 protein. These data provided evidence supporting the TGF-β1 → Cyr61 → MCP-1 axis. The anti-Cyr61 antibody in UUO mice also reduced the levels of collagen type 1-α1 transcripts, collagen fibril accumulation evaluated by picrosirius red staining, and the levels of α-smooth muscle actin (α-SMA) transcripts and proteins on day 4 after surgery; however, the antifibrotic effect was not sustained when the UUO kidneys progressed further. Second, we explored the expression of Cyr61 after unilateral kidney ischemia-reperfusion injury (IRI) in mice. After IRI, increased expression of Cyr61 was detected, predominately in the proximal tubular epithelium. This was confirmed by in vitro experiments, which showed that hypoxia-reoxygenation stimulates Cyr61 expression in cultured proximal tubular epithelial cells. The proinflammatory property of Cyr61 was indicated by its ability to upregulate MCP-1 and interleukin (IL)-6. Notably, treating mice with an anti-Cyr61 antibody attenuated the upregulation of kidney MCP-1, IL-6, IL-1β, macrophage inflammatory protein-2, and reduced the infiltration of F4/80-positive macrophages at day 7 and 14 after IRI. In addition, blocking Cyr61 reduced the mRNA expression of collagen, TGF-β1, and plasminogen activator inhibitor-1, the degree of collagen fibril accumulation, as evaluated by picrosirius red staining, and the levels of α-SMA proteins by day 14. Concurrently in the treated group, peritubular microvascular density was more preserved at day 14. These results suggested that targeting proximal proinflammatory signaling events, such as Cyr61, potentially ameliorates pathological processes that lead to tubulointerstitial fibrosis. Additionally, we found elevated urinary Cyr61 excretion in patients with AKI. Whether Cyr61 is a practical biomarker for AKI, and whether its level in urine reflects progressive kidney injury deserve further large-scale clinical studies. In conclusion, we showed that, through TGF-β1 stimulation, there was an early and continuous upregulation of Cyr61 in renal tubular epithelial cells during the course of kidney fibrosis after UUO. We also demonstrated Cyr61 upregulation after severe kidney IRI in vivo, supported by in vitro experiments, and further validated by examining clinical urine samples from patients with AKI. The major role Cyr61 plays in acute ischemic kidney injury and chronic progressive kidney fibrosis is pro-inflammation, rather than direct fibrogenesis or angiogenesis. Cyr61 is one of the crucial regulators that connect tubular epithelium injury, inflammation, capillary rarefaction, and progressive kidney fibrosis after IRI. These studies expand the knowledge of the mechanisms of progressive kidney fibrosis and AKI-to-CKD transition, and suggest that Cyr61 is a potential therapeutic target. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:49:38Z (GMT). No. of bitstreams: 1 ntu-104-D95421011-1.pdf: 15415966 bytes, checksum: 89fa0f76bd9b67f55f6b1cc9f40c97c5 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………….…... i
致謝與感言…………………………………………………………….…… ii 中文摘要………………………………………………………..……..…… iii 英文摘要………………………………………………………………….... vi 第一章 緒論……………………...…………………………………….…. 1 第一節 慢性腎臟病在我國的重要性………………………..………… 1 第二節 腎臟實質纖維化是慢性腎臟病程的共同途徑..……………… 1 第三節 慢性腎臟病的治療現況……………...…………...……...…… 3 第四節 急性腎損傷成為重要的臨床議題……..……………………… 4 第五節 急性腎損傷會造成長期併發症………………………..……… 5 第六節 急性腎損傷導致慢性腎臟病的機轉………………………….. 9 第七節 CCN蛋白質家族的結構與功能...…………..……….………… 12 第八節 Cyr61的功能………………………………………....………… 14 第九節 Cyr61在腎臟的表現………..………………………..………… 16 第十節 Cyr61在腎臟疾病可能的角色………..…………….….……… 17 第十一節 研究的假說與目的…………..……………..………….……… 18 第二章 研究方法與材料………………………………………...….…….. 20 第一節 細胞培養………………………………..……………...….…… 20 第二節 研究Cyr61作用機轉的細胞實驗……..……....………...…… 20 第三節 模擬缺氧環境的細胞實驗…………...…………...…………… 20 第四節 Anti-Cyr61抗體的製作與驗證……..………………...……… 21 第五節 單側輸尿管阻塞動物模式的建立與實驗設計………...……… 22 第六節 單側腎臟缺血再灌流損傷動物模式的建立與實驗設計……... 23 第七節 RNA萃取與即時定量PCR ………………..…………...……… 24 第八節 蛋白質萃取與西方墨點法…………………..…………….…… 25 第九節 腎臟組織TGF-β1表現量的ELISA分析…………..……...…… 26 第十節 腎臟組織picrosirius red染色…………………….……..…… 26 第十一節 腎臟組織病理檢查……………………………..……….……… 27 第十二節 腎臟Cyr61免疫組織染色……………………..………..……… 27 第十三節 腎臟免疫螢光染色與分析…………………………..….……… 27 第十四節 研究病患的收錄與尿液檢體之收集……………..….………… 29 第十五節 尿液中KIM-1與Cyr61的ELISA分析……………...………… 29 第十六節 統計分析……………………………………………..…….…… 30 第三章 結果……………………………………………………….……….. 31 第一部分 Cyr61在慢性腎臟纖維化的角色 第一節 Cyr61在單側輸尿管阻塞後腎臟表現增加……………....…… 31 第二節 Cyr61表現於腎小管上皮細胞……..…….........…….…….… 31 第三節 單側輸尿管阻塞腎臟中TGF-β1誘導Cyr61的表現…..…..… 32 第四節 腎小管上皮細胞實驗…………………..…………………….… 33 第五節 驗證anti-Cyr61抗體效果……………………….……...……… 33 第六節 阻斷Cyr61降低單側輸尿管阻塞腎臟之發炎反應……...…… 34 第七節 阻斷Cyr61減輕單側輸尿管阻塞腎臟於疾病早期的纖維化... 35 第八節 單側輸尿管阻塞疾病後期腎臟纖維化仍持續………………... 35 第二部分 Cyr61在急性腎臟損傷後病理變化的角色 第九節 Cyr61在單側腎臟缺血再灌流損傷後表現增加………...….… 36 第十節 缺氧環境刺激腎小管上皮細胞表現Cyr61………………....… 37 第十一節 急性腎損傷病患尿中Cyr61增加…………………..……..…… 38 第十二節 阻斷Cyr61降低腎臟缺血再灌流損傷後的發炎反應……....… 39 第十三節 阻斷Cyr61減輕腎臟缺血再灌流損傷後的纖維化程度.…...… 40 第十四節 阻斷Cyr61減緩腎臟缺血再灌流損傷後的腎小管周圍微血管循 環稀薄現象………………………………………………….…........ 41 第四章 討論………………………………………………..………….…….. 43 第一部分 Cyr61在慢性腎臟纖維化的角色 第一節 Cyr61可做為TGF-β1下游訊息的治療標的…………...….… 43 第二節 Cyr61在阻塞性腎臟中具有促發炎功能………………...….… 45 第三節 阻斷Cyr61有助於減緩阻塞性腎臟早期的纖維化……...….… 47 第四節 阻斷Cyr61的抗纖維化效果無法持續到疾病後期…...…….… 47 第五節 Cyr61可能與巨噬細胞的極化有關……………………...….… 48 第六節 Cyr61具有抑制纖維母細胞的功能……………………...….… 49 第二部分 Cyr61在急性腎臟損傷後病理變化的角色 第七節 Cyr61可做為急性腎損傷的生物標誌…………………....…… 50 第八節 Cyr61是損傷後腎小管上皮細胞分泌的調節訊息………....… 51 第九節 Cyr61透過誘發發炎反應而促進腎臟纖維化……………....… 52 第十節 阻斷Cyr61在不同動物實驗模式結果的差異……………....… 55 第十一節 阻斷Cyr61對微血管循環保護的效果……………………....… 57 第五章 展望……………………………………………………...….…….. 60 第一節 本研究擴展了對急慢性腎臟病機轉的了解………………...… 60 第二節 Cyr61在本研究的腎臟疾病中主要功能為促發炎...…………. 61 第三節 阻斷Cyr61可能具有臨床應用價值……………………...……. 61 第四節 測量Cyr61可能具有臨床價值…………………………...……. 64 第五節 腎臟Cyr61仍尚待釐清的問題…………………………...….… 66 第六節 急性腎損傷轉換為慢性腎臟病……...…………………...……. 67 第七節 總結…………………………………………………...…...……. 68 第六章 論文英文簡述(Summary) ………...………………………….. 70 參考文獻 ………...………………………………………………..……… 83 表一 即時定量PCR使用之引子序列…………………………………….. 101 表二 收案病患的臨床特徵……………………….…………………..….. 103 圖一 單側輸尿管阻塞後腎臟的Cyr61表現增加………..…………….... 104 圖二 腎臟Cyr61免疫組織染色…………………………..…………….... 105 圖三 單側輸尿管阻塞後腎臟TGF-β1的活性和Cyr61的表現相關….... 107 圖四 Cyr61在腎小管上皮細胞的表現………………………………..…. 108 圖五 驗證anti-Cyr61抗體的結構專一性與拮抗功能………….…...…. 109 圖六 Anti-Cyr61抗體具有拮抗Cyr61的功能……………………….…. 110 圖七 阻斷Cyr61對單側輸尿管阻塞後腎臟發炎反應的影響………..…. 111 圖八 阻斷Cyr61對單側輸尿管阻塞後腎臟纖維化的影響…………..…. 113 圖九 Cyr61對腎臟纖維母細胞的影響…………………………………... 115 圖十 單側腎臟缺血再灌流損傷後Cyr61的表現增加…………..…….... 116 圖十一 腎小管上皮細胞在缺氧狀況下Cyr61的表現增加………….……. 118 圖十二 急性腎損傷病患尿中的Cyr61增加…………..………………..…. 119 圖十三 阻斷Cyr61減輕腎臟缺血再灌流損傷後的發炎反應……..……... 120 圖十四 阻斷Cyr61減少腎臟缺血再灌流損傷後的巨噬細胞浸潤、膠原纖維累積、與微血管循環稀薄………………………………………………………….…....….. 122 圖十五 阻斷Cyr61減少腎臟缺血再灌流損傷後的纖維化……..……..….. 124 圖十六 Cyr61刺激小鼠巨噬細胞表現TNF-α…………………………..…. 125 圖十七 延遲阻斷Cyr61無法降低腎臟缺血再灌流損傷後α-SMA生成...... 126 圖十八 圖示Cyr61在腎臟缺血再灌流損傷後的作用………………..….…. 127 附錄:相關論文清冊 | |
| dc.language.iso | zh-TW | |
| dc.subject | 慢性腎臟病 | zh_TW |
| dc.subject | 富含半胱氨酸61蛋白(Cyr61) | zh_TW |
| dc.subject | 纖維化 | zh_TW |
| dc.subject | 發炎反應 | zh_TW |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | MCP-1 | zh_TW |
| dc.subject | 急性腎損傷 | zh_TW |
| dc.subject | cysteine-rich protein 61 | en |
| dc.subject | monocyte chemoattractant protein-1 | en |
| dc.subject | macrophage | en |
| dc.subject | inflammation | en |
| dc.subject | chronic kidney disease | en |
| dc.subject | acute kidney injury | en |
| dc.subject | fibrosis | en |
| dc.title | 富含半胱氨酸61蛋白在急性與慢性腎臟病角色的探討 | zh_TW |
| dc.title | The Role of Cysteine-rich Protein 61 in Acute and Chronic Kidney Disease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊偉勛(Wei-Shiung Yang),唐德成(Der-Cherng Tarng),林水龍(Shuei-Liong Lin),陳永昌(Yung-Chang Chen) | |
| dc.subject.keyword | 急性腎損傷,慢性腎臟病,富含半胱氨酸61蛋白(Cyr61),纖維化,發炎反應,巨噬細胞,MCP-1, | zh_TW |
| dc.subject.keyword | acute kidney injury,chronic kidney disease,cysteine-rich protein 61,fibrosis,inflammation,macrophage,monocyte chemoattractant protein-1, | en |
| dc.relation.page | 129 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-23 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 15.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
