請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55162完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建仁(Chien-Jen Chen) | |
| dc.contributor.author | Yao-Jen Li | en |
| dc.contributor.author | 李曜任 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:49:31Z | - |
| dc.date.available | 2018-03-12 | |
| dc.date.copyright | 2015-03-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-26 | |
| dc.identifier.citation | 1. Parkin DM PP, Ferly J. Estimate of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer 1993;54:594-606.
2. Shephard R. Aging, Physical Activity, and Health 1997. 3. Taiwan Cancer Registry 2005:52-3. 4. Lam KY, Fu KH, Wong MP, Wang EP. Significant changes in the distribution of histologic types of lung cancer in Hong Kong. Pathology 1993;25:103-5. 5. Janssen-Heijnen ML CJ. Trends in incidence and prognosis of the histological subtypes of lung cancer in North America, Australia, New Zealand and Europe. Lung Cancer 2001;31:123-37. 6. Watanabe S, Tsugane S, Arimoto H, et al. Trend of lung cancers in the National Cancer Center of Japan and comparison with that of Japanese pathological autopsy records. Jpn J Cancer Res 1987;78:460-6. 7. Ko YC, Lee CH, Chen MJ, et al. Risk factors for primary lung cancer among non-smoking women in Taiwan. Int J Epidemiol 1997;26:24-31. 8. Yang SP, Luh KT, Kuo SH, Lin CC. Chronological observation of epidemiological characteristics of lung cancer in Taiwan with etiological consideration--a 30-year consecutive study. Jpn J Clin Oncol 1984;14:7-19. 9. Risch HA, Howe GR, Jain M, Burch JD, Holowaty EJ, Miller AB. Are female smokers at higher risk for lung cancer than male smokers? A case-control analysis by histologic type. Am J Epidemiol 1993;138:281-93. 10. Brownson RC, Alavanja MC, Hock ET, Loy TS. Passive smoking and lung cancer in nonsmoking women. Am J Public Health 1992;82:1525-30. 11. Zang EA, Wynder EL. Differences in lung cancer risk between men and women: examination of the evidence. J Natl Cancer Inst 1996;88:183-92. 12. Lubin JH, Blot WJ. Assessment of lung cancer risk factors by histologic category. J Natl Cancer Inst 1984;73:383-9. 13. Kabat GC, Wynder EL. Lung cancer in nonsmokers. Cancer 1984;53:1214-21. 14. Greiser CM, Greiser EM, Doren M. Menopausal hormone therapy and risk of lung cancer-Systematic review and meta-analysis. Maturitas;65:198-204. 15. Seow A, Poh WT, Teh M, et al. Diet, reproductive factors and lung cancer risk among Chinese women in Singapore: evidence for a protective effect of soy in nonsmokers. Int J Cancer 2002;97:365-71. 16. Kreuzer M, Gerken M, Heinrich J, Kreienbrock L, Wichmann HE. Hormonal factors and risk of lung cancer among women? Int J Epidemiol 2003;32:263-71. 17. Brenner AV, Wang Z, Kleinerman RA, et al. Menstrual and reproductive factors and risk of lung cancer among Chinese women, Eastern Gansu Province, 1994-1998. J Epidemiol 2003;13:22-8. 18. Taioli E, Wynder EL. Re: Endocrine factors and adenocarcinoma of the lung in women. J Natl Cancer Inst 1994;86:869-70. 19. Stabile LP, Davis AL, Gubish CT, et al. Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological responses to estrogen. Cancer Res 2002;62:2141-50. 20. Kawai H, Ishii A, Washiya K, et al. Estrogen receptor alpha and beta are prognostic factors in non-small cell lung cancer. Clin Cancer Res 2005;11:5084-9. 21. Wu CT, Chang YL, Shih JY, Lee YC. The significance of estrogen receptor beta in 301 surgically treated non-small cell lung cancers. J Thorac Cardiovasc Surg 2005;130:979-86. 22. Schwartz AG, Prysak GM, Murphy V, et al. Nuclear estrogen receptor beta in lung cancer: expression and survival differences by sex. Clin Cancer Res 2005;11:7280-7. 23. Raso MG, Behrens C, Herynk MH, et al. Immunohistochemical expression of estrogen and progesterone receptors identifies a subset of NSCLCs and correlates with EGFR mutation. Clin Cancer Res 2009;15:5359-68. 24. Huang Z, Hankinson SE, Colditz GA, et al. Dual effects of weight and weight gain on breast cancer risk. JAMA 1997;278:1407-11. 25. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 1997;350:1047-59. 26. Ishibashi H, Suzuki T, Suzuki S, et al. Progesterone receptor in non-small cell lung cancer--a potent prognostic factor and possible target for endocrine therapy. Cancer Res 2005;65:6450-8. 27. Chen KY, Hsiao CF, Chang GC, et al. Hormone replacement therapy and lung cancer risk in Chinese. Cancer 2007;110:1768-75. 28. Kabat GC, Miller AB, Rohan TE. Reproductive and hormonal factors and risk of lung cancer in women: a prospective cohort study. Int J Cancer 2007;120:2214-20. 29. Blackman JA, Coogan PF, Rosenberg L, et al. Estrogen replacement therapy and risk of lung cancer. Pharmacoepidemiol Drug Saf 2002;11:561-7. 30. Liu Y, Inoue M, Sobue T, Tsugane S. Reproductive factors, hormone use and the risk of lung cancer among middle-aged never-smoking Japanese women: a large-scale population-based cohort study. Int J Cancer 2005;117:662-6. 31. Raftogianis R, Creveling C, Weinshilboum R, Weisz J. Estrogen metabolism by conjugation. Journal of the National Cancer Institute Monographs 2000:113-24. 32. Jefcoate CR, Liehr JG, Santen RJ, et al. Tissue-specific synthesis and oxidative metabolism of estrogens. Journal of the National Cancer Institute Monographs 2000:95-112. 33. Niikawa H, Suzuki T, Miki Y, et al. Intratumoral estrogens and estrogen receptors in human non-small cell lung carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 2008;14:4417-26. 34. Hershberger PA, Stabile LP, Kanterewicz B, et al. Estrogen receptor beta (ERbeta) subtype-specific ligands increase transcription, p44/p42 mitogen activated protein kinase (MAPK) activation and growth in human non-small cell lung cancer cells. The Journal of steroid biochemistry and molecular biology 2009;116:102-9. 35. Marquez-Garban DC, Chen HW, Fishbein MC, Goodglick L, Pietras RJ. Estrogen receptor signaling pathways in human non-small cell lung cancer. Steroids 2007;72:135-43. 36. Stabile LP, Dacic S, Land SR, et al. Combined analysis of estrogen receptor beta-1 and progesterone receptor expression identifies lung cancer patients with poor outcome. Clinical cancer research : an official journal of the American Association for Cancer Research 2011;17:154-64. 37. Skov BG, Fischer BM, Pappot H. Oestrogen receptor beta over expression in males with non-small cell lung cancer is associated with better survival. Lung Cancer 2008;59:88-94. 38. Abe K, Miki Y, Ono K, et al. Highly concordant coexpression of aromatase and estrogen receptor beta in non-small cell lung cancer. Human pathology 2010;41:190-8. 39. Pike CJ. Estrogen modulates neuronal Bcl-xL expression and beta-amyloid-induced apoptosis: relevance to Alzheimer's disease. Journal of neurochemistry 1999;72:1552-63. 40. Brzozowski AM, Pike AC, Dauter Z, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997;389:753-8. 41. Cutolo M, Brizzolara R, Atzeni F, Capellino S, Straub RH, Puttini PC. The immunomodulatory effects of estrogens: clinical relevance in immune-mediated rheumatic diseases. Annals of the New York Academy of Sciences 2010;1193:36-42. 42. Stabile LP, Lyker JS, Gubish CT, Zhang W, Grandis JR, Siegfried JM. Combined targeting of the estrogen receptor and the epidermal growth factor receptor in non-small cell lung cancer shows enhanced antiproliferative effects. Cancer Res 2005;65:1459-70. 43. Yang SY, Yang TY, Chen KC, et al. EGFR L858R mutation and polymorphisms of genes related to estrogen biosynthesis and metabolism in never-smoking female lung adenocarcinoma patients. Clin Cancer Res 2011;17:2149-58. 44. Chen KY, Hsiao CF, Chang GC, et al. EGFR polymorphisms, hormone replacement therapy and lung adenocarcinoma risk: analysis from a genome-wide association study in never-smoking women. Carcinogenesis 2013;34:612-9. 45. Patrone C, Cassel TN, Pettersson K, et al. Regulation of postnatal lung development and homeostasis by estrogen receptor beta. Molecular and cellular biology 2003;23:8542-52. 46. Check JH, Sansoucie L, Chern J, Dix E. Mifepristone treatment improves length and quality of survival of mice with spontaneous lung cancer. Anticancer Res 2010;30:119-22. 47. Pesatori AC, Carugno M, Consonni D, et al. Hormone use and risk for lung cancer: a pooled analysis from the International Lung Cancer Consortium (ILCCO). Br J Cancer 2013;109:1954-64. 48. Lashansky G, Saenger P, Fishman K, et al. Normative data for adrenal steroidogenesis in a healthy pediatric population: age- and sex-related changes after adrenocorticotropin stimulation. The Journal of clinical endocrinology and metabolism 1991;73:674-86. 49. Melvin WS, Boros LG, Muscarella P, et al. Dehydroepiandrosterone-sulfate inhibits pancreatic carcinoma cell proliferation in vitro and in vivo. Surgery 1997;121:392-7. 50. Muscarella P, Boros LG, Fisher WE, Rink C, Melvin WS. Oral dehydroepiandrosterone inhibits the growth of human pancreatic cancer in nude mice. The Journal of surgical research 1998;79:154-7. 51. Baulieu EE. Dehydroepiandrosterone (DHEA): a fountain of youth? The Journal of clinical endocrinology and metabolism 1996;81:3147-51. 52. Bruder JM, Sobek L, Oettel M. Dehydroepiandrosterone stimulates the estrogen response element. The Journal of steroid biochemistry and molecular biology 1997;62:461-6. 53. Schmitt M, Klinga K, Schnarr B, Morfin R, Mayer D. Dehydroepiandrosterone stimulates proliferation and gene expression in MCF-7 cells after conversion to estradiol. Molecular and cellular endocrinology 2001;173:1-13. 54. Brinton LA, Gierach GL, Andaya A, et al. Reproductive and hormonal factors and lung cancer risk in the NIH-AARP Diet and Health Study cohort. Cancer Epidemiol Biomarkers Prev 2011;20:900-11. 55. Weiss JM, Lacey JV, Jr., Shu XO, et al. Menstrual and reproductive factors in association with lung cancer in female lifetime nonsmokers. Am J Epidemiol 2008;168:1319-25. 56. Baik CS, Strauss GM, Speizer FE, Feskanich D. Reproductive factors, hormone use, and risk for lung cancer in postmenopausal women, the Nurses' Health Study. Cancer Epidemiol Biomarkers Prev 2010;19:2525-33. 57. Yu H, Shu XO, Shi R, et al. Plasma sex steroid hormones and breast cancer risk in Chinese women. Int J Cancer 2003;105:92-7. 58. Ho CC, Rohaizak M, Zulkifli SZ, Siti-Aishah MA, Nor-Aini U, Sharifah-Noor-Akmal SH. Serum sex hormone levels in pre- and postmenopausal breast cancer patients. Singapore medical journal 2009;50:513-8. 59. Hankinson SE, Manson JE, Spiegelman D, Willett WC, Longcope C, Speizer FE. Reproducibility of plasma hormone levels in postmenopausal women over a 2-3-year period. Cancer Epidemiol Biomarkers Prev 1995;4:649-54. 60. Feigelson HS, Shames LS, Pike MC, Coetzee GA, Stanczyk FZ, Henderson BE. Cytochrome P450c17alpha gene (CYP17) polymorphism is associated with serum estrogen and progesterone concentrations. Cancer Res 1998;58:585-7. 61. Haiman CA, Hankinson SE, Spiegelman D, et al. The relationship between a polymorphism in CYP17 with plasma hormone levels and breast cancer. Cancer Res 1999;59:1015-20. 62. Zhao Y, Mendelson CR, Simpson ER. Characterization of the sequences of the human CYP19 (aromatase) gene that mediate regulation by glucocorticoids in adipose stromal cells and fetal hepatocytes. Molecular endocrinology 1995;9:340-9. 63. Tao MH, Cai Q, Zhang ZF, et al. Polymorphisms in the CYP19A1 (aromatase) gene and endometrial cancer risk in Chinese women. Cancer Epidemiol Biomarkers Prev 2007;16:943-9. 64. Ma CX, Adjei AA, Salavaggione OE, et al. Human aromatase: gene resequencing and functional genomics. Cancer Res 2005;65:11071-82. 65. Watanabe J, Harada N, Suemasu K, Higashi Y, Gotoh O, Kawajiri K. Arginine-cysteine polymorphism at codon 264 of the human CYP19 gene does not affect aromatase activity. Pharmacogenetics 1997;7:419-24. 66. Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 1998;19:1-27. 67. Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol 1996;36:203-32. 68. Lavigne JA, Helzlsouer KJ, Huang HY, et al. An association between the allele coding for a low activity variant of catechol-O-methyltransferase and the risk for breast cancer. Cancer Res 1997;57:5493-7. 69. Thompson PA, Shields PG, Freudenheim JL, et al. Genetic polymorphisms in catechol-O-methyltransferase, menopausal status, and breast cancer risk. Cancer Res 1998;58:2107-10. 70. Huang CS, Chern HD, Chang KJ, Cheng CW, Hsu SM, Shen CY. Breast cancer risk associated with genotype polymorphism of the estrogen-metabolizing genes CYP17, CYP1A1, and COMT: a multigenic study on cancer susceptibility. Cancer Res 1999;59:4870-5. 71. Omiecinski CJ, Redlich CA, Costa P. Induction and developmental expression of cytochrome P450IA1 messenger RNA in rat and human tissues: detection by the polymerase chain reaction. Cancer Res 1990;50:4315-21. 72. Zhang ZY, Fasco MJ, Huang L, Guengerich FP, Kaminsky LS. Characterization of purified human recombinant cytochrome P4501A1-Ile462 and -Val462: assessment of a role for the rare allele in carcinogenesis. Cancer Res 1996;56:3926-33. 73. Kiyohara C, Hirohata T, Inutsuka S. The relationship between aryl hydrocarbon hydroxylase and polymorphisms of the CYP1A1 gene. Jpn J Cancer Res 1996;87:18-24. 74. Petersen DD, McKinney CE, Ikeya K, et al. Human CYP1A1 gene: cosegregation of the enzyme inducibility phenotype and an RFLP. Am J Hum Genet 1991;48:720-5. 75. Fuqua SA, Chamness GC, McGuire WL. Estrogen receptor mutations in breast cancer. J Cell Biochem 1993;51:135-9. 76. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996;93:5925-30. 77. Lau KM, LaSpina M, Long J, Ho SM. Expression of estrogen receptor (ER)-alpha and ER-beta in normal and malignant prostatic epithelial cells: regulation by methylation and involvement in growth regulation. Cancer Res 2000;60:3175-82. 78. Umayahara Y, Kawamori R, Watada H, et al. Estrogen regulation of the insulin-like growth factor I gene transcription involves an AP-1 enhancer. J Biol Chem 1994;269:16433-42. 79. Boyapati SM, Shu XO, Ruan ZX, et al. Polymorphisms in ER-alpha gene interact with estrogen receptor status in breast cancer survival. Clin Cancer Res 2005;11:1093-8. 80. Onland-Moret NC, van Gils CH, Roest M, Grobbee DE, Peeters PH. The estrogen receptor alpha gene and breast cancer risk (The Netherlands). Cancer Causes Control 2005;16:1195-202. 81. Giovannini M, Belli C, Villa E, Gregorc V. Estrogen receptor (ER) and epidermal growth factor receptor (EGFR) as targets for dual lung cancer therapy: not just a case? Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 2008;3:684-5. 82. Schwartz AG, Wenzlaff AS, Prysak GM, et al. Reproductive factors, hormone use, estrogen receptor expression and risk of non small-cell lung cancer in women. J Clin Oncol 2007;25:5785-92. 83. Chang HL, Cheng YJ, Su CK, et al. Association of estrogen receptor alpha gene PvuII and XbaI polymorphisms with non-small cell lung cancer. Oncology letters 2012;3:462-8. 84. Kaiser U, Hofmann J, Schilli M, et al. Steroid-hormone receptors in cell lines and tumor biopsies of human lung cancer. Int J Cancer 1996;67:357-64. 85. Maasberg M, Rotsch M, Jaques G, Enderle-Schmidt U, Weehle R, Havemann K. Androgen receptors, androgen-dependent proliferation, and 5 alpha-reductase activity of small-cell lung cancer cell lines. Int J Cancer 1989;43:685-91. 86. Beattie CW, Hansen NW, Thomas PA. Steroid receptors in human lung cancer. Cancer Res 1985;45:4206-14. 87. Kobayashi S, Mizuno T, Tobioka N, et al. Sex steroid receptors in diverse human tumors. Gann 1982;73:439-45. 88. Wilson CM, McPhaul MJ. A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol Cell Endocrinol 1996;120:51-7. 89. Hoque A, Albanes D, Lippman SM, et al. Molecular epidemiologic studies within the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Cancer Causes Control 2001;12:627-33. 90. Giovannucci E, Stampfer MJ, Krithivas K, et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci U S A 1997;94:3320-3. 91. Yu MW, Cheng SW, Lin MW, et al. Androgen-receptor gene CAG repeats, plasma testosterone levels, and risk of hepatitis B-related hepatocellular carcinoma. J Natl Cancer Inst 2000;92:2023-8. 92. Mikkonen L, Pihlajamaa P, Sahu B, Zhang FP, Janne OA. Androgen receptor and androgen-dependent gene expression in lung. Molecular and cellular endocrinology 2010;317:14-24. 93. Teng XY, Liu GQ, Diao XL, et al. CAG repeats in the androgen receptor gene are shorter in patients with pulmonary, esophageal or bladder carcinoma and longer in women with uterine leiomyoma. Oncology reports 2010;23:811-8. 94. Beilin J, Harewood L, Frydenberg M, et al. A case-control study of the androgen receptor gene CAG repeat polymorphism in Australian prostate carcinoma subjects. Cancer 2001;92:941-9. 95. Dunning AM, Dowsett M, Healey CS, et al. Polymorphisms associated with circulating sex hormone levels in postmenopausal women. Journal of the National Cancer Institute 2004;96:936-45. 96. Kidokoro K, Ino K, Hirose K, et al. Association between CYP19A1 polymorphisms and sex hormones in postmenopausal Japanese women. Journal of human genetics 2009;54:78-85. 97. Setiawan VW, Schumacher FR, Haiman CA, et al. CYP17 genetic variation and risk of breast and prostate cancer from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol Biomarkers Prev 2007;16:2237-46. 98. Zheng SL, Zheng W, Chang BL, et al. Joint effect of estrogen receptor beta sequence variants and endogenous estrogen exposure on breast cancer risk in Chinese women. Cancer Res 2003;63:7624-9. 99. Weinberg OK, Marquez-Garban DC, Fishbein MC, et al. Aromatase inhibitors in human lung cancer therapy. Cancer Res 2005;65:11287-91. 100. Marquez-Garban DC, Chen HW, Goodglick L, Fishbein MC, Pietras RJ. Targeting aromatase and estrogen signaling in human non-small cell lung cancer. Annals of the New York Academy of Sciences 2009;1155:194-205. 101. Mah V, Seligson DB, Li A, et al. Aromatase expression predicts survival in women with early-stage non small cell lung cancer. Cancer Res 2007;67:10484-90. 102. Irvine RA, Ma H, Yu MC, Ross RK, Stallcup MR, Coetzee GA. Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Human molecular genetics 2000;9:267-74. 103. Herrington DM, Howard TD, Hawkins GA, et al. Estrogen-receptor polymorphisms and effects of estrogen replacement on high-density lipoprotein cholesterol in women with coronary disease. The New England journal of medicine 2002;346:967-74. 104. Kobayashi N, Fujino T, Shirogane T, et al. Estrogen receptor alpha polymorphism as a genetic marker for bone loss, vertebral fractures and susceptibility to estrogen. Maturitas 2002;41:193-201. 105. Horton R, Tait JF. Androstenedione production and interconversion rates measured in peripheral blood and studies on the possible site of its conversion to testosterone. The Journal of clinical investigation 1966;45:301-13. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55162 | - |
| dc.description.abstract | 研究背景與目的
肺癌是目前世界上死亡率最高的癌症,而腺癌為女性最好發的組織學形態。絕大部分台灣的女性肺腺癌病患是非吸菸者,顯示可能有吸菸之外的危險因子導致女性肺腺癌的發生。除此之外,吸菸對於女性肺癌的可歸因性更低於男性。因此,比起男性,女性可能對於肺腺癌有較高的易感受性,且荷爾蒙因子應該在肺癌的進程中會扮演一定的角色。過去的研究也指出,在肺腺癌的組織內發現有女性荷爾蒙接受器的表現,所以更進一步顯示內生性的荷爾蒙很可能會參與在肺腺癌的形成過程中。過去研究曾經探索外源性與內生性荷爾蒙和肺癌發生的相關,但研究結論並不一致。這些不一致的結論,可能是因為研究樣本數的大小、肺癌組織學形態的異質性、吸菸情況或不同的荷爾蒙來源而造成。所以,本研究將探討內生性荷爾蒙與其有關的基因,在女性肺腺癌的所扮演的角色。我們收集停經後的女性,並利用病例對照研究方法,試圖了解血液中的荷爾蒙和女性肺腺癌發生的相關,並且評估血液中荷爾蒙是否會與荷爾蒙相關的基因有交互作用。 材料與方法 本研究採用病例對照研究法,並收集187位停經後的女性肺腺癌病患,與248位經年齡配對的健康對照。曾經有吸菸史、荷爾蒙補充療法使用或口服避孕藥使用的個案都被排除在本研究之外。我們測量了血漿中在荷爾蒙生成代謝路徑中的八個性荷爾蒙,包括了estradiol、estrone、progesterone、DHEA、DHEA-S、androstenedione、testosterone與free-testosterone,並分析他們與女性肺腺癌的相關。荷爾蒙生成代謝路徑上的基因多形性包括CYP17 -34 T->C, CYP19 Arg264Cys, CYP1A1 MspI, CYP1A1 Ile462Val, COMT Val158Met, AR-CAG repeat, ERα PvuII與 SRD5A2 Val89Leu,與女性肺腺癌相關的分析也納入在本研究中。我們也更進一步的分析荷爾蒙相關的基因多形性與血漿中荷爾蒙量,對於女性肺腺癌發生可能的修飾作用。本研究利用條件式邏輯斯迴歸分析相關的勝算比與其95%信賴區間。並且,年齡、教育程度、二手菸與身體質量指數(BMI)會納入在迴歸模式內以調整潛在的干擾作用。 研究結果 當血漿estradiol量在中分位(OR, 0.35; 95% CI, 0.2-0.6)或高分位(OR, 0.29; 95% CI, 0.2-0.5)時,相較於低分位,有顯著降低的女性肺腺癌風險。同樣的保護作用也可見於中分位的血漿androstenedione量(和低分位比較之OR, 0.53; 95% CI, 0.3-1.0),但此作用並不見於高分位的血漿androstenedione量。相較於低分位的血漿DHEA-S量,中分位 (OR, 0.44; 95% CI, 0.3-0.8)及高分位 (OR, 0.57; 95% CI, 0.3-1.0) DHEA-S血漿量,皆有顯著偏低的女性肺腺癌風險。當CYP19 Arg264Cys為A/A基因型時,相較於A/G+G/G基因型,有顯著較低的對於女性肺腺癌風險 (OR, 0.58; 95% CI, 0.34-0.97)。相較於帶有AR(CAG)n的L/S+L/L基因型, S/S基因型有顯著升高的女性肺腺癌風險 (OR, 1.65; 95% CI, 1.06-2.57)。在低estradiol血漿量之女性,帶有ERα PvuII T/T基因型者,相較於帶T/C+C/C基因型者,有較低的女性肺腺癌風險 (OR, 0.52; 95% CI, 0.23-1.16);但是ERα PvuII T/T基因型的作用,不存在於高estradiol血清量的女性。當androstenedione血漿量偏高時,CYP17 T/C+C/C基因型相較於T/T基因型,有顯著較低的女性肺腺癌風險 (OR, 0.37; 95% CI, 0.19-0.73);但在androstenedione血漿量偏低時,CYP17 T/C+C/C基因型的作用則不顯著。在體內androstenedione (OR, 1.98; 95% CI, 1.15-3.43)或testosterone (OR, 1.98; 95% CI, 1.15-3.43)血漿量偏高時,AR(CAG)n S/S基因型相較於L/S+L/L基因型,有顯著較高的女性肺腺癌風險;但在androstenedione或testosterone血漿量偏低時,AR(CAG)n 基因型的作用則不顯著。 結論 本研究指出血漿荷爾蒙濃度會影響女性肺腺癌的發生,而且荷爾蒙的合成代謝酵素與其接受器的基因型,則會修飾血漿荷爾蒙濃度的作用。 | zh_TW |
| dc.description.abstract | Background and Specific Aims
Lung cancer is the leading cause of cancer death worldwide, and the adenocarcinoma constitutes the predominant histological type among women. Patients with female lung adenocarcinoma (FLAD) are mostly never smokers, which indicate that risk factors other than cigarette smoking may be involved. In light of the attributable fraction of cigarette smoking to lung cancer is considerably lower for lung cancer in females than it is in males. Therefore, women may be more susceptible to lung adenocarcinoma than men are, and hormonal factors may play a role in the development of lung cancer. Previous studies have shown that endogenous hormones such us the estrogen receptor expressed in lung adenocarcinoma tissue suggest that sex steroid hormones may be involved in the carcinogenesis of lung cancer. Although the associations between endogenous and exogenous hormones and lung cancer have been investigated in several studies, the results remained controversial. The interpretability of these findings is limited because of a small sample size, heterogeneous subtypes of lung cancer, smoking status, and hormone exposures from various sources. The aim of this study was to explore the role of endogenous hormones and hormone related genes in FLAD. A case-control study design was employed among postmenopausal women. Two specific objectives were investigated: a) examining the associations between circulating sex steroid hormones and FLAD; b) evaluating the potential effect modifications of plasma hormone levels and hormone related genes in FLAD. Material and Methods A total of 187 patients with FLAD and 248 age-matched healthy control subjects were included in this study. People who had a history of cigarette smoking, hormone replacement therapy, and oral contraceptive were excluded. Several plasma sex hormones, (i.e. estradiol, estrone, progesterone, DHEA, DHEA-S, androstenedione, testosterone, and free-testosterone in the steroid hormone pathway) were used to estimate the potential associations to FLAD. Polymorphisms of hormone related genes (CYP17 -34 T->C, CYP19 Arg264Cys, CYP1A1 MspI, CYP1A1 Ile462Val, COMT Val158Met, AR-CAG repeat, ERα PvuII, and SRD5A2 Val89Leu) were used to assess the effects on FLAD. We further analyzed potential effect modifications between hormone related genes and circulating hormones. A conditional logistic regression model was used to estimate the odds ratios (ORs) and 95% confidence intervals (95% CIs). Age, education, and BMI were adjusted in the regression models. Results The intermediate (OR, 0.35; 95% CI, 0.2-0.6) and highest (OR, 0.29; 95% CI, 0.2-0.5) groups of estradiol levels exhibited significanty reduced risks of female lung adenocarcinoma compared with the lowest group. A significant reduced risk was identified among women with an intermediate androstenedione level compared with the lowest level group (OR, 0.53; 95% CI, 0.3-1.0); a reduced risk was exhibited in the highest level group but the association was significant. Compared with the risk of subjects of the lowest level of DHEA-S, the risks of subjects with an intermediate (OR, 0.44; 95% CI, 0.3-0.8) and the highest (OR, 0.57; 95% CI, 0.3-1.0) levels declined significantly. Patients with A/A genotype of CYP19 R264C exhibited a lower risk (OR, 0.58; 95% CI, 0.34-0.97) of FLAD than those with the A/G+G/G genotype. Women with the S/S alleles of AR(CAG)n exhibited a higher risk (OR, 1.65; 95% CI, 1.06-2.57) than those with either one or two L allele. Furthermore, the T/T genotype of ERα PvuII exhibited a borderline reduced risk to T/C+C/C genotype among women with a low estradiol level (OR, 0.52; 95% CI, 0.23-1.16), whereas the association did not exist among women with a high estradiol level. The T/C+C/C genotype of CYP17 was associated with FLAD compared with the T/T genotype among women with a high androstenedione level (OR, 0.37; 95% CI, 0.19-0.73); however, the association was not detected in subjects with a low androstenedione level. In addition, the S/S genotype of AR(CAG)n was found to be associated with a higher risk of FLAD among women with a high androstenedione level (OR, 1.98; 95% CI, 1.15-3.43), and among women with a high testosterone level (OR, 1.88; 95% CI, 1.09-3.26), whereas the association of the S/S genotype with FLAD was not exhibited in women with a high level of either androstenedione or testosterone women. Conclusion Our findings indicated that the circulating sex hormones may play a pivotal role in the etiology of lung adenocarcinoma among postmenopausal women. Hormone related genes might interact with sex steroid hormones affecting the risk of FLAD. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:49:31Z (GMT). No. of bitstreams: 1 ntu-104-D95842003-1.pdf: 1596999 bytes, checksum: 531c41c32d997eef5004b173dad56a72 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書 (i)
目錄(Contents) (ii) 誌謝 (v) 中文摘要 (vii) 英文摘要(Abstract) (x) Chapter 1. Brief Review on Hormonal Factors and Female Lung Adenocarcinoma (1) Chapter 2. Endogenous Steroid Hormone Levels in Plasma and Risk of Non-smoking Lung Adenocarcinoma among Postmenopausal Women (5) 2.1 Introduction (6) 2.2 Material and Methods 2.2.1 Study Population (7) 2.2.2 Laboratory Analyses (9) 2.2.3 Statistical Analyses (9) 2.3 Results (10) 2.4 Discussion (13) Chapter 3. Effect Modification of Polymorphisms of Sex Steroid Hormone related Genes and Plasma Hormone Levels to Female Lung Adenocarcinoma among Postmenopausal Women in Taiwan (19) 3.1 Introduction (20) 3.2 Material and Methods 3.2.1 Study Population (23) 3.2.2 Selection of Genetic Polymorphisms (24) 3.2.3 DNA Extraction, Sequencing and Genotype Analysis (25) 3.2.4 Statistical Analyses (26) 3.3 Results (26) 3.4 Discussion (30) Chapter 4. Novel Findings and Future Perspective (34) References (37) Table and Figure Legends Figure 1-1 Flow chart of study of genetic epidemiology on female lung adenocarcinoma among never smokers in Taiwan (49) Figure 2-1. Sex steroid hormone pathway (50) Table 2-1. Demographic characteristics and reproductive factors of study participants (51) Table 2-2. Distributions of sex steroid hormone levels among cases and age-matched control women (53) Table 2-3. Correlations of sex hormone levels among control subjects (54) Table 2-4. Risks of female lung adenocarcinoma by tertile baseline sex steroid hormone levels among postmenopausal women (55) Table 2-5. Risk of female lung adenocarcinoma among postmenopausal women by the number of putative high-level hormones (57) Supplementary Table 2-1. Association of plasma sex hormone levels and clinical stage of female lung adecnocarcinoma among case subjects (58) Supplementary Table 2-2. Association of plasma sex hormone levels and BMI value among control subjects (59) Figure 3-1. Hormone related SNPs on sex steroid hormone pathway (60) Table 3-1. Association between hormonal related SNP and non-smoking lung adenocarcinoma among postmenopausal women (61) Table 3-2. Combinatory effect of hormone levels by high- and low- levels and hormone related SNP to female lung adenocarcinoma (63) Table 3-3. Effect modification between hormone related SNP and hormone level by high- and low-levels to non-smoking lung adecnocarcinoma among postmenopausal women (65) Table 3-4. Association between hormonal related SNP and sex hormone by high- and low-level among healthy controls (66) Table 3-5. Risk of proportion of estradiol (E2%) to non-smoking lung adenocarcinoma among postmenopausal women (67) Appendix Table 1. Associations between hormone related SNPs and lung cancer (68) | |
| dc.language.iso | en | |
| dc.subject | 未吸菸 | zh_TW |
| dc.subject | 肺腺癌 | zh_TW |
| dc.subject | 停經 | zh_TW |
| dc.subject | 性荷爾蒙 | zh_TW |
| dc.subject | 基因多形性 | zh_TW |
| dc.subject | sex steroid hormone | en |
| dc.subject | lung adenocarcinoma | en |
| dc.subject | postmenopausal women | en |
| dc.subject | never-smoking | en |
| dc.subject | polymorphisms | en |
| dc.title | 內生性荷爾蒙與未吸菸台灣女性肺腺癌之分子流行病學研究 | zh_TW |
| dc.title | Molecular Epidemiology Study on Endogenous Hormonal Factors and Never-smoking Female Lung Adenocarcinoma in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蕭朱杏(Chuhsing Kate Hsiao),楊泮池(Pan-Chyr Yang),張基晟(Gee-Chen Chang),李文宗(Wen-Chung Lee),熊昭(Chao A. Hsiung) | |
| dc.subject.keyword | 肺腺癌,停經,性荷爾蒙,基因多形性,未吸菸, | zh_TW |
| dc.subject.keyword | lung adenocarcinoma,postmenopausal women,sex steroid hormone,polymorphisms,never-smoking, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-26 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
