請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55161
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林逸彬(Yi-Pin Lin) | |
dc.contributor.author | Yueh Chang | en |
dc.contributor.author | 張悅 | zh_TW |
dc.date.accessioned | 2021-06-16T03:49:29Z | - |
dc.date.available | 2022-07-01 | |
dc.date.copyright | 2020-08-25 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-31 | |
dc.identifier.citation | American Public Health Association, American Water Works Association and Water Environment Federation. (2017). Standard methods for the examination of water and wastewater (23th ed.), APHA, Washington, D.C., USA. Bader H., Sturzenegger V. and Hoigne J. (1988). Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-p-phenylenediamine (DPD). Water Res., 22(9), 1109-1115. Barbarossa A., Masetti R., Gazzotti T., Zama D., Astolfi A., Veyrand B., Pession A. and Pagliuca G. (2013). Perfluoroalkyl substances in human milk: A first survey in Italy. Environ. Int., 51, 27-30. Bentel M. J., Yu Y., Xu L., Li Z., Wong B. M., Men Y. and Liu J. (2019). Defluorination of per-and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management. Environ. Sci. Technol., 53(7), 3718-3728. Biń A. K. and Sobera-Madej S. (2012). Comparison of the advanced oxidation processes (UV, UV/H2O2 and O3) for the removal of antibiotic substances during wastewater treatment. Ozone Sci. Eng., 34(2), 136-139. Bockris J. O. M. and Oldfield L. F. (1955). The oxidation-reduction reactions of hydrogen peroxide at inert metal electrodes and mercury cathodes. J. Chem. Soc. Faraday Trans., 51(0), 249-259. Boczkaj G. and Fernandes A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chem. Eng. J., 320, 608-633. Bokare A. D. and Choi W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater., 275, 121-135. Cao W., Liu X., Liu X., Zhou Y., Zhang X., Tian H., Wang J., Feng S., Wu Y. and Bhatti P. (2018). Perfluoroalkyl substances in umbilical cord serum and gestational and postnatal growth in a Chinese birth cohort. Environ. Int., 116, 197-205. Chen K., Dong Noh Y., Li K., Komarneni S. and Xue D. (2013). Microwave–hydrothermal crystallization of polymorphic MnO2 for electrochemical energy storage. J. Phys. Chem. C, 117(20), 10770-10779. Cheng J., Vecitis C. D., Park H., Mader B. T. and Hoffmann M. R. (2010). Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Groundwater: Kinetic Effects of Matrix Inorganics. Environ. Sci. Technol., 44(1), 445-450. Cooper J. M. (2018). Investigation of the Efficacy of in situ Degradation Methods for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) in Groundwater. University of Waterloo. da Silva-Rackov C. K., Lawal W. A., Nfodzo P. A., Vianna M. M., do Nascimento C. A. and Choi H. (2016). Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite. Appl. Catal. B, 192, 253-259. Do S.-H., Batchelor B., Lee H.-K. and Kong S.-H. (2009). Hydrogen peroxide decomposition on manganese oxide (pyrolusite): kinetics, intermediates, and mechanism. Chemosphere, 75(1), 8-12. Fan J., Qin H. and Jiang S. (2019). Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: the role of superoxide anion and singlet oxygen. Chem. Eng. J., 359, 723-732. Fathy N. A., El-Shafey S. E., El-Shafey O. I. and Mohamed W. S. (2013). Oxidative degradation of RB19 dye by a novel γ-MnO2/MWCNT nanocomposite catalyst with H2O2. J. Environ. Chem. Eng., 1(4), 858-864. Fenton H. (1894). LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc., Dalton Trans., 65, 899-910. Foresta C., Tescari S. and Di Nisio A. (2018). Impact of perfluorochemicals on human health and reproduction: a male’s perspective. J. Endocrinol. Invest., 41(6), 639-645. Furman O., Laine D. F., Blumenfeld A., Teel A. L., Shimizu K., Cheng I. F. and Watts R. J. (2009). Enhanced reactivity of superoxide in water − solid matrices. Environ. Sci. Technol., 43(5), 1528-1533. Glaze W. H., Kang J.-W. and Chapin D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng., 9(4), 335-352. Gobelius L., Hedlund J., Dürig W., Tröger R., Lilja K., Wiberg K. and Ahrens L. (2018). Per-and polyfluoroalkyl substances in Swedish groundwater and surface water: implications for environmental quality standards and drinking water guidelines. Environ. Sci. Technol., 52(7), 4340-4349. Gu Y., Dong W., Luo C. and Liu T. (2016). Efficient reductive decomposition of perfluorooctanesulfonate in a high photon flux UV/sulfite system. Environ. Sci. Technol., 50(19), 10554-10561. Gu Y., Liu T., Wang H., Han H. and Dong W. (2017a). Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system. Sci. Total Environ., 607-608, 541-548. Gu Y., Liu T., Zhang Q. and Dong W. (2017b). Efficient decomposition of perfluorooctanoic acid by a high photon flux UV/sulfite process: Kinetics and associated toxicity. Chem. Eng. J., 326, 1125-1133. Haber F. and Weiss J. (1934). The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. Lond. A Math. Phys. Sci., 147(861), 332-351. He X., Sun B., He M., Chi H., Wang Z., Zhang W. and Ma J. (2020). Highly efficient simultaneous catalytic degradation and defluorination of perfluorooctanoic acid by the H2O2-carbon/MnO2 system generating O2•- and •OH synchronously. Appl. Catal. B, 277, 119219. Huang L., Dong W. and Hou H. (2007). Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis. Chem. Phys. Lett., 436(1-3), 124-128. Huang X., Lv D., Yue H., Attia A. and Yang Y. (2008). Controllable synthesis of α-and β-MnO2: cationic effect on hydrothermal crystallization. Nanotechnology, 19(22), 225606. Jung K.-W., Lee S. Y., Lee Y. J. and Choi J.-W. (2019). Ultrasound-assisted heterogeneous Fenton-like process for bisphenol A removal at neutral pH using hierarchically structured manganese dioxide/biochar nanocomposites as catalysts. Ultrason. Sonochem., 57, 22-28. Kärrman A., Domingo J. L., Llebaria X., Nadal M., Bigas E., van Bavel B. and Lindström G. (2010). Biomonitoring perfluorinated compounds in Catalonia, Spain: concentrations and trends in human liver and milk samples. Environ. Sci. Pollut. Res., 17(3), 750-758. Kang Y.-G., Yoon H., Lee C.-S., Kim E.-J. and Chang Y.-S. (2019). Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite. Water Res., 151, 413-422. Kanungo S., Parida K. and Sant B. (1981). Studies on MnO2—III. The kinetics and the mechanism for the catalytic decomposition of H2O2 over different crystalline modifications of MnO2. Electrochim. Acta, 26(8), 1157-1167. Kim E., Oh D., Lee C.-S., Gong J., Kim J. and Chang Y.-S. (2017). Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: Crystal phase-dependent behavior. Catal. Today, 282, 71-76. Kim T., Lee S.-H., Kim H. Y., Doudrick K., Yu S. and Kim S. D. (2019). Decomposition of perfluorooctane sulfonate (PFOS) using a hybrid process with electron beam and chemical oxidants. Chem. Eng. J., 361, 1363-1370. Li S., Zhang G., Zhang W., Zheng H., Zhu W., Sun N., Zheng Y. and Wang P. (2017). Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid (PFOA) using Pb-BiFeO3/rGO as heterogeneous catalyst. Chem. Eng. J., 326, 756-764. Li X., Ma J., Yang L., He G., Zhang C., Zhang R. and He H. (2018). Oxygen vacancies induced by transition metal doping in γ-MnO2 for highly efficient ozone decomposition. Environ. Sci. Technol., 52(21), 12685-12696. Li X., Zhang P., Jin L., Shao T., Li Z. and Cao J. (2012). Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism. Environ. Sci. Technol., 46(10), 5528-5534. Lin D., Sutton R., Shimabuku I., Sedlak M., Wu J. and Holleman R. (2018). Contaminants of emerging concern in San Francisco bay: A strategy for future investigations 2018 update (No. 873). San Francisco Estuary Institute. Lv P., Feng Y. Y., Li Y. and Feng W. (2012). Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors. J. Power Sources, 220, 160-168. Lyu X.-J., Li W.-W., Lam P. K. and Yu H.-Q. (2015). Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution. Sci. Rep., 5, 9353. Merino N., Qu Y., Deeb R. A., Hawley E. L., Hoffmann M. R. and Mahendra S. (2016). Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water. Environ. Eng. Sci., 33(9), 615-649. Mitchell S. M., Ahmad M., Teel A. L. and Watts R. J. (2013). Degradation of perfluorooctanoic acid by reactive species generated through catalyzed H2O2 propagation reactions. Environ. Sci. Technol. Lett., 1(1), 117-121. Moriwaki H., Takagi Y., Tanaka M., Tsuruho K., Okitsu K. and Maeda Y. (2005). Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environ. Sci. Technol., 39(9), 3388-3392. Nelson J. W., Hatch E. E. and Webster T. F. (2009). Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general US population. Environ. Health Perspect., 118(2), 197-202. O'Hagan D. (2008). Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev., 37(2), 308-319. Pétrier C., Torres-Palma R., Combet E., Sarantakos G., Baup S. and Pulgarin C. (2010). Enhanced sonochemical degradation of bisphenol-A by bicarbonate ions. Ultrason. Sonochem., 17(1), 111-115. Pan X., Cheng S., Su T., Zuo G., Zhao W., Qi X., Wei W. and Dong W. (2019). Fenton-like catalyst Fe3O4@ polydopamine-MnO2 for enhancing removal of methylene blue in wastewater. Colloids Surf. B, 181, 226-233. Panchangam S. C., Lin A. Y.-C., Shaik K. L. and Lin C.-F. (2009). Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium. Chemosphere, 77(2), 242-248. Petri B. G., Watts R. J., Teel A. L., Huling S. G. and Brown R. A. (2011). Fundamentals of ISCO using hydrogen peroxide. In situ chemical oxidation for groundwater remediation, Springer: 33-88. Qian Y., Guo X., Zhang Y., Peng Y., Sun P., Huang C.-H., Niu J., Zhou X. and Crittenden J. C. (2016). Perfluorooctanoic Acid Degradation Using UV–Persulfate Process: Modeling of the Degradation and Chlorate Formation. Environ. Sci. Technol., 50(2), 772-781. Qu Y., Zhang C., Li F., Chen J. and Zhou Q. (2010). Photo-reductive defluorination of perfluorooctanoic acid in water. Water Res., 44(9), 2939-2947. Rahman M. F., Peldszus S. and Anderson W. B. (2014). Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res., 50, 318-340. Ruales-Lonfat C., Barona J. F., Sienkiewicz A., Bensimon M., Vélez-Colmenares J., Benítez N. and Pulgarín C. (2015). Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH. Appl. Catal. B, 166-167, 497-508. Sing K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem., 57(4), 603-619. Smith B. A., Teel A. L. and Watts R. J. (2004). Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems. Environ. Sci. Technol., 38(20), 5465-5469. Stock N. L., Muir D. C. G. and Mabury S. (2009). Perfluoroalkyl Compounds. Persistent Organic Pollutants, WILEY: 25-69. Storck S., Bretinger H. and Maier W. F. (1998). Characterization of micro-and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A, 174(1-2), 137-146. Sun M., Lan B., Lin T., Cheng G., Ye F., Yu L., Cheng X. and Zheng X. (2013). Controlled synthesis of nanostructured manganese oxide: crystalline evolution and catalytic activities. CrystEngComm, 15(35), 7010-7018. Takagi S., Adachi F., Miyano K., Koizumi Y., Tanaka H., Watanabe I., Tanabe S. and Kannan K. (2011). Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes. Water Res., 45(13), 3925-3932. Tizaoui C., Karodia N. and Aburowais M. (2010). Kinetic study of the manganese‐based catalytic hydrogen peroxide oxidation of a persistent azo‐dye. J. Chem. Technol. Biotechnol, 85(2), 234-242. Trojanowicz M., Bartosiewicz I., Bojanowska-Czajka A., Szreder T., Bobrowski K., Nałęcz-Jawecki G., Męczyńska-Wielgosz S. and Nichipor H. (2020). Application of ionizing radiation in decomposition of perfluorooctane sulfonate (PFOS) in aqueous solutions. Chem. Eng. J., 379, 122303. Trojanowicz M., Bojanowska-Czajka A., Bartosiewicz I. and Kulisa K. (2018). Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)–a review of recent advances. Chem. Eng. J., 336, 170-199. USEPA. (2017). Technical Fact Sheet – Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA). USEPA, USA. Vellanki B. P., Batchelor B. and Abdel-Wahab A. (2013). Advanced reduction processes: a new class of treatment processes. Environ. Eng. Sci., 30(5), 264-271. Wan Z. and Wang J. (2017). Fenton-like degradation of sulfamethazine using Fe3O4/Mn3O4 nanocomposite catalyst: kinetics and catalytic mechanism. Environ. Sci. Pollut. Res., 24(1), 568-577. Wang N., Zheng T., Zhang G. and Wang P. (2016). A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng., 4(1), 762-787. Wang X. and Li Y. (2002). Rational synthesis of α-MnO2 single-crystal nanorods. ChemComm(7), 764-765. Watts R. J. and Teel A. L. (2006). Treatment of contaminated soils and groundwater using ISCO. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10(1), 2-9. Xiao W., Xia H., Fuh J. Y. and Lu L. (2009). Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J. Power Sources, 193(2), 935-938. Xu R., Wang X., Wang D., Zhou K. and Li Y. (2006). Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO. Journal of Catalysis, 237(2), 426-430. Yamamoto T., Noma Y., Sakai S.-i. and Shibata Y. (2007). Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environ. Sci. Technol., 41(16), 5660-5665. Yang M., Ni P., Li Y., He X. and Liu Z.-H. (2010). Synthesis and electrochemical performance of β-MnO2 with semi-tubular morphology. Mater. Chem. Phys., 124(1), 155-158. Ye Q., Zhao J., Huo F., Wang D., Cheng S., Kang T. and Dai H. (2013). Nanosized Au supported on three-dimensionally ordered mesoporous β-MnO2: Highly active catalysts for the low-temperature oxidation of carbon monoxide, benzene, and toluene. Microporous Mesoporous Mater., 172, 20-29. Yu C., Li G., Wei L., Fan Q., Shu Q. and Jimmy C. Y. (2014). Fabrication, characterization of β-MnO2 microrod catalysts and their performance in rapid degradation of dyes of high concentration. Catal. Today, 224, 154-162. Zeng Z., Song B., Xiao R., Zeng G., Gong J., Chen M., Xu P., Zhang P., Shen M. and Yi H. (2019). Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies. Environ. Int., 126, 598-610. Zhang Y., Chen Z., Zhou L., Wu P., Zhao Y., Lai Y., Wang F. and Li S. (2019). Efficient electrochemical degradation of tetrabromobisphenol A using MnO2/MWCNT composites modified Ni foam as cathode: Kinetic analysis, mechanism and degradation pathway. J. Hazard. Mater., 369, 770-779. Zhang Z., Chen J.-J., Lyu X.-J., Yin H. and Sheng G.-P. (2014). Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution. Sci. Rep., 4(1), 1-6. Zheng X., Lin T., Cheng G., Lan B., Sun M. and Yu L. (2015). Hollow bipyramid β-MnO2: Pore size controllable synthesis and degradation activities. Adv. Powder Technol., 26(2), 622-625. Zhu S., Li X., Kang J., Duan X. and Wang S. (2018). Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ. Sci. Technol., 53(1), 307-315. Zhu Y., Zhu R., Xi Y., Zhu J., Zhu G. and He H. (2019). Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B, 255, 117739. Zhuo Q., Deng S., Yang B., Huang J., Wang B., Zhang T. and Yu G. (2012). Degradation of perfluorinated compounds on a boron-doped diamond electrode. Electrochim. Acta, 77, 17-22. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55161 | - |
dc.description.abstract | 全氟辛烷磺酸(Perfluorooctanesulfonic acid, PFOS)因具有優異之界面活性劑特性與抵抗氧化能力,而被廣泛運用在工業中。然而,過去毒性相關研究顯示其會對生態圈與人體造成負面危害。本研究調查使用二氧化錳/過氧化氫(MnO2/H2O2)程序產生具活性之自由基降解全氟辛烷磺酸。在三種不同型態之二氧化錳(α-, β-, and γ-MnO2)中,γ-MnO2可最有效催化過氧化氫降解PFOS。整體降解效果在較高H2O2濃度、γ-MnO2劑量與初始反應pH值會有所提升,而初始濃度為0.25 μM之PFOS亦可在最佳條件下於15分鐘內完全降解完畢([H2O2] =1 M, [γ-MnO2] = 20 mg/L, 初始pH = 7)。在MnO2/H2O2程序中,電子順磁共振光譜儀(Electron paramagnetic resonance, EPR)驗證降解反應中氫氧自由基(Hydroxyl radical, OH•)與超氧自由基(superoxide radical, O2•-)的產生,而X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS)則顯示二氧化錳表面之錳價態變化與氧之錯合鍵結(coordination environment)變化。由自由基捕捉實驗與副產物鑑定結果可知在PFOS之降解過程中,其碳-硫鍵結(C-S bond)會優先被OH•氧化斷鍵。後續反應還包括其碳-碳鍵結(C-C bond)被OH•氧化斷鍵生成短碳鏈副產物,以及其碳-氟鍵結(C-F bond)被O2•-還原斷鍵生成脫氟副產物。另外,有些長碳鏈之副產物亦有被偵測到,其生成原因可能為各類有機自由基之重組。 | zh_TW |
dc.description.abstract | Perfluorooctanesulfonic acid (PFOS) has been used in various industries due to its excellent surfactant property and oxidative resistance. However, toxicology studies have shown that PFOS can cause adverse effects in ecological and human health. This study investigated the use of MnO2/H2O2 process to generate reactive radicals for PFOS removal. Our results indicated that among the three MnO2 polymorphs (α-, β-, and γ-MnO2), γ-MnO2 was more effective in catalyzing H2O2 for PFOS degradation and the degradation was enhanced by a higher H2O2 concentration, MnO2 loading and initial pH. PFOS (0.25 μM) could be completely degraded in 15 min under the optimal condition ([H2O2] =1 M, [γ-MnO2] = 20 mg/L, initial pH = 7). Electron paramagnetic resonance (EPR) verified the formation of hydroxyl radical (OH•) and superoxide radical (O2•-) and X-ray photoelectron spectroscopy (XPS) revealed the evolutions of Mn oxidation state and O coordination environment on the MnO2 surfaces in this process. Radical quenching experiments and intermediates identification indicated that the degradation of PFOS was initiated by OH• oxidation to break the C-S bond. Subsequent cleavages of the C-C bond by OH• oxidation and the C-F bond by O2•- reduction could lead to the formation of short-chain and defluorinated intermediates. Long-chain byproducts were also identified, likely due to the recombination of organic radicals. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:49:29Z (GMT). No. of bitstreams: 1 U0001-3007202023350300.pdf: 3846265 bytes, checksum: e0fd946d66af8150b2632fe4c901d385 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 I 摘要 II ABSTRACT III TABLE OF CONTENT V LIST OF FIGURES VIII LIST OF TABLES XI Chapter 1 Introduction 1 1.1 Research background 1 1.2 Objectives 2 Chapter 2 Literature review 3 2.1 Perfluorooctanesulfonic acid (PFOS) 3 2.2 Advanced processes for PFCs degradation 5 2.3 Iron-based H2O2 processes 8 2.4 MnO2/H2O2 reactions 9 Chapter 3 Materials and methods 11 3.1 Research flowchart 11 3.2 Chemicals and reagents 12 3.3 Synthesis and characterization of MnO2 polymorphs 12 3.4 Batch experiments 14 3.5 EPR experiments 16 3.6 Analytical method 16 Chapter 4 Results and discussion 19 4.1 Characterization and catalytic ability of MnO2 19 4.2 Control experiments: reactions/adsorption in the dual-compound systems of PFOS, H2O2 and MnO2 27 4.3 Effects of different operating parameters on PFOS degradation 29 4.3.1 Effects of H2O2 concentration 29 4.3.2 Effects of γ-MnO2 loading 31 4.3.3 Effects of PFOS concentration 33 4.3.4 Effects of Initial pH 35 4.3.5 Effects of chloride ions, humic acid and background matrix 37 4.4 Identification of reactive radicals formed in MnO2/H2O2 process 41 4.5 Identification of intermediates and degradation pathway of PFOS 48 Chapter 5 Conclusion and Recommendations 54 5.1 Conclusion 54 5.2 Recommendations 55 References 56 Appendix A. 70 | |
dc.language.iso | en | |
dc.title | 以二氧化錳催化過氧化氫程序降解全氟辛烷磺酸:探討氫氧自由基氧化與超氧自由基還原之角色 | zh_TW |
dc.title | Degradation of PFOS by MnO2/H2O2 Process: Role of Hydroxyl Radical Oxidation and Superoxide Radical Reduction | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔣本基(Pen-Chi Chiang),林郁真(Yu-Chen Lin) | |
dc.subject.keyword | 全氟辛烷磺酸,過氧化氫,二氧化錳,氫氧自由基,超氧自由基, | zh_TW |
dc.subject.keyword | PFOS,H2O2,MnO2,hydroxyl radical,superoxide radical, | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU202002136 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-3007202023350300.pdf 目前未授權公開取用 | 3.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。