請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55145完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊泮池(Pan-Chyr Yang) | |
| dc.contributor.author | Ya-Ling Chang | en |
| dc.contributor.author | 張雅玲 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:48:53Z | - |
| dc.date.available | 2015-03-12 | |
| dc.date.copyright | 2015-03-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-26 | |
| dc.identifier.citation | Aubert, M. and Jerome, K.R. (2003). Apoptosis prevention as a mechanism of immune evasion. International reviews of immunology 22, 361-371.
Barber, G.N. (2001). Host defense, viruses and apoptosis. Cell death and differentiation 8, 113-126. Benn, S.C. and Woolf, C.J. (2004). Adult neuron survival strategies--slamming on the brakes. Nature reviews. Neuroscience 5, 686-700. Ch'ng, W.C., Stanbridge, E.J., Ong, K.C., Wong, K.T., Yusoff, K. and Shafee, N. (2011). Partial protection against enterovirus 71 (EV71) infection in a mouse model immunized with recombinant Newcastle disease virus capsids displaying the EV71 VP1 fragment. J Med Virol 83, 1783-1791. Chang, L.Y., Huang, L.M., Gau, S.S., Wu, Y.Y., Hsia, S.H., Fan, T.Y., et al. (2007). Neurodevelopment and cognition in children after enterovirus 71 infection. N Engl J Med 356, 1226-1234. Chang, L.Y., Tsao, K.C., Hsia, S.H., Shih, S.R., Huang, C.G., Chan, W.K., et al. (2004a). Transmission and clinical features of enterovirus 71 infections in household contacts in Taiwan. JAMA 291, 222-227. Chang, S.C., Lin, J.Y., Lo, L.Y., Li, M.L. and Shih, S.R. (2004b). Diverse apoptotic pathways in enterovirus 71-infected cells. J Neurovirol 10, 338-349. Chen, L.C., Shyu, H.W., Chen, S.H., Lei, H.Y., Yu, C.K. and Yeh, T.M. (2006). Enterovirus 71 infection induces Fas ligand expression and apoptosis of Jurkat cells. J Med Virol 78, 780-786. Chen, T.C., Lai, Y.K., Yu, C.K. and Juang, J.L. (2007). Enterovirus 71 triggering of neuronal apoptosis through activation of Abl-Cdk5 signalling. Cell Microbiol 9, 2676-2688. Cretu, A., Sha, X., Tront, J., Hoffman, B. and Liebermann, D.A. (2009). Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer therapy 7, 268-276. Dawson, C.W., Tramountanis, G., Eliopoulos, A.G. and Young, L.S. (2003). Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278, 3694-3704. Heaton, N.S., Perera, R., Berger, K.L., Khadka, S., Lacount, D.J., Kuhn, R.J. and Randall, G. (2010). Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A 107, 17345-17350. Hendrickson, A.W., Meng, X.W. and Kaufmann, S.H. (2008). Anticancer therapy: boosting the bang of Bim. The Journal of clinical investigation 118, 3582-3584. Ho, B.C., Yu, I.S., Lu, L.F., Rudensky, A., Chen, H.Y., Tsai, C.W., et al. (2014). Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nature communications 5, 3344. Ho, B.C., Yu, S.L., Chen, J.J., Chang, S.Y., Yan, B.S., Hong, Q.S., et al. (2011). Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 9, 58-69. Hosoya, M., Kawasaki, Y., Sato, M., Honzumi, K., Kato, A., Hiroshima, T., et al. (2006). Genetic diversity of enterovirus 71 associated with hand, foot and mouth disease epidemics in Japan from 1983 to 2003. The Pediatric infectious disease journal 25, 691-694. Janssen, H.L., Reesink, H.W., Lawitz, E.J., Zeuzem, S., Rodriguez-Torres, M., Patel, K., et al. (2013). Treatment of HCV infection by targeting microRNA. N Engl J Med 368, 1685-1694. Jayaswal, V., Lutherborrow, M., Ma, D.D. and Yang, Y.H. (2011). Identification of microRNA-mRNA modules using microarray data. BMC genomics 12, 138. Johnson, R.A., Wang, X., Ma, X.L., Huong, S.M. and Huang, E.S. (2001). Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits viral replication and virus-induced signaling. J Virol 75, 6022-6032. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. and Sarnow, P. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science (New York, N.Y.) 309, 1577-1581. Kastan, M.B., Zhan, Q., el-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., et al. (1992). A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587-597. Khong, W.X., Foo, D.G., Trasti, S.L., Tan, E.L. and Alonso, S. (2011). Sustained high levels of interleukin-6 contribute to the pathogenesis of enterovirus 71 in a neonate mouse model. J Virol 85, 3067-3076. Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., et al. (2005). Combinatorial microRNA target predictions. Nature genetics 37, 495-500. Kuo, R.L., Kung, S.H., Hsu, Y.Y. and Liu, W.T. (2002). Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol 83, 1367-1376. Kurada, B.R., Li, L.C., Mulherkar, N., Subramanian, M., Prasad, K.V. and Prabhakar, B.S. (2009). MADD, a splice variant of IG20, is indispensable for MAPK activation and protection against apoptosis upon tumor necrosis factor-alpha treatment. J Biol Chem 284, 13533-13541. Lambert, J.E., Bain, V.G., Ryan, E.A., Thomson, A.B. and Clandinin, M.T. (2013). Elevated lipogenesis and diminished cholesterol synthesis in patients with hepatitis C viral infection compared to healthy humans. Hepatology (Baltimore, Md.) 57, 1697-1704. Lee, M.S., Lin, T.Y., Chiang, P.S., Li, W.C., Luo, S.T., Tsao, K.C., et al. (2010). An investigation of epidemic enterovirus 71 infection in Taiwan, 2008: clinical, virologic, and serologic features. The Pediatric infectious disease journal 29, 1030-1034. Lee, Y.I., Kang-Park, S. and Do, S.I. (2001). The hepatitis B virus-X protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem 276, 16969-16977. Leong, W.F. and Chow, V.T. (2006). Transcriptomic and proteomic analyses of rhabdomyosarcoma cells reveal differential cellular gene expression in response to enterovirus 71 infection. Cell Microbiol 8, 565-580. Li, M.L., Hsu, T.A., Chen, T.C., Chang, S.C., Lee, J.C., Chen, C.C., et al. (2002). The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology 293, 386-395. Li, X., Gill, R., Cooper, N.G., Yoo, J.K. and Datta, S. (2011). Modeling microRNA-mRNA interactions using PLS regression in human colon cancer. BMC medical genomics 4, 44. Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769-773. Loya, C.M., Lu, C.S., Van Vactor, D. and Fulga, T.A. (2009). Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nature methods 6, 897-903. Marsden, V.S., O'Connor, L., O'Reilly, L.A., Silke, J., Metcalf, D., Ekert, P.G., et al. (2002). Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419, 634-637. Minella, D., Wannenes, F., Biancolella, M., Amati, F., Testa, B., Nardone, A., et al. (2011). SOS1 over-expression in genital skin fibroblasts from hirsute women: a putative role of the SOS1/RAS pathway in the pathogenesis of hirsutism. Journal of biological regulators and homeostatic agents 25, 615-626. Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A.M., et al. (2006). A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203-1217. Munger, J., Bajad, S.U., Coller, H.A., Shenk, T. and Rabinowitz, J.D. (2006). Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS pathogens 2, e132. Nair, P., Somasundaram, K. and Krishna, S. (2003). Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J Virol 77, 7106-7112. Nguyen, M.D., Mushynski, W.E. and Julien, J.P. (2002). Cycling at the interface between neurodevelopment and neurodegeneration. Cell death and differentiation 9, 1294-1306. Ooi, M.H., Wong, S.C., Podin, Y., Akin, W., del Sel, S., Mohan, A., et al. (2007). Human enterovirus 71 disease in Sarawak, Malaysia: a prospective clinical, virological, and molecular epidemiological study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 44, 646-656. Patapoutian, A. and Reichardt, L.F. (2001). Trk receptors: mediators of neurotrophin action. Current opinion in neurobiology 11, 272-280. Peng, X., Li, Y., Walters, K.A., Rosenzweig, E.R., Lederer, S.L., Aicher, L.D., et al. (2009). Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC genomics 10, 373. Ryu, W.S., Kang, B., Hong, J., Hwang, S., Kim, J. and Cheon, D.S. (2010). Clinical and etiological characteristics of enterovirus 71-related diseases during a recent 2-year period in Korea. Journal of clinical microbiology 48, 2490-2494. Sethupathy, P., Megraw, M. and Hatzigeorgiou, A.G. (2006). A guide through present computational approaches for the identification of mammalian microRNA targets. Nature methods 3, 881-886. Shi, W., Li, X., Hou, X., Peng, H., Jiang, Q., Shi, M., et al. (2012). Differential apoptosis gene expressions of rhabdomyosarcoma cells in response to enterovirus 71 infection. BMC infectious diseases 12, 327. Shih, S.R., Stollar, V., Lin, J.Y., Chang, S.C., Chen, G.W. and Li, M.L. (2004). Identification of genes involved in the host response to enterovirus 71 infection. J Neurovirol 10, 293-304. Shih, S.R., Tsai, K.N., Li, Y.S., Chueh, C.C. and Chan, E.C. (2003). Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis. J Med Virol 70, 119-125. Shih, S.R., Weng, K.F., Stollar, V. and Li, M.L. (2008). Viral protein synthesis is required for Enterovirus 71 to induce apoptosis in human glioblastoma cells. J Neurovirol 14, 53-61. Siomi, H. and Siomi, M.C. (2010). Posttranscriptional regulation of microRNA biogenesis in animals. Molecular cell 38, 323-332. Smith, M.L., Ford, J.M., Hollander, M.C., Bortnick, R.A., Amundson, S.A., Seo, Y.R., et al. (2000). p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Molecular and cellular biology 20, 3705-3714. Stewart, C.R., Marsh, G.A., Jenkins, K.A., Gantier, M.P., Tizard, M.L., Middleton, D., et al. (2013). Promotion of Hendra virus replication by microRNA 146a. J Virol 87, 3782-3791. Swanton, E., Savory, P., Cosulich, S., Clarke, P. and Woodman, P. (1999). Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts. Oncogene 18, 1781-1787. Tortorella, D., Gewurz, B.E., Furman, M.H., Schust, D.J. and Ploegh, H.L. (2000). Viral subversion of the immune system. Annual review of immunology 18, 861-926. Triboulet, R., Mari, B., Lin, Y.L., Chable-Bessia, C., Bennasser, Y., Lebrigand, K., et al. (2007). Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science (New York, N.Y.) 315, 1579-1582. Tu, P.V., Thao, N.T., Perera, D., Huu, T.K., Tien, N.T., Thuong, T.C., et al. (2007). Epidemiologic and virologic investigation of hand, foot, and mouth disease, southern Vietnam, 2005. Emerg Infect Dis 13, 1733-1741. Wagner, E.K. and Roizman, B. (1969). Ribonucleic acid synthesis in cells infected with herpes simplex virus. I. Patterns of ribonucleic acid synthesis in productively infected cells. J Virol 4, 36-46. Wang, Y.F., Chou, C.T., Lei, H.Y., Liu, C.C., Wang, S.M., Yan, J.J., et al. (2004). A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol 78, 7916-7924. Wong, W.R., Chen, Y.Y., Yang, S.M., Chen, Y.L. and Horng, J.T. (2005). Phosphorylation of PI3K/Akt and MAPK/ERK in an early entry step of enterovirus 71. Life Sci 78, 82-90. Wu, J.M., Wang, J.N., Tsai, Y.C., Liu, C.C., Huang, C.C., Chen, Y.J. and Yeh, T.F. (2002). Cardiopulmonary manifestations of fulminant enterovirus 71 infection. Pediatrics 109, E26-. Wu, S., He, L., Li, Y., Wang, T., Feng, L., Jiang, L., et al. (2013). miR-146a facilitates replication of dengue virus by dampening interferon induction by targeting TRAF6. The Journal of infection 67, 329-341. Xi, X., Zhang, X., Wang, B., Wang, T., Wang, J., Huang, H., et al. (2013). The interplays between autophagy and apoptosis induced by enterovirus 71. PloS one 8, e56966. Xu, L.J., Jiang, T., Zhang, F.J., Han, J.F., Liu, J., Zhao, H., et al. (2013). Global transcriptomic analysis of human neuroblastoma cells in response to enterovirus type 71 infection. PloS one 8, e65948. Yu, Y., Huang, H., Li, J., Zhang, J., Gao, J., Lu, B. and Huang, C. (2013). GADD45beta mediates p53 protein degradation via Src/PP2A/MDM2 pathway upon arsenite treatment. Cell death & disease 4, e637. Zhang, Y., Zhu, Z., Yang, W., Ren, J., Tan, X., Wang, Y., et al. (2010). An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China. Virology journal 7, 94. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55145 | - |
| dc.description.abstract | 腸病毒71型為一好發於亞洲地區的新興且致命之病原體。細胞凋亡為腸病毒71型感染後最主要的病理特徵.然而,對於腸病毒造成宿主細胞凋亡的分子機制仍未有透澈之研究報導.微核糖核酸(miRNAs)是一個近來發現的新分子,此分子可以透過後轉錄調控方式廣泛地影響生物機能,並且有報導指出微核糖核酸參與病毒致病機轉.本論文欲探討微核糖核酸與信息RNA(mRNA)是否協同調控腸病毒71型感染後所引發之宿主細胞凋亡.利用微核糖核酸與信息RNA表現圖譜加以生物資訊分析等策略,研究腸病毒71型感染後造成細胞凋亡之可能途徑.根據上述策略,可篩選出兩條與細胞凋亡相關之訊息傳遞路線,分別為BAD磷酸化(BAD phosphorylation)與p53所屬(p53-dependent)訊息傳遞.SOS1與GADD45β分別屬於BAD磷酸化與p53所屬訊息傳遞路線,且被預測為微核糖核酸-146a與微核糖核酸-370的標的.利用冷光報導基因試驗與西方墨點法證實微核糖核酸-146a與SOS1以及微核糖核酸-370與GADD45β之間存在負向調控關係.抑制微核糖核酸-146a可恢復SOS1表現量,並輕微減少腸病毒71型感染造成的細胞凋亡.相反地,異位表現微核糖核酸-370會降低因腸病毒71型感染上升的GADD45β的表現量,並減少細胞凋亡.最後,利用微核糖核酸-146a拮抗物與異位表現微核糖核酸-370可顯著減少腸病毒71型引起之細胞凋亡.在此,本研究證明腸病毒71型可藉由調控微核糖核酸表現造成宿主細胞凋亡的分子機制 | zh_TW |
| dc.description.abstract | Enterovirus 71 (EV71) is an emerging life-threatening pathogen particularly in the Asia-Pacific region. The major pathogenic feature in EV71-infected cells is apoptosis. However, which molecular mechanism mainly contributes to EV71-induced apoptosis is not investigated thoroughly. MiRNAs, the newly discovered molecules, govern a wide range of biological functions through post-transcriptional regulation and play roles in viral pathogenesis. Whether miRNAs and mRNAs coordinate to trigger host cell apoptosis in EV71 infection was investigated in this study. We conducted an apoptosis-oriented approach by using both mRNA and miRNA profiling and bioinformatic analysis. We identified two major apoptosis-associated signaling pathways, Bcl2 antagonist of cell death (BAD) phosphorylation and p53-dependent apoptosis pathways, in which Son of sevenless homolog 1 (SOS1) and Growth arrest and DNA damage-inducible protein 45β (GADD45β) were predicted as targets of miR-146a and miR-370, respectively. Luciferase reporter assays and Western blots demonstrated the negative regulation between miR-146a and SOS1 and between miR-370 and GADD45β. Silencing of miR-146a restored SOS1 expression and partially attenuated EV71 infection-induced apoptosis. Conversely, ectopic expression of miR-370 decreased virus infection-induced GADD45β expression and also diminished apoptosis. Finally, the co-expression of antagomiR-146a and miR-370 contributed to attenuating EV71 infection-induced apoptosis. Herein we clearly demonstrate a new mechanism that EV71-induced cell apoptosis is partly governed by altered miRNAs.
| en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:48:53Z (GMT). No. of bitstreams: 1 ntu-104-D95448002-1.pdf: 6105869 bytes, checksum: ec83398e0990a8386119e697e7405472 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 4
中文摘要 5 Abstract 6 Introduction 8 Results 13 EV71 infection induces cell apoptosis 13 Reciprocal Interaction of miRNAs and mRNAs contributes to EV71 infection-induced apoptosis 14 SOS1 expression is suppressed by EV71 infection-induced miR-146a 17 GADD45β expression is induced by EV71 infection-suppressed miR-370 18 miR-146a and miR-370 signaling cascades are ubiquitous in EV71-infected tissues 19 Neutralization of virus infection-induced miR-146a suppresses apoptotic mediators and restores the anti-apoptotic indicator 20 Ectopic expression of miR-370 inhibits apoptotic mediators and rescues the anti-apoptotic indicator 21 AntagomiR-146a and miR-370 both exhibit inhibitory effects on EV71-induced apoptosis 22 Discussion 26 Experimental procedures 34 Cell Cultures and Virus Infection 34 RNA Extraction and miRNA Profiling 34 Oligonucleotide Microarray Analysis 35 Functional Ontology Enrichment and Signaling Pathways Analysis 36 Individual Real-Time RT PCR 37 Western Blot 38 Luciferase Assay 38 Plasmid Constructions 39 AntagomiR Transfection 40 Cytopathic Effect Quantification 40 Flow Cytometric Analysis 41 TUNEL Assay 41 Statistical Analysis 42 References 43 | |
| dc.language.iso | en | |
| dc.subject | 微核糖核酸-370 | zh_TW |
| dc.subject | 微核糖核酸-146a | zh_TW |
| dc.subject | miR-146a | en |
| dc.subject | miR-370 | en |
| dc.title | 微核糖核酸-146a和微核糖核酸-370以SOS1和GADD45b當作標的共同調控被腸病毒71型感染後的細胞凋亡 | zh_TW |
| dc.title | miR-146a and miR-370 coordinate Enterovirus 71-induced cell apoptosis through targeting SOS1 and GADD45β | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 呂勝春,李芳仁,俞松良,吳君泰 | |
| dc.subject.keyword | 微核糖核酸-146a,微核糖核酸-370, | zh_TW |
| dc.subject.keyword | miR-146a,miR-370, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 5.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
