Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55144
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林琬琬(Wan-Wan Lin)
dc.contributor.authorYing-Cing Linen
dc.contributor.author林盈慶zh_TW
dc.date.accessioned2021-06-16T03:48:50Z-
dc.date.available2015-03-12
dc.date.copyright2015-03-12
dc.date.issued2015
dc.date.submitted2015-01-26
dc.identifier.citationAkashi, S., Saitoh, S., Wakabayashi, Y., Kikuchi, T., Takamura, N., Nagai, Y., Kusumoto, Y., Fukase, K., Kusumoto, S., Adachi, Y., et al. (2003). Lipopolysaccharide interaction with cell surface toll-like receptor 4-MD-2: Higher affinity than that with MD-2 or CD14. J Exp Med 198, 1035-1042.
Arch, R.H., Gedrich, R.W., and Thompson, C.B. (1998). Tumor necrosis factor receptor-associated factors (TRAFs)--a family of adapter proteins that regulates life and death. Gene Dev 12, 2821-2830.
Arndt, P.G., Suzuki, N., Avdi, N.J., Malcolm, K.C., and Worthen, G.S. (2004). Lipopolysaccharide-induced c-Jun NH2-terminal kinase activation in human neutrophils: role of phosphatidylinositol 3-Kinase and Syk-mediated pathways. J Biol Chem 279, 10883-10891.
Bae, Y.S., Lee, J.H., Choi, S.H., Kim, S., Almazan, F., Witztum, J.L., and Miller, Y.I. (2009). Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res 104, 210-218, 221p following 218.
Barton, G.M., and Kagan, J.C. (2009). A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 9, 535-542.
Bauernfeind, F., Ablasser, A., Bartok, E., Kim, S., Schmid-Burgk, J., Cavlar, T., and Hornung, V. (2011). Inflammasomes: current understanding and open questions. Cell Mol Life Sci 68, 765-783.
Bauernfeind, F.G., Horvath, G., Stutz, A., Alnemri, E.S., MacDonald, K., Speert, D., Fernandes-Alnemri, T., Wu, J., Monks, B.G., Fitzgerald, K.A., et al. (2009). Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183, 787-791.
Beutler, B. (2009). Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunol Rev 227, 248-263.
Beutler, B., Jiang, Z., Georgel, P., Crozat, K., Croker, B., Rutschmann, S., Du, X., and Hoebe, K. (2006). Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol 24, 353-389.
Bhoj, V.G., and Chen, Z.J. (2009). Ubiquitylation in innate and adaptive immunity. Nature 458, 430-437.
Bourgeois, C., Majer, O., Frohner, I.E., Lesiak-Markowicz, I., Hildering, K.S., Glaser, W., Stockinger, S., Decker, T., Akira, S., Muller, M., and Kuchler, K. (2011). Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-beta signaling. J Immunol 186, 3104-3112.
Buchner, M., Fuchs, S., Prinz, G., Pfeifer, D., Bartholome, K., Burger, M., Chevalier, N., Vallat, L., Timmer, J., Gribben, J.G., et al. (2009). Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res 69, 5424-5432.
Chang, M.Y., Huang, D.Y., Ho, F.M., Huang, K.C., and Lin, W.W. (2012). PKC-dependent human monocyte adhesion requires AMPK and Syk activation. PloS one 7, e40999.
Chattopadhyay, S., and Sen, G.C. (2014). Tyrosine phosphorylation in Toll-like receptor signaling. Cytokine Growth Factor Rev 25, 533-541.
Chaudhary, A., Fresquez, T.M., and Naranjo, M.J. (2007). Tyrosine kinase Syk associates with toll-like receptor 4 and regulates signaling in human monocytic cells. Immunol Cell Biol 85, 249-256.
Chen, L., Monti, S., Juszczynski, P., Daley, J., Chen, W., Witzig, T.E., Habermann, T.M., Kutok, J.L., and Shipp, M.A. (2008). SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 111, 2230-2237.
Choi, S.H., Harkewicz, R., Lee, J.H., Boullier, A., Almazan, F., Li, A.C., Witztum, J.L., Bae, Y.S., and Miller, Y.I. (2009). Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ Res 104, 1355-1363.
Choi, S.H., Wiesner, P., Almazan, F., Kim, J., and Miller, Y.I. (2012). Spleen tyrosine kinase regulates AP-1 dependent transcriptional response to minimally oxidized LDL. PloS one 7, e32378.
Chu, C.L., Yu, Y.L., Shen, K.Y., Lowell, C.A., Lanier, L.L., and Hamerman, J.A. (2008). Increased TLR responses in dendritic cells lacking the ITAM-containing adapters DAP12 and FcRgamma. Eur J Immunol 38, 166-173.
Chung, J.Y., Park, Y.C., Ye, H., and Wu, H. (2002). All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115, 679-688.
Couture, C., Williams, S., Gauthier, N., Tailor, P., and Mustelin, T. (1997). Role of Tyr518 and Tyr519 in the regulation of catalytic activity and substrate phosphorylation by Syk protein-tyrosine kinase. Eur J Biochem 246, 447-451.
Crowley, M.T., Costello, P.S., Fitzer-Attas, C.J., Turner, M., Meng, F., Lowell, C., Tybulewicz, V.L., and DeFranco, A.L. (1997). A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J Exp Med 186, 1027-1039.
Davis, B.K., Wen, H., and Ting, J.P. (2011). The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29, 707-735.
Desaulniers, P., Fernandes, M., Gilbert, C., Bourgoin, S.G., and Naccache, P.H. (2001). Crystal-induced neutrophil activation. VII. Involvement of Syk in the responses to monosodium urate crystals. J Leukoc Biol 70, 659-668.
Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S., and Flavell, R.A. (2008). Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122-1126.
Friedberg, J.W., Sharman, J., Sweetenham, J., Johnston, P.B., Vose, J.M., Lacasce, A., Schaefer-Cutillo, J., De Vos, S., Sinha, R., Leonard, J.P., et al. (2010). Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 115, 2578-2585.
Gaffen, S.L. (2009). Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9, 556-567.
Ghosh, D., Tsokos, G.C., and Kyttaris, V.C. (2012). c-Jun and Ets2 regulate the expression of spleen tyrosine kinase in T cells. J Biol Chem 287, 11833-11841.
Gross, O., Poeck, H., Bscheider, M., Dostert, C., Hannesschlager, N., Endres, S., Hartmann, G., Tardivel, A., Schweighoffer, E., Tybulewicz, V., et al. (2009). Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433-436.
Guarda, G., Zenger, M., Yazdi, A.S., Schroder, K., Ferrero, I., Menu, P., Tardivel, A., Mattmann, C., and Tschopp, J. (2011). Differential expression of NLRP3 among hematopoietic cells. J Immunol 186, 2529-2534.
Ha, H., Han, D., and Choi, Y. (2009). TRAF-mediated TNFR-family signaling. Curr Protoc Immunol Chapter 11, Unit11 19D.
Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.C., Wang, G.G., Kamps, M.P., Raz, E., Wagner, H., Hacker, G., et al. (2006). Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204-207.
Hacker, H., Tseng, P.H., and Karin, M. (2011). Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 11, 457-468.
Hamerman, J.A., and Lanier, L.L. (2006). Inhibition of immune responses by ITAM-bearing receptors. Sci STKE 2006, re1.
Hamerman, J.A., Tchao, N.K., Lowell, C.A., and Lanier, L.L. (2005). Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol 6, 579-586.
Han, C., Jin, J., Xu, S., Liu, H., Li, N., and Cao, X. (2010). Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol 11, 734-742.
Hara, H., Tsuchiya, K., Kawamura, I., Fang, R., Hernandez-Cuellar, E., Shen, Y., Mizuguchi, J., Schweighoffer, E., Tybulewicz, V., and Mitsuyama, M. (2013). Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat Immunol 14, 1247-1255.
He, Y., Varadarajan, S., Munoz-Planillo, R., Burberry, A., Nakamura, Y., and Nunez, G. (2014). 3,4-Methylenedioxy-beta-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J Biol Chem 289, 1142-1150.
Hirotani, T., Yamamoto, M., Kumagai, Y., Uematsu, S., Kawase, I., Takeuchi, O., and Akira, S. (2005). Regulation of lipopolysaccharide-inducible genes by MyD88 and Toll/IL-1 domain containing adaptor inducing IFN-beta. Biochem Biophys Res Commun 328, 383-392.
Ho, P.C., Tsui, Y.C., Feng, X., Greaves, D.R., and Wei, L.N. (2012). NF-kappaB-mediated degradation of the coactivator RIP140 regulates inflammatory responses and contributes to endotoxin tolerance. Nat Immunol 13, 379-386.
Hoebe, K., Du, X., Georgel, P., Janssen, E., Tabeta, K., Kim, S.O., Goode, J., Lin, P., Mann, N., Mudd, S., et al. (2003). Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743-748.
Huang, W.C., and Hung, M.C. (2013). Beyond NF-kappaB activation: nuclear functions of IkappaB kinase alpha. J Biomed Sci 20, 3.
Irish, J.M., Czerwinski, D.K., Nolan, G.P., and Levy, R. (2006). Altered B-cell receptor signaling kinetics distinguish human follicular lymphoma B cells from tumor-infiltrating nonmalignant B cells. Blood 108, 3135-3142.
Iwasaki, A., and Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nat Immunol 5, 987-995.
Jiang, X., and Chen, Z.J. (2012). The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol 12, 35-48.
Jin, C., and Flavell, R.A. (2010). Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol 30, 628-631.
Juliana, C., Fernandes-Alnemri, T., Kang, S., Farias, A., Qin, F., and Alnemri, E.S. (2012). Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem 287, 36617-36622.
Kankkunen, P., Teirila, L., Rintahaka, J., Alenius, H., Wolff, H., and Matikainen, S. (2010). (1,3)-beta-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. J Immunol 184, 6335-6342.
Kawai, T., and Akira, S. (2006). TLR signaling. Cell Death Differ 13, 816-825.
Kawai, T., and Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11, 373-384.
Kumar, H., Kawai, T., and Akira, S. (2011). Pathogen recognition by the innate immune system. Int Rev Immunol 30, 16-34.
Kuno, Y., Abe, A., Emi, N., Iida, M., Yokozawa, T., Towatari, M., Tanimoto, M., and Saito, H. (2001). Constitutive kinase activation of the TEL-Syk fusion gene in myelodysplastic syndrome with t(9;12)(q22;p12). Blood 97, 1050-1055.
Lechtenberg, B.C., Mace, P.D., and Riedl, S.J. (2014). Structural mechanisms in NLR inflammasome signaling. Curr Opin Struct Biol 29C, 17-25.
Lee, H.M., Yuk, J.M., Kim, K.H., Jang, J., Kang, G., Park, J.B., Son, J.W., and Jo, E.K. (2012). Mycobacterium abscessus activates the NLRP3 inflammasome via Dectin-1-Syk and p62/SQSTM1. Immunol Cell Biol 90, 601-610.
Liao, Y.H., Lin, Y.C., Tsao, S.T., Lin, Y.C., Yang, A.J., Huang, C.T., Huang, K.C., and Lin, W.W. (2013). HMG-CoA reductase inhibitors activate caspase-1 in human monocytes depending on ATP release and P2X7 activation. J Leukoc Biol 93, 289-299.
Lin, Y.C., Huang, D.Y., Chu, C.L., and Lin, W.W. (2010). Anti-inflammatory actions of Syk inhibitors in macrophages involve non-specific inhibition of toll-like receptors-mediated JNK signaling pathway. Mol Immunol 47, 1569-1578.
Lin, Y.C., Huang, D.Y., Chu, C.L., Lin, Y.L., and Lin, W.W. (2013). The Tyrosine Kinase Syk Differentially Regulates Toll-like Receptor Signaling Downstream of the Adaptor Molecules TRAF6 and TRAF3. Sci Signal 6, ra71.
Lu, R., Pan, H., and Shively, J.E. (2012). CEACAM1 negatively regulates IL-1beta production in LPS activated neutrophils by recruiting SHP-1 to a SYK-TLR4-CEACAM1 complex. PLoS pathog 8, e1002597.
Malik, A.F., Hoque, R., Ouyang, X., Ghani, A., Hong, E., Khan, K., Moore, L.B., Ng, G., Munro, F., Flavell, R.A., et al. (2011). Inflammasome components Asc and caspase-1 mediate biomaterial-induced inflammation and foreign body response. Proc Natl Acad Sci U S A 108, 20095-20100.
Malynn, B.A., and Ma, A. (2010). Ubiquitin makes its mark on immune regulation. Immunity 33, 843-852.
Mariathasan, S., and Monack, D.M. (2007). Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7, 31-40.
Mariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., Roose-Girma, M., Erickson, S., and Dixit, V.M. (2004). Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213-218.
Mariathasan, S., Weiss, D.S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., Lee, W.P., Weinrauch, Y., Monack, D.M., and Dixit, V.M. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228-232.
Maringwa, J., Kagedal, M., Hamren, U.W., Martin, P., Cox, E., and Hamren, B. (2014). Pharmacokinetic-pharmacodynamic modelling of fostamatinib efficacy on ACR20 to support dose selection in patients with rheumatoid arthritis (RA). J Clin Pharmacol. doi: 10.1002/jcph.406 (in press)
Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10, 417-426.
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237-241.
Miller, Y.I., Choi, S.H., Wiesner, P., and Bae, Y.S. (2012). The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. Br J Pharmacol 167, 990-999.
Mocsai, A., Ruland, J., and Tybulewicz, V.L. (2010). The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10, 387-402.
Mogensen, T.H. (2009). Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22, 240-273, Table of Contents.
Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., Kitamura, T., Kosugi, A., Kimoto, M., and Miyake, K. (2002). Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3, 667-672.
Oganesyan, G., Saha, S.K., Guo, B., He, J.Q., Shahangian, A., Zarnegar, B., Perry, A., and Cheng, G. (2006). Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208-211.
Ouyang, X., Ghani, A., and Mehal, W.Z. (2013). Inflammasome biology in fibrogenesis. Biochim Biophys Acta-Mol Basis Dis 1832, 979-988.
Palomaki, J., Valimaki, E., Sund, J., Vippola, M., Clausen, P.A., Jensen, K.A., Savolainen, K., Matikainen, S., and Alenius, H. (2011). Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS nano 5, 6861-6870.
Poeck, H., and Ruland, J. (2010). SYK kinase signaling and the NLRP3 inflammasome in antifungal immunity. J Mol Med (Berl) 88, 745-752.
Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088.
Proell, M., Gerlic, M., Mace, P.D., Reed, J.C., and Riedl, S.J. (2013). The CARD plays a critical role in ASC foci formation and inflammasome signalling. Biochem J 449, 613-621.
Py, B.F., Kim, M.S., Vakifahmetoglu-Norberg, H., and Yuan, J. (2013). Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 49, 331-338.
Rinaldi, A., Kwee, I., Taborelli, M., Largo, C., Uccella, S., Martin, V., Poretti, G., Gaidano, G., Calabrese, G., Martinelli, G., et al. (2006). Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br J Haematol 132, 303-316.
Rodgers, M.A., Bowman, J.W., Fujita, H., Orazio, N., Shi, M., Liang, Q., Amatya, R., Kelly, T.J., Iwai, K., Ting, J., and Jung, J.U. (2014). The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med 211, 1333-1347.
Sanjuan, M.A., Rao, N., Lai, K.T., Gu, Y., Sun, S., Fuchs, A., Fung-Leung, W.P., Colonna, M., and Karlsson, L. (2006). CpG-induced tyrosine phosphorylation occurs via a TLR9-independent mechanism and is required for cytokine secretion. J Cell Biol 172, 1057-1068.
Santegoets, K.C., van Bon, L., van den Berg, W.B., Wenink, M.H., and Radstake, T.R. (2011). Toll-like receptors in rheumatic diseases: are we paying a high price for our defense against bugs? FEBS lett 585, 3660-3666.
Seya, T., Matsumoto, M., Ebihara, T., and Oshiumi, H. (2009). Functional evolution of the TICAM-1 pathway for extrinsic RNA sensing. Immunol Rev 227, 44-53.
Shio, M.T., Eisenbarth, S.C., Savaria, M., Vinet, A.F., Bellemare, M.J., Harder, K.W., Sutterwala, F.S., Bohle, D.S., Descoteaux, A., Flavell, R.A., and Olivier, M. (2009). Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS pathog 5, e1000559.
Stehlik, C. (2009). Multiple interleukin-1beta-converting enzymes contribute to inflammatory arthritis. Arthritis Rheum-US 60, 3524-3530.
Streubel, B., Vinatzer, U., Willheim, M., Raderer, M., and Chott, A. (2006). Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 20, 313-318.
Strowig, T., Henao-Mejia, J., Elinav, E., and Flavell, R. (2012). Inflammasomes in health and disease. Nature 481, 278-286.
Sun, H., Li, X.B., Meng, Y., Fan, L., Li, M., and Fang, J. (2013). TRAF6 upregulates expression of HIF-1alpha and promotes tumor angiogenesis. Cancer Res 73, 4950-4959.
Takeda, K., and Akira, S. (2004). TLR signaling pathways. Semin Immunol 16, 3-9.
Takeuchi, M., Rothe, M., and Goeddel, D.V. (1996). Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins. J Biol Chem 271, 19935-19942.
Thorarensen, A., and Kaila, N. (2014). New spleen tyrosine kinase inhibitors: patent applications published during 2011-2013. Pharm Pat Anal 3, 523-541.
Tigno-Aranjuez, J.T., and Abbott, D.W. (2012). Ubiquitination and phosphorylation in the regulation of NOD2 signaling and NOD2-mediated disease. Biochim Biophys Acta-Mol Cell Res 1823, 2022-2028.
Tseng, P.H., Matsuzawa, A., Zhang, W., Mino, T., Vignali, D.A., and Karin, M. (2010). Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 11, 70-75.
Turner, M., Schweighoffer, E., Colucci, F., Di Santo, J.P., and Tybulewicz, V.L. (2000). Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol Today 21, 148-154.
Ulanova, M., Asfaha, S., Stenton, G., Lint, A., Gilbertson, D., Schreiber, A., and Befus, D. (2007). Involvement of Syk protein tyrosine kinase in LPS-induced responses in macrophages. J Endotoxin Res 13, 117-125.
Underhill, D.M., and Goodridge, H.S. (2007). The many faces of ITAMs. Trends Immunol 28, 66-73.
Vallabhapurapu, S., and Karin, M. (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27, 693-733.
van de Veerdonk, F.L., Netea, M.G., Dinarello, C.A., and Joosten, L.A. (2011). Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol 32, 110-116.
Van Opdenbosch, N., Gurung, P., Vande Walle, L., Fossoul, A., Kanneganti, T.D., and Lamkanfi, M. (2014). Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun 5, 3209.
Villoutreix, B.O., Laconde, G., Lagorce, D., Martineau, P., Miteva, M.A., and Dariavach, P. (2011). Tyrosine kinase syk non-enzymatic inhibitors and potential anti-allergic drug-like compounds discovered by virtual and in vitro screening. PloS one 6, e21117.
Walsh, J.G., Logue, S.E., Luthi, A.U., and Martin, S.J. (2011). Caspase-1 promiscuity is counterbalanced by rapid inactivation of processed enzyme. J Biol Chem 286, 32513-32524.
Weiss, G., Maaetoft-Udsen, K., Stifter, S.A., Hertzog, P., Goriely, S., Thomsen, A.R., Paludan, S.R., and Frokiaer, H. (2012). MyD88 drives the IFN-beta response to Lactobacillus acidophilus in dendritic cells through a mechanism involving IRF1, IRF3, and IRF7. J Immunol 189, 2860-2868.
Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M.T., Brickey, W.J., and Ting, J.P. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12, 408-415.
Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H.G., Daniel, P.T., and Henze, G. (2001). Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia 15, 1735-1742.
Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., and Mathison, J.C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431-1433.
Wu, N.L., Lee, T.A., Tsai, T.L., and Lin, W.W. (2011). TRAIL-induced keratinocyte differentiation requires caspase activation and p63 expression. J Invest Dermatol 131, 874-883.
Yamada, T., Fujieda, S., Yanagi, S., Yamamura, H., Inatome, R., Yamamoto, H., Igawa, H., and Saito, H. (2001). IL-1 induced chemokine production through the association of Syk with TNF receptor-associated factor-6 in nasal fibroblast lines. J Immunol 167, 283-288.
Yamada, T., Lizhong, S., Takahashi, N., Kubo, S., Narita, N., Suzuki, D., Takabayashi, T., Kimura, Y., and Fujieda, S. (2010). Poly(I:C) induces BLyS-expression of airway fibroblasts through phosphatidylinositol 3-kinase. Cytokine 50, 163-169.
Yamazaki, K., Gohda, J., Kanayama, A., Miyamoto, Y., Sakurai, H., Yamamoto, M., Akira, S., Hayashi, H., Su, B., and Inoue, J. (2009). Two mechanistically and temporally distinct NF-kappaB activation pathways in IL-1 signaling. Sci Signal 2, ra66.
Yanagi, S., Inatome, R., Takano, T., and Yamamura, H. (2001). Syk Expression and Novel Function in a Wide Variety of Tissues. Biochem Biophys Res Commun 288, 495-498.
Yu, M., and Levine, S.J. (2011). Toll-like receptor, RIG-I-like receptors and the NLRP3 inflammasome: key modulators of innate immune responses to double-stranded RNA viruses. Cytokine Growth Factor Rev 22, 63-72.
Zanoni, I., Ostuni, R., Marek, L.R., Barresi, S., Barbalat, R., Barton, G.M., Granucci, F., and Kagan, J.C. (2011). CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147, 868-880.
Zapata, J.M., Lefebvre, S., and Reed, J.C. (2007). Targeting TRAfs for therapeutic intervention. Adv Exp Med Biol 597, 188-201.
Zotti, T., Vito, P., and Stilo, R. (2012). The seventh ring: exploring TRAF7 functions. J Cell Physiol 227, 1280-1284.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55144-
dc.description.abstract先天免疫對於宿主免疫反應是一個很重要的戰略,可以抵抗病原菌入侵。類鐸受體Toll-like receptors (TLRs) 和NOD-like receptors (NLRs) 是重要的模式辨識受體 (PRRs),負責辨識入侵病原菌的特定病原體相關的分子模式 (PAMPs)後進一步啟動發炎反應活化的訊息路徑。脾酪胺酸激酶 (Syk) 是屬於非受體酪胺酸激酶家族(non-receptor tyrosine kinase),會參與多種含有immunoreceptor tyrosine-based activation motifs (ITAMs) 的免疫相關受體所引起的訊息路徑,包含B細胞受體(BCR) 和各種Fc受體(FcR),而在後天免疫反應中扮演著重要角色,同時也與很多免疫相關疾病的病程發展息息相關。近年來,已有報導指出Syk蛋白激酶也與類鐸受體所激發的訊息路徑和調控NLRP3發炎小體 (inflammasome)活化有關連性存在,不過在其中的詳細作用機制目前還不是十分明朗。在本篇論文中,我們提出Syk在調控類鐸受體和NLRP3發炎小體所誘導的發炎反應訊息路徑中有多種的調控角色存在。
首先,我們發現到Syk不僅與TLR4内噬作用有關係,同時也在TLR4媒介的訊息傳遞中扮演雙重的角色。當由其配位體 (LPS) 刺激而使TLR4活化時,與野生型 (wild type) 相比之下,在Syk缺失的巨噬細胞中會更增強TAK1激酶磷酸化及活化,及下游媒介的促發炎細胞激素(proinflammatory cytokines)產生。相反地,在Syk缺失的巨噬細胞中,顯示出會降低由TLR4依賴性的TBK1-IRF3活化路徑,這一個路徑對於產生第一型干擾素是被需要的。我們的結果同時也顯示,當LPS刺激後 Syk會出現在包含TRAF6和TRAF3的訊息複合體中,且由LPS引起的TRAF6和TRAF3的lysine-63–linked ubiquitination會受Syk相反性的調控。我們也確定Syk利用何種domains來與TRAF3、TRAF6、TAK1和TBK1結合在一起,因此這些結果顯示出,Syk在各種不同的TLR媒介反應中是一個重要的調控角色,扮演著對於TLR4媒介的TRAF6及TRAF3的訊息路徑有相反的角色。
除此之外,我們也證明Syk媒介由NLRP3刺激物引起的caspase-1活化。在HEK293T重組系統中,Syk的激酶活性 (kinase activity) 對於caspase-1的活化是必要的,且促進接合器蛋白ASC將NLRP3和其行動器蛋白procaspase-1連結在一起。在本篇研究中,我們發現Syk可以藉由它的激酶區域 (kinase domain) 直接與ASC和NLRP3結合在一起,不過會以間接方式與procaspase-1相互交互作用。Syk可以磷酸化ASC的Y146和Y187的胺基酸,且這兩個位置的磷酸化對於增強ASC寡聚合作用 (oligomerization) 和招募procaspase-1是非常重要的步驟。我們的結果顯示一個新的分子訊息傳遞路徑,發現Syk可以磷酸化ASC而促進NLRP3發炎小體的形成,及成熟發炎細胞激素IL-1b的產生。
總和以上結果,我們發現Syk可以調控先天免疫反應,因此控制Syk活性可能對於調節由TLRs媒介的發炎反應和NLRP3 發炎小體活化是一個有效的方式。在本篇研究中我們提供了一個藥理上發展調節Syk激酶活性的新視野,同時可以讓Syk成為一個重要的標靶蛋白,來治療如類風濕性關節炎和紅班性狼瘡這一類免疫相關的疾病。
zh_TW
dc.description.abstractThe innate immune response triggered by pattern-recognition receptors (PRRs) is an important strategy for the host defense and resists a wide range of pathogens invasion. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are important PRRs which can recognize specific pathogen-associated molecular patterns (PAMPs) on invading pathogens and further trigger inflammatory signaling pathway activation. Spleen tyrosine kinase (Syk) is a non-receptor tyrosine kinase that is involved in numerous immunoreceptors signaling pathways, including B cell receptor (BCR), T cell receptor (TCR) and FcgR that contain immunoreceptor tyrosine-based activation motifs (ITAMs). Thus, Syk plays crucial roles in adaptive immunity and is related with the development of several autoimmune diseases. Recent studies have reported that Syk is involved in the signaling mediated by TLRs and NLRP3 inflammasome; however, the detailed mechanisms linking Syk to TLRs and NLRP3 inflammasome remain unclear. In this thesis, we demonstrate that Syk has multiple roles in controlling TLRs- and NLRP3 inflammasome-mediated signaling pathway.
First of all, we found that Syk was not only involved in the endocytosis of TLR4, but also played a dual role in TLR4-mediated signaling. LPS-dependent stimulation of TLR4 in Syk-deficient macrophages led to enhanced activation of TAK1 and increased production of proinflammatory cytokines, compared to that in wild-type macrophages. In contrast, Syk-deficient macrophages exhibited decreased TLR4-dependent activation of the TBK1 signaling and production of type I IFNs. We demonstrated that Syk was present in both TRAF6- and TRAF3-containing signaling complexes; however, the LPS-dependent, lysine-63–linked ubiquitination of TRAF6 and TRAF3 was oppositely regulated by Syk. We also identified the domains of Syk that interacted with TRAF3, TRAF6, TAK1, and TBK1, factors activated by multiple TLRs, thus suggesting the role of Syk as a common regulator of various TLR responses and played the opposing regulatory roles in TLR4-mediated TRAF6 and TRAF3 signaling pathways.
In addition, we also showed Syk mediates NLRP3 stimuli-induced processing of procaspase-1 and the consequent activation of caspase-1. Moreover, the kinase activity of Syk is required to potentiate caspase-1 activation in reconstituted HEK293T cells system. The adaptor protein ASC bridges NLRP3 with the effector protein caspase-1. Herein, we find that Syk can directly associate with ASC and NLRP3 by its kinase domain, but indirectly interact with procaspase-1. Syk can phosphorylate ASC at Y146 and Y187 residues, and the phosphorylation of both residues is critical to enhance ASC oligomerization and the recruitment of procaspase-1. Collectively, our results reveal new molecular pathway through which Syk promotes NLRP3 inflammasome formation resulting from the phosphorylation of ASC.
Taken together, we found that controlling Syk activity might be effective to modulating TLRs-mediated inflammation and NLRP3 inflammasome activation, which suggest that Syk may fine-tune the innate immune responses. These findings not only provide a new insight into the pharmacologic modulator of Syk kinase but also reveal Syk as a promising therapeutic target in immune-related diseases.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:48:50Z (GMT). No. of bitstreams: 1
ntu-104-D96443006-1.pdf: 2874849 bytes, checksum: 8c0044cd152f2fa2fd910b9c2145904e (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsTABLE OF CONTENTS
口試委員會審定書------------------------------------------------------------------i
誌謝-----------------------------------------------------------------------------------ii
ABBREVIATIONS---------------------------------------------------------------iii
ABSTRACT-------------------------------------------------------------------------v
中文摘要---------------------------------------------------------------------------viii
CHAPTER 1: INTRODUCTION----------------------------------------------1
1.1 INNATE IMMUNITY AND INFLAMMATORY DISEASES------------------------2
1.2 TOLL-LIKE RECEPTORS----------------------------------------------------------------3
1.2.1 Toll-like receptors (TLRs) signaling---------------------------------------------3
1.2.2 TNF receptor–associated factor (TRAF) proteins-----------------------------6
1.2.3 TRAF family proteins in TLRs signaling pathway-----------------------------7
1.3 NLR INFLAMMASOMES-----------------------------------------------------------------9
1.3.1 The NLRs family--------------------------------------------------------------------9
1.3.2 Caspase-1 activation and IL-1b processing by NLRP3 inflammasom----10
1.4 SPLEEN TYROSINE KINASE----------------------------------------------------------12
1.4.1 The structure of spleen tyrosine kinase (Syk) --------------------------------12
1.4.2 The relationship between Syk and diseases-----------------------------------13
1.4.3 Syk is involved in TLRs-Mediated signaling ---------------------------------15
1.4.4 Syk is participated in NLRP3 inflammasome activation -------------------16
CHAPTER 2: SPECIFIC AIMS---------------------------------------------- 19
CHAPTER 3: MATERIALS AND METHODS----------------------------22
3.1 MICE AND ETHICS STATEMENT ----------------------------------------------------23
3.2 REAGENTS AND ANTIBODIES-------------------------------------------------------23
3.3 CELL CULTURE--------------------------------------------------------------------------25
3.4 TLR4 AND FITC-LPS ENDOCYTOSIS ASSAY, AND CD14 STAINING
BY FACS STAINING---------------------------------------------------------------------26
3.5 IMMUNOBLOTTING AND IMMUNOPRECIPITATION--------------------------27
3.6 CYTOKINE ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) ------28
3.7 NITRITE ASSAY--------------------------------------------------------------------------29
3.8 REVERSE-TRANSCRIPTION (RT) REAL-TIME POLYMERASE CHAIN REACTION (PCR) AND PRIMER SEQUENCES----------------------------------29
3.9 MTT ASSAY AND CRYSTAL VIOLET METHOD--------------------------------31
3.10 PLASMID CONSTRUCT AND SITE-DIRECTED MUTAGENESIS-------------31
3.11 TRANSIENT TRANSFECTION AND SMALL INTERFERING (SI)RNA-------32
3.12 FLUORESCENT-LABELED INHIBITOR OF CASPASES ASSAY (FLICA)----33
3.13 IN VITRO SYK-MEDIATED PHOSPHORYLATION-------------------------------34
3.14 RECONSTITUTED CASPASE-1 ACTIVATION IN HEK293T CELL SYSTEM------------------------------------------------------------------------------------35
3.15 IN VITRO CASPASE-1 ACTIVITY ASSAY-------------------------------------------35
3.16 ASC OLIGOMERIZATION CROSS-LINKING ASSAY----------------------------35
3.17 STATISTICAL EVALUATION AND IMAGE QUANTIFICATION---------------36
CHAPTER 4: RESULTS--------------------------------------------------------37
PART Ⅰ: THE TYROSINE KINASE SYK DIFFERENTIALLY REGULATES TOLL-LIKE RECEPTOR SIGNALING DOWNSTREAM OF THE ADAPTOR MOLECULES TRAF6 AND TRAF3--------------------------------------------------------38
4.1 Syk is required for the LPS-dependent endocytosis of TLR4 and CD14-----------38
4.2 Deficiency in Syk increases the production of inflammatory mediators but decreases the production of type I IFNs in response to LPS-------------------------39
4.3 Deficiency in Syk differentially regulates cytokine production mediated by MyD88 and TRIF in response to other TLRs------------------------------------------41
4.4 Syk inhibits TAK1-dependent phosphorylation of JNK, p38, and IKK but enhances TBK1-dependent phosphorylation of IRF3---------------------------------42
4.5 Syk regulates the ubiquitination of TRAF3 and TRAF6 in response to TLR stimulation----------------------------------------------------------------------------------45
4.6 Syk physically interacts with TLR signaling components upon ligand stimulation----------------------------------------------------------------------------------46
4.7 Syk can directly bind to TRAF3, TRAF6, TAK1 and TBK1-------------------------47
PART Ⅱ: SYK INVOLVES IN NLRP3 INFLAMMASOME-MEDIATED CASPASE-1 ACTIVATION THROUGH ADAPTOR ASC PHOSPHORYLATION AND ENHANCED OLIGOMERIZATION------------------------------------------------49
4.8 Syk activity is required for NLRP3-mediated caspase-1 activation-----------------49
4.9 Syk promotes NLRP3 stimuli-mediated ASC oligomerization and inflammasome formation------------------------------------------------------------------------------------51
4.10 Syk phosphorylates ASC at Y146 and Y187 and leads to increased NLRP3 inflammasome formation-----------------------------------------------------------------54
4.11 Tyrosine residues 146 and 187 on ASC are required for ASC oligomerization----55
4.12 Syk regulates IL-1b secretion through affecting the gene expression of NLRP3 and pro-IL-1b------------------------------------------------------------------------------------56
CHAPTER 5: DISCUSSION AND CONCLUSION----------------------59
CHAPTER 6: REFERENCES ------------------------------------------------72
CHAPTER 7: FIGURES AND LEGENDS---------------------------------82
CHAPTER 8: SUMMARY FIGURE ---------------------------------------119
CHAPTER 9: PUBLICATIONS---------------------------------------------120
dc.language.isoen
dc.subject發炎小體zh_TW
dc.subject訊息傳遞zh_TW
dc.subject發炎反應zh_TW
dc.subject先天免疫反應zh_TW
dc.subjectubiquitinationen
dc.subjectTLRen
dc.subjectNLRP3en
dc.subjectinflammationen
dc.subjectTRAFen
dc.subjectSyken
dc.title探討脾酪胺酸激酶調控類鐸受體訊息傳遞及NLRP3發炎小體活化的角色zh_TW
dc.titleThe roles of spleen tyrosine kinase in regulation of Toll-like receptor signaling and NLRP3 inflammasome activationen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee符文美(Wen-Mei Fu),謝世良(Shie-Liang Hsieh),曾賢忠(Shiang-Jong Tzeng),蔡丰喬(Feng-Chiao Tsai)
dc.subject.keyword先天免疫反應,發炎反應,訊息傳遞,發炎小體,zh_TW
dc.subject.keywordSyk,TLR,NLRP3,inflammation,TRAF,ubiquitination,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2015-01-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved