Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55141
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹建和(Jenho Tsao)
dc.contributor.authorYu-Ting Linen
dc.contributor.author林祐霆zh_TW
dc.date.accessioned2021-06-16T03:48:44Z-
dc.date.available2017-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-01-27
dc.identifier.citation[1] A.E. Guedel. Inhalational Anesthesia: A Fundamental Guide. New York, Macmillan,
1937.
[2] Makoto Kato, Toru Komatsu, Tomomasa Kimura, Fumihiko Sugiyama, Koichi
Nakashima, and Yasuhiro Shimada. Spectral analysis of heart rate variability during
isoflurane anesthesia. Anesthesiology, 77(4):669–674, 1992.
[3] Ronald D Miller, Lars I Eriksson, Lee Fleisher, Jeanine P Wiener-Kronish, and Neal H
Cohen. Miller’s anesthesia. Elsevier Health Sciences, 2014.
[4] ERJ Seitsonen, IKJ Korhonen, MJ Van Gils, M Huiku, JMP Lötjönen, KT Korttila,
and AM Yli-Hankala. EEG spectral entropy, heart rate, photoplethysmography and
motor responses to skin incision during sevoflurane anaesthesia. Acta Anaesthesiologica Scandinavica, 49(3):284–292, 2005.
[5] A Vakkuri, A Yli-Hankala, P Talja, S Mustola, H Tolvanen-Laakso, Tl Sampson, and
H Viertiö-Oja. Time-frequency balanced spectral entropy as a measure of anesthetic
drug effect in central nervous system during sevoflurane, propofol, and thiopental
anesthesia. Acta Anaesthesiologica Scandinavica, 48(2):145–153, 2004.
91
Bibliography
[6] H Storm, R Støen, P Klepstad, F Skorpen, E Qvigstad, and J Ræder. Nociceptive
stimuli responses at different levels of general anaesthesia and genetic variability. Acta
Anaesthesiologica Scandinavica, 57(1):89–99, 2013.
[7] Lionel J Velly, Marc F Rey, Nicolas J Bruder, François A Gouvitsos, Tatiana Witjas,
Jean Marie Regis, Jean Claude Peragut, and François M Gouin. Differential dynamic
of action on cortical and subcortical structures of anesthetic agents during induction
of anesthesia. Anesthesiology, 107(2):202–212, 2007.
[8] Martin Soehle, Richard K Ellerkmann, Matthias Grube, Matthias Kuech, Stefan
Wirz, Andreas Hoeft, and Joergen Bruhn. Comparison between bispectral index and
patient state index as measures of the electroencephalographic effects of sevoflurane.
Anesthesiology, 109(5):799–805, 2008.
[9] A Ekman, Lars Brudin, and R Sandin. A comparison of bispectral index and rapidly
extracted auditory evoked potentials index responses to noxious stimulation during
sevoflurane anesthesia. Anesthesia & Analgesia, 99(4):1141–1146, 2004.
[10] Gunter N Schmidt, Petra Bischoff, Thomas Standl, Angelika Hellstern, Olaf Teuber,
and Jochen Schulte Esch. Comparative evaluation of the datex-ohmeda s/5 entropy
module and the bispectral index (r) monitor during propofol-remifentanil anesthesia.
Anesthesiology, 101(6):1283–1290, 2004.
[11] J Wennervirta, M Hynynen, A-M KOIVUSALO, K Uutela, M Huiku, and A Vakkuri.
Surgical stress index as a measure of nociception/antinociception balance during general anesthesia. Acta anaesthesiologica Scandinavica, 52(8):1038–1045, 2008.
[12] Joseph F Antognini and Kevin Schwartz. Exaggerated anesthetic requirements in the
preferentially anesthetized brain. Anesthesiology, 79(6):1244–1249, 1993.
92
Bibliography
[13] Joseph F Antognini, Xiao Wei Wang, and E Carstens. Isoflurane action in the spinal
cord blunts electroencephalographic and thalamic–reticular formation responses to
noxious stimulation in goats. Anesthesiology, 92(2):559, 2000.
[14] Dwain L Eckberg. Point: counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism.
Journal of applied physiology, 106(5):1740–1742, 2009.
[15] M Pöyhönen, S Syväoja, J Hartikainen, E Ruokonen, and J Takala. The effect of
carbon dioxide, respiratory rate and tidal volume on human heart rate variability.
Acta Anaesthesiologica Scandinavica, 48(1):93–101, 2004.
[16] John E Hall. Guyton and Hall Textbook of Medical Physiology: Enhanced E-book.
Elsevier Health Sciences, 2010.
[17] O Detsch, E Kochs, M Siemers, B Bromm, and C Vahle-Hinz. Differential effects of
isoflurane on excitatory and inhibitory synaptic inputs to thalamic neurones in vivo.
British Journal of Anaesthesia, 89(2):294–300, 2002.
[18] Michael S Avidan, Eric Jacobsohn, David Glick, Beth A Burnside, Lini Zhang, Alex
Villafranca, Leah Karl, Saima Kamal, Brian Torres, Michael O’Connor, et al. Prevention of intraoperative awareness in a high-risk surgical population. New England
Journal of Medicine, 365(7):591–600, 2011.
[19] Terri G Monk, Vikas Saini, B Craig Weldon, and Jeffrey C Sigl. Anesthetic management and one-year mortality after noncardiac surgery. Anesthesia & Analgesia, 100
(1):4–10, 2005.
[20] Rivka Melamed, Shahar Bar-Yosef, Guy Shakhar, Keren Shakhar, and Shamgar BenEliyahu. Suppression of natural killer cell activity and promotion of tumor metastasis
93
Bibliography
by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms
and prophylactic measures. Anesthesia Analgesia, 97(5):1331–1339, 2003.
[21] KJS Anand and PR Hickey. Halothane–morphine compared with high-dose sufentanil
for anesthesia and postoperative analgesia in neonatal cardiac surgery. New England
Journal of Medicine, 326(1):1–9, 1992.
[22] Arthur W Wallace, Daniel Galindez, Ali Salahieh, Elizabeth L Layug, Eleanor A Lazo,
Kathy A Haratonik, Denis M Boisvert, and David Kardatzke. Effect of clonidine on
cardiovascular morbidity and mortality after noncardiac surgery. Anesthesiology, 101
(2):284–293, 2004.
[23] Dennis T Mangano, Elizabeth L Layug, Arthur Wallace, and Ida Tateo. Effect of
atenolol on mortality and cardiovascular morbidity after noncardiac surgery. New
England Journal of Medicine, 335(23):1713–1721, 1996.
[24] Linda Bardram, Peter Funch-Jensen, P Jensen, H Kehlet, and ME Crawford. Recovery after laparoscopic colonic surgery with epidural analgesia, and early oral nutrition
and mobilisation. The Lancet, 345(8952):763–764, 1995.
[25] RA Mitchell and AJ Berger. Neural regulation of respiration. The American review
of respiratory disease, 111(2):206–224, 1975.
[26] Frank P Elsen and Jan-Marino Ramirez. Postnatal development differentially affects voltage-activated calcium currents in respiratory rhythmic versus nonrhythmic
neurons of the pre-bötzinger complex. Journal of neurophysiology, 94(2):1423–1431,
2005.
94
Bibliography
[27] Jens C Rekling and Jack L Feldman. Prebötzinger complex and pacemaker neurons:
hypothesized site and kernel for respiratory rhythm generation. Annual Review of
Physiology, 60(1):385–405, 1998.
[28] JM Ramirez, UJA Quellmalz, B Wilken, and DW Richter. The hypoxic response
of neurones within the in vitro mammalian respiratory network. The Journal of
Physiology, 507(2):571–582, 1998.
[29] Steven A Shea. Behavioural and arousal-related influences on breathing in humans.
Experimental physiology, 81(1):1–26, 1996.
[30] Nikolaus R McFarland and Suzanne N Haber. Thalamic relay nuclei of the basal
ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple
frontal cortical areas. The Journal of neuroscience, 22(18):8117–8132, 2002.
[31] SC Ramsay, L Adams, K Murphy, DR Corfield, S Grootoonk, DL Bailey, RS Frackowiak, and A Guz. Regional cerebral blood flow during volitional expiration in man:
a comparison with volitional inspiration. The Journal of physiology, 461(1):85–101,
1993.
[32] Leanne C Mckay, Karl C Evans, Richard SJ Frackowiak, and Douglas R Corfield.
Neural correlates of voluntary breathing in humans. Journal of Applied Physiology,
95(3):1170–1178, 2003.
[33] K Murphy, DR Corfield, A Guz, GR Fink, RJS Wise, J Harrison, and L Adams.
Cerebral areas associated with motor control of speech in humans. Journal of Applied
Physiology, 83(5):1438–1447, 1997.
95
Bibliography
[34] Kristina Simonyan, Ziad S Saad, Torrey MJ Loucks, Christopher J Poletto, and
Christy L Ludlow. Functional neuroanatomy of human voluntary cough and sniff
production. Neuroimage, 37(2):401–409, 2007.
[35] Tod B Sloan. Anesthetic effects on electrophysiologic recordings. Journal of clinical
neurophysiology, 15(3):217–226, 1998.
[36] Junya Kuribayashi, Shigeki Sakuraba, Masanori Kashiwagi, Eiki Hatori, Miki Tsujita, Yuki Hosokawa, Junzo Takeda, and Shun-ichi Kuwana. Neural mechanisms of
sevoflurane-induced respiratory depression in newborn rats. Anesthesiology, 109(2):
233–242, 2008.
[37] Koichi Takita and Yuji Morimoto. Effects of sevoflurane on respiratory rhythm oscillators in the medulla oblongata. Respiratory physiology & neurobiology, 173(1):86–
94, 2010.
[38] BR Fink, EC Hanks, SH Ngai, and EM Papper. Central regulation of respiration
during anesthesia and wakefulness. Annals of the New York Academy of Sciences, 109
(2):892–900, 1963.
[39] G. B. Moody, R. G. Mark, A. Zoccola, and S. Mantero. Derivation of respiratory
signals from multi-lead ecgs. Comput. Cardiol., 12:113–116, 1985.
[40] J. H. Houtveen, P. F. Groot, and E. J. de Geus. Validation of the thoracic impedance
derived respiratory signal using multilevel analysis. Int J Psychophysiol., 59:97–106,
2006.
[41] J. Flaherty. Influence of respiration on recording cardiac potentials. Am. J. Cardiol.,
20:21–28, 1967.
96
Bibliography
[42] Task Force of the European Society of Cardiology, Task Force of the European Society of Cardiology, et al. the north american society of pacing and electrophysiology.
heart rate variability: standards of measurement, physiological interpretation and
clinical use. Circulation, 93(5):1043–1065, 1996.
[43] Yu-Ting Lin, Shu-Shya Hseu, Huey-Wen Yien, and Jenho Tsao. Analyzing autonomic activity in electrocardiography about general anesthesia by spectrogram with
multitaper time-frequency reassignment. In Biomedical Engineering and Informatics
(BMEI), 2011 4th International Conference on, volume 2, pages 630–634. IEEE, 2011.
[44] Ingrid Daubechies, Jianfeng Lu, and Hau-Tieng Wu. Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Applied and computational harmonic analysis, 30(2):243–261, 2011.
[45] Yu-Chun Chen, Ming-Yen Cheng, and Hau-Tieng Wu. Non-parametric and adaptive
modelling of dynamic periodicity and trend with heteroscedastic and dependent errors. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76
(3):651–682, 2014.
[46] HH Huang, HL Chan, PL Lin, CP Wu, and CH Huang. Time-frequency spectral
analysis of heart rate variability during induction of general anaesthesia. British
journal of anaesthesia, 79(6):754–758, 1997.
[47] Jun Xiao and Patrick Flandrin. Multitaper time-frequency reassignment for nonstationary spectrum estimation and chirp enhancement. Signal Processing, IEEE
Transactions on, 55(6):2851–2860, 2007.
97
Bibliography
[48] AT Mazzeo, E La Monaca, R Di Leo, G Vita, and LB Santamaria. Heart rate
variability: a diagnostic and prognostic tool in anesthesia and intensive care. Acta
Anaesthesiologica Scandinavica, 55(7):797–811, 2011.
[49] Gaurav Thakur, Eugene Brevdo, Neven S Fučkar, and Hau-Tieng Wu. The synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and
new paleoclimate applications. Signal Processing, 93(5):1079–1094, 2013.
[50] Patrick Flandrin. Time-frequency/time-scale analysis, volume 10. Academic Press,
1998.
[51] Ingrid Daubechies et al. Ten lectures on wavelets, volume 61. Philadelphia: SIAM,
1992.
[52] Charles K Chui. Wavelets: A Mathematical Tool for Signal Analysis, volume 1. SIAM,
1997.
[53] Charles K Chui. An introduction to wavelets, volume 1. Academic press, 1992.
[54] Kunihiko Kodera, Roger Gendrin, and C de Villedary. Analysis of time-varying signals
with small bt values. Acoustics, Speech and Signal Processing, IEEE Transactions
on, 26(1):64–76, 1978.
[55] François Auger and Patrick Flandrin. Improving the readability of time-frequency
and time-scale representations by the reassignment method. Signal Processing, IEEE
Transactions on, 43(5):1068–1089, 1995.
[56] Ingrid Daubechies and Stephane Maes. A nonlinear squeezing of the continuous
wavelet transform based on auditory nerve models. Boca Raton, FL, USA: CRC
Press, 1996.
98
Bibliography
[57] H.-T. Wu, P. Flandrin, and I. Daubechies. One or Two Frequencies? The Synchrosqueezing Answers. Advances in Adaptive Data Analysis, 3:29–39, 2011.
[58] Gaurav Thakur and Hau-Tieng Wu. Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples. SIAM Journal on Mathematical Analysis,
43(5):2078–2095, 2011.
[59] Hau-tieng Wu. Instantaneous frequency and wave shape functions (i). Applied and
Computational Harmonic Analysis, 35(2):181–199, 2013.
[60] Hau-Tieng Wu, Yi-Hsin Chan, Yu-Ting Lin, and Yung-Hsin Yeh. Using synchrosqueezing transform to discover breathing dynamics from ecg signals. Applied
and Computational Harmonic Analysis, 36(2):354–359, 2014.
[61] François Auger, Patrick Flandrin, Yu-Ting Lin, Stephen McLaughlin, Sylvain
Meignen, Thomas Oberlin, Hau Tieng Wu, et al. A coherent overview of timefrequency reassignment and synchrosqueezing. IEEE Signal Processing Magazine,
30(6):32–41, 2013.
[62] M Kay Steven. Modern Spectral Estimation: Theory and Application. Prentice-Hall,
N.J., 1988.
[63] David J Thomson. Spectrum estimation and harmonic analysis. Proceedings of the
IEEE, 70(9):1055–1096, 1982.
[64] Metin Bayram and Richard G Baraniuk. Multiple window time-varying spectrum
estimation. Nonlinear and Nonstationary signal processing, pages 292–316, 2000.
[65] Charles K Chui and Guanrong Chen. Kalman filtering: with real-time applications.
Springer, N.Y., 2009.
99
Bibliography
[66] Lewis B Sheiner, Donald R Stanski, S Vozeh, R_D Miller, and J Ham. Simultaneous
modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine.
Clinical pharmacology and therapeutics, 25(3):358–371, 1979.
[67] Warren D Smith, Robert C Dutton, and Ty N Smith. Measuring the performance of
anesthetic depth indicators. Anesthesiology, 84(1):38–51, 1996.
[68] Rory Wolfe and James Hanley. If we’re so different, why do we keep overlapping?
when 1 plus 1 doesn’t make 2. Canadian Medical Association Journal, 166(1):65–66,
2002.
[69] Yu-Ting LIN, Hau-tieng WU, Jenho Tsao, H-W YIEN, and S-S HSEU. Timevarying spectral analysis revealing differential effects of sevoflurane anaesthesia: nonrhythmic-to-rhythmic ratio. Acta Anaesthesiologica Scandinavica, 58(2):157–167,
2014.
[70] CM Blues and CJ Pomfrett. Respiratory sinus arrhythmia and clinical signs of anaesthesia in children. British journal of anaesthesia, 81(3):333–337, 1998.
[71] DC Galletly, AM Westenberg, BJ Robinson, and T Corfiatis. Effect of halothane,
isoflurane and fentanyl on spectral components of heart rate variability. British journal
of anaesthesia, 72(2):177–180, 1994.
[72] JW Sleigh and J Donovan. Comparison of bispectral index, 95% spectral edge frequency and approximate entropy of the eeg, with changes in heart rate variability
during induction of general anaesthesia. British journal of anaesthesia, 82(5):666–
671, 1999.
[73] M Luginbühl, H Yppärilä-Wolters, M Rüfenacht, S Petersen-Felix, and I Korhonen.
Heart rate variability does not discriminate between different levels of haemodynamic
100
Bibliography
responsiveness during surgical anaesthesia+. British journal of anaesthesia, 98(6):
728–736, 2007.
[74] Masaki Tanaka and Jun Kunimatsu. Contribution of the central thalamus to the
generation of volitional saccades. European Journal of Neuroscience, 33(11):2046–
2057, 2011.
[75] Jean Bimar and J Weldon Bellville. Arousal reactions during anesthesia in man.
Anesthesiology, 47(5):449–454, 1977.
[76] F. Gunnarsson, F. Gustafsson, and F. Gunnarsson. Frequency analysis using nonuniform sampling with application to active queue management. In Acoustics, Speech,
and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE International Conference on, volume 2, pages ii–581–4 vol.2, May 2004.
[77] R. Vio, T. Strohmer, and W. Wamsteker. On the reconstruction of irregularly sampled
time series. Publications of the Astronomical Society of the Pacific, 112(767):74–90,
2000.
[78] C. de Boor. A practical guide to splines. Springer-Verlag, 1978.
[79] Carl de Boor and George J Fix. Spline approximation by quasi-interpolants. Journal
of Approximation Theory, 8:96–110, 1973.
[80] Tom Lyche and Larry L Schumaker. Local spline approximation methods. Journal
of Approximation Theory, 15(4):294–325, 1975.
[81] L. L. Schumaker. Spline functions: Basic theory. Wiley-Interscience, 1981.
[82] J. de De Villiers. Mathematics of Approximation. Atlantis Press, 2012.
101
Bibliography
[83] G. Chen, Charles K Chui, and M. Lai. Construction of real-time spline quasiinterpolation schemes. Approx. Th. and its Appl., 4:61–75, 1988.
[84] Charles K Chui and Harvey Diamond. A general framework for local interpolation.
Numerische Mathematik, 58(1):569–581, 199
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55141-
dc.description.abstract瞬時心跳速率的變化在麻醉深度較深時顯得規律振蕩,在麻醉深度較淺時則顯得較不規律。這個「律動至非律動」現象無法從目前標準麻醉監測儀器上的心電圖波形觀察到。為了探討可能的臨床價值,我提出「可適性諧波分析」模型,此模型符合生理上的特性,並提供足夠的數學條件以進一步定量化這個現象。基於此模型,我們可以使用multitaper Synchrosqueezing transform來實現時變功率頻譜,進而運算定量指標:「非律動至律動」指標(NRR指標)。之後我運用一個臨床資料庫來分析NRR指標的行為,並且將它與其它現行標準麻醉深度指標比較。統計結果顯示NRR指標可以提供額外的臨床資訊反映運動動作的反應,以並行於目前的標準工具。此外我還發現了對於手術傷害性刺激的指標。最後,我提出一個有助於將成果實用化的即時內插方案。zh_TW
dc.description.abstractVariations of instantaneous heart rate appears regularly oscillatory in deeper levels of anesthesia and less regular in lighter levels of anesthesia. It is impossible to observe this ``rhythmic-to-non-rhythmic' phenomenon from raw electrocardiography waveform in current standard anesthesia monitors. To explore the possible clinical value, I proposed the adaptive harmonic model, which fits the descriptive property in physiology, and provides adequate mathematical conditions for the quantification. Based on the adaptive harmonic model, multitaper Synchrosqueezing transform was used to provide time-varying power spectrum, which facilitates to compute the quantitative index: ``Non-rhythmic-to-Rhythmic Ratio' index (NRR index). I then used a clinical database to analyze the behavior of NRR index and compare it with other standard indices of anesthetic depth. The positive statistical results suggest that NRR index provides addition clinical information regarding motor reaction, which aligns with current standard tools. Furthermore, the ability to indicates the noxious stimulation is an additional finding. Lastly, I have proposed an real-time interpolation scheme to contribute my study further as a clinical application.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:48:44Z (GMT). No. of bitstreams: 1
ntu-104-D99945006-1.pdf: 10829617 bytes, checksum: d8d4fc1e166c6acc43761c9a1e8c7023 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要ii
Abstract iii
Acknowledgements iv
Contents v
List of Figures viii
List of Tables ix
Abbreviations x
1 Introduction 1
1.1 Field of Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 An Obscure Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Quantification for Depth of Anesthesia . . . . . . . . . . . . . . . . . . . . . 2
1.4 Project Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Background and Previous Work 5
2.1 Historical Background in Anesthesia . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Current View on Anesthesia . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Perspective from Anesthesiology . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Anesthesia and Long-Term Mortality . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Perspective from Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Physiology of Amplitude and Frequency Modulation . . . . . . . . . . . . . 10
2.7 Instantaneous Heart Rate and Heart Rate Variability . . . . . . . . . . . . . 11
2.8 Integration of Multidisciplinary Backgrounds . . . . . . . . . . . . . . . . . 12
3 Theory and Modeling 14
3.1 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Description of Proposed Methodology . . . . . . . . . . . . . . . . . . . . . 14
3.3 Adaptive Harmonic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Non-rhythmic to Rhythmic Ratio . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Non-rhythmic Component vs. Stochastic Process . . . . . . . . . . . . . . . 22
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Time-Frequency Analysis, Reassignment, and Synchrosqueezing 25
4.1 Time-Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Reassignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Synchrosqueezing Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Multitaper Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Multitaper Synchrosqueezing Spectrogram . . . . . . . . . . . . . . . . . . . 34
4.6 Adaptive Filter and Parametric Estimation . . . . . . . . . . . . . . . . . . 35
4.7 Common Condition in Physiology and Mathematics . . . . . . . . . . . . . 38
5 Performance Evaluation using Clinical Data 39
5.1 Clinical Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Anesthesia Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Serial Prediction Probability Analysis in Predicting Anesthetic Events . . . 44
5.6 Correlations with Sevoflurane Concentration . . . . . . . . . . . . . . . . . . 45
5.7 Algorithm of Serial Prediction Probability (sPK) Analysis . . . . . . . . . . 45
6 Results from Clinical Database 48
6.1 Visual Information in TF Plane . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Multiple Component Phenomenon . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Ability to Predict Anesthetic Events . . . . . . . . . . . . . . . . . . . . . . 57
6.4 Correlation with Sevoflurane Concentration . . . . . . . . . . . . . . . . . . 58
6.5 Quantitative Results of Noxious Stimulation . . . . . . . . . . . . . . . . . . 60
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7 Implications to Anesthesiology and Physiology 66
7.1 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 Genuineness of NRR index . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.3 Existing Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.4 Physiologic Interpretation of NRR . . . . . . . . . . . . . . . . . . . . . . . 68
7.5 Clinical Application of the NRR Index . . . . . . . . . . . . . . . . . . . . . 71
7.6 Potential Index in Noxious Stimulation . . . . . . . . . . . . . . . . . . . . . 71
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8 Real-time Processing Using the Blending Operator 73
8.1 Real-time Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2 Technique Obstacles for Real-time Processing . . . . . . . . . . . . . . . . . 74
vi
Contents
8.3 B-spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.4 Quasi-interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.5 Local Interpolation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.6 Blending Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.7 Real-time tvPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9 Conclusion 86
9.1 Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.2 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Bibliography 91
dc.language.isoen
dc.subject心電圖zh_TW
dc.subject麻醉深度zh_TW
dc.subject時頻域分析zh_TW
dc.subject瞬時心跳速率zh_TW
dc.subjectelectrocardiographyen
dc.subjectinstantaneous heart rateen
dc.subjectrhythmic-to-non-rhythmicen
dc.subjectSynchrosqueezing transformen
dc.subjecttime-frequency analysisen
dc.subjecttime-varying power spectrumen
dc.subjectdepth of anesthesiaen
dc.title建模與定量麻醉心電訊號裡的節律與非節律現象zh_TW
dc.titleThe Modeling and Quantification of Rhythmic to Non-rhythmic Phenomenon in Electrocardiography during Anesthesiaen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee宋孔彬(Kung-Bin Sung),詹曉龍(Hsiao-Lung Chan),黃念祖(Nien-Tsu Huang),吳浩榳(Hau-tieng Wu)
dc.subject.keyword麻醉深度,瞬時心跳速率,時頻域分析,心電圖,zh_TW
dc.subject.keywordinstantaneous heart rate,rhythmic-to-non-rhythmic,Synchrosqueezing transform,time-frequency analysis,time-varying power spectrum,depth of anesthesia,electrocardiography,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2015-01-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
10.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved