請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55136
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李百祺(Pai-Chi Li) | |
dc.contributor.author | Chia-Lun Yeh | en |
dc.contributor.author | 葉佳倫 | zh_TW |
dc.date.accessioned | 2021-06-16T03:48:33Z | - |
dc.date.available | 2017-03-13 | |
dc.date.copyright | 2015-03-13 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-01-27 | |
dc.identifier.citation | [1] Y. Hagiwara, Y. Saijo, E. Chimoto, H. Akita, Y. Sasano, F. Matsumoto, et al., 'Increased elasticity of capsule after immobilization in a rat knee experimental model assessed by scanning acoustic microscopy,' Ups J Med Sci, vol. 111, pp. 303-13, 2006.
[2] K. A. Hildebrand, M. Zhang, and D. A. Hart, 'High rate of joint capsule matrix turnover in chronic human elbow contractures,' Clin Orthop Relat Res, vol. 439, pp. 228-34, Oct 2005. [3] F. Matsumoto, G. Trudel, and H. K. Uhthoff, 'High collagen type I and low collagen type III levels in knee joint contracture: an immunohistochemical study with histological correlate,' Acta Orthop Scand, vol. 73, pp. 335-43, Jun 2002. [4] S. H. Gallay, R. R. Richards, and S. W. O'Driscoll, 'Intraarticular capacity and compliance of stiff and normal elbows,' Arthroscopy, vol. 9, pp. 9-13, 1993. [5] M. Akai, Y. Shirasaki, and T. Tateishi, 'Viscoelastic properties of stiff joints: a new approach in analyzing joint contracture,' Biomed Mater Eng, vol. 3, pp. 67-73, Summer 1993. [6] E. E. Peacock, Jr., 'Some biochemical and biophysical aspects of joint stiffness: role of collagen synthesis as opposed to altered molecular bonding,' Ann Surg, vol. 164, pp. 1-12, Jul 1966. [7] P. Kannus, 'Structure of the tendon connective tissue,' Scand J Med Sci Sports, vol. 10, pp. 312-20, Dec 2000. [8] A. J. Banes, P. Weinhold, X. Yang, M. Tsuzaki, D. Bynum, M. Bottlang, et al., 'Gap junctions regulate responses of tendon cells ex vivo to mechanical loading,' Clin Orthop Relat Res, pp. S356-70, Oct 1999. [9] P. Sharma and N. Maffulli, 'Tendon injury and tendinopathy: healing and repair,' J Bone Joint Surg Am, vol. 87, pp. 187-202, Jan 2005. [10] D. T. Kirkendall and W. E. Garrett, 'Function and biomechanics of tendons,' Scand J Med Sci Sports, vol. 7, pp. 62-6, Apr 1997. [11] M. O'Brien, 'Functional anatomy and physiology of tendons,' Clin Sports Med, vol. 11, pp. 505-20, Jul 1992. [12] S. Arya and K. Kulig, 'Tendinopathy alters mechanical and material properties of the Achilles tendon,' J Appl Physiol (1985), vol. 108, pp. 670-5, Mar 2010. [13] A. A. Biewener and T. J. Roberts, 'Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective,' Exerc Sport Sci Rev, vol. 28, pp. 99-107, Jul 2000. [14] C. C. Ooi, P. Malliaras, M. E. Schneider, and D. A. Connell, ''Soft, hard, or just right?' Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries,' Skeletal Radiol, vol. 43, pp. 1-12, Jan 2014. [15] M. J. Rutten, G. J. Jager, and J. G. Blickman, 'From the RSNA refresher courses: US of the rotator cuff: pitfalls, limitations, and artifacts,' Radiographics, vol. 26, pp. 589-604, Mar-Apr 2006. [16] D. J. Connolly, L. Berman, and E. G. McNally, 'The use of beam angulation to overcome anisotropy when viewing human tendon with high frequency linear array ultrasound,' Br J Radiol, vol. 74, pp. 183-5, Feb 2001. [17] C. Martinoli, S. Bianchi, and L. E. Derchi, 'Tendon and nerve sonography,' Radiol Clin North Am, vol. 37, pp. 691-711, viii, Jul 1999. [18] J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, 'Elastography: a quantitative method for imaging the elasticity of biological tissues,' Ultrason Imaging, vol. 13, pp. 111-34, Apr 1991. [19] S. Catheline, J. L. Thomas, F. Wu, and M. A. Fink, 'Diffraction field of a low frequency vibrator in soft tissues using transient elastography,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 46, pp. 1013-9, 1999. [20] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, 'Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,' Ultrasound Med Biol, vol. 24, pp. 1419-35, Nov 1998. [21] J. Bercoff, M. Tanter, and M. Fink, 'Supersonic shear imaging: a new technique for soft tissue elasticity mapping,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 51, pp. 396-409, Apr 2004. [22] A. M. Moseley, R. D. Herbert, E. J. Nightingale, D. A. Taylor, T. M. Evans, G. J. Robertson, et al., 'Passive stretching does not enhance outcomes in patients with plantarflexion contracture after cast immobilization for ankle fracture: a randomized controlled trial,' Arch Phys Med Rehabil, vol. 86, pp. 1118-26, Jun 2005. [23] R. Muratore, T. Akabas, and I. B. Muratore, 'High-intensity focused ultrasound ablation of ex vivo bovine achilles tendon,' Ultrasound Med Biol, vol. 34, pp. 2043-50, Dec 2008. [24] N. A. Watkin, G. R. ter Haar, and I. Rivens, 'The intensity dependence of the site of maximal energy deposition in focused ultrasound surgery,' Ultrasound Med Biol, vol. 22, pp. 483-91, 1996. [25] C. R. Hill, I. Rivens, M. G. Vaughan, and G. R. ter Haar, 'Lesion development in focused ultrasound surgery: a general model,' Ultrasound Med Biol, vol. 20, pp. 259-69, 1994. [26] R. Righetti, F. Kallel, R. J. Stafford, R. E. Price, T. A. Krouskop, J. D. Hazle, et al., 'Elastographic characterization of HIFU-induced lesions in canine livers,' Ultrasound Med Biol, vol. 25, pp. 1099-113, Sep 1999. [27] J. E. Parsons, C. A. Cain, G. D. Abrams, and J. B. Fowlkes, 'Pulsed cavitational ultrasound therapy for controlled tissue homogenization,' Ultrasound Med Biol, vol. 32, pp. 115-29, Jan 2006. [28] J. H. Hwang, A. A. Brayman, M. A. Reidy, T. J. Matula, M. B. Kimmey, and L. A. Crum, 'Vascular effects induced by combined 1-MHz ultrasound and microbubble contrast agent treatments in vivo,' Ultrasound Med Biol, vol. 31, pp. 553-64, Apr 2005. [29] U. Rosenschein, V. Furman, E. Kerner, I. Fabian, J. Bernheim, and Y. Eshel, 'Ultrasound imaging-guided noninvasive ultrasound thrombolysis: preclinical results,' Circulation, vol. 102, pp. 238-45, Jul 11 2000. [30] J. H. Hwang, Y. Zhou, C. Warren, A. A. Brayman, and L. A. Crum, 'Targeted venous occlusion using pulsed high-intensity focused ultrasound,' IEEE Trans Biomed Eng, vol. 57, pp. 37-40, Jan 2010. [31] Z. Xu, G. Owens, D. Gordon, C. Cain, and A. Ludomirsky, 'Noninvasive creation of an atrial septal defect by histotripsy in a canine model,' Circulation, vol. 121, pp. 742-749, 2010. [32] W. Hundt, E. L. Yuh, M. D. Bednarski, and S. Guccione, 'Gene expression profiles, histologic analysis, and imaging of squamous cell carcinoma model treated with focused ultrasound beams,' AJR Am J Roentgenol, vol. 189, pp. 726-36, Sep 2007. [33] C. C. Coussios, C. H. Farny, G. T. Haar, and R. A. Roy, 'Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU),' Int J Hyperthermia, vol. 23, pp. 105-20, Mar 2007. [34] M. S. Canney, T. D. Khokhlova, V. A. Khokhlova, M. R. Bailey, J. H. Hwang, and L. A. Crum, 'Tissue Erosion Using Shock Wave Heating and Millisecond Boiling in HIFU Fields,' AIP Conference Proceedings, vol. 1215, pp. 36-39, 2010. [35] Z. Xu, A. Ludomirsky, L. Y. Eun, T. L. Hall, B. C. Tran, J. B. Fowlkes, et al., 'Controlled ultrasound tissue erosion,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 51, pp. 726-36, Jun 2004. [36] Z. Xu, Z. Fan, T. L. Hall, F. Winterroth, J. B. Fowlkes, and C. A. Cain, 'Size measurement of tissue debris particles generated from pulsed ultrasound cavitational therapy-histotripsy,' Ultrasound Med Biol, vol. 35, pp. 245-55, Feb 2009. [37] T. Y. Wang, Z. Xu, F. Winterroth, T. L. Hall, J. B. Fowlkes, E. D. Rothman, et al., 'Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 56, pp. 995-1005, May 2009. [38] T. L. Hall, J. B. Fowlkes, and C. A. Cain, 'A real-time measure of cavitation induced tissue disruption by ultrasound imaging backscatter reduction,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 54, pp. 569-75, Mar 2007. [39] W. S. Chen, A. A. Brayman, T. J. Matula, L. A. Crum, and M. W. Miller, 'The pulse length-dependence of inertial cavitation dose and hemolysis,' Ultrasound Med Biol, vol. 29, pp. 739-48, May 2003. [40] K. Hynynen and D. K. Edwards, 'Temperature measurements during ultrasound hyperthermia,' Med Phys, vol. 16, pp. 618-26, Jul-Aug 1989. [41] P. L. Kuo, P. C. Li, and M. L. Li, 'Elastic properties of tendon measured by two different approaches,' Ultrasound Med Biol, vol. 27, pp. 1275-84, Sep 2001. [42] K. Kieran, T. L. Hall, J. E. Parsons, J. S. Wolf, Jr., J. B. Fowlkes, C. A. Cain, et al., 'Refining histotripsy: defining the parameter space for the creation of nonthermal lesions with high intensity, pulsed focused ultrasound of the in vitro kidney,' Journal of Urology, vol. 178, pp. 672-6, Aug 2007. [43] L. Sandrin, M. Tanter, J. L. Gennisson, S. Catheline, and M. Fink, 'Shear elasticity probe for soft tissues with 1-D transient elastography,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 49, pp. 436-46, Apr 2002. [44] B. C. Kot, Z. J. Zhang, A. W. Lee, V. Y. Leung, and S. N. Fu, 'Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings,' PLoS One, vol. 7, p. e44348, 2012. [45] J. Sato, Y. Ishii, H. Noguchi, and M. Takeda, 'Sonographic Appearance of the Flexor Tendon, Volar Plate, and A1 Pulley With Respect to the Severity of Trigger Finger,' J Hand Surg Am, Aug 30 2012. [46] J. Bencardino, Z. S. Rosenberg, and E. Delfaut, 'MR imaging in sports injuries of the foot and ankle,' Magn Reson Imaging Clin N Am, vol. 7, pp. 131-49, ix, Feb 1999. [47] C. L. Yeh, P. C. Li, W. P. Shih, P. S. Huang, and P. L. Kuo, 'Imaging monitored loosening of dense fibrous tissues using high-intensity pulsed ultrasound,' Phys Med Biol, vol. 58, pp. 6779-96, Oct 7 2013. [48] F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, et al., 'Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,' J Clin Endocrinol Metab, vol. 95, pp. 5281-8, Dec 2010. [49] K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, 'Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,' Ultrasound Med Biol, vol. 28, pp. 227-35, Feb 2002. [50] S. Aubry, J. R. Risson, A. Kastler, B. Barbier-Brion, G. Siliman, M. Runge, et al., 'Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography,' Skeletal Radiol, vol. 42, pp. 1143-50, Aug 2013. [51] X. M. Chen, L. G. Cui, P. He, W. W. Shen, Y. J. Qian, and J. R. Wang, 'Shear wave elastographic characterization of normal and torn achilles tendons: a pilot study,' J Ultrasound Med, vol. 32, pp. 449-55, Mar 2013. [52] Z. J. Zhang and S. N. Fu, 'Shear Elastic Modulus on Patellar Tendon Captured from Supersonic Shear Imaging: Correlation with Tangent Traction Modulus Computed from Material Testing System and Test-Retest Reliability,' PLoS One, vol. 8, p. e68216, 2013. [53] M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, 'Quantifying hepatic shear modulus in vivo using acoustic radiation force,' Ultrasound Med Biol, vol. 34, pp. 546-58, Apr 2008. [54] T. Deffieux, G. Montaldo, M. Tanter, and M. Fink, 'Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity,' IEEE Trans Med Imaging, vol. 28, pp. 313-22, Mar 2009. [55] G. P. Hess, W. L. Cappiello, R. M. Poole, and S. C. Hunter, 'Prevention and treatment of overuse tendon injuries,' Sports Med, vol. 8, pp. 371-84, Dec 1989. [56] R. J. Dewall, J. Jiang, J. J. Wilson, and K. S. Lee, 'Visualizing Tendon Elasticity in an ex Vivo Partial Tear Model,' Ultrasound Med Biol, vol. 40, pp. 158-67, Jan 2014. [57] M. Sivaguru, S. Durgam, R. Ambekar, D. Luedtke, G. Fried, A. Stewart, et al., 'Quantitative analysis of collagen fiber organization in injured tendons using Fourier transform-second harmonic generation imaging,' Opt Express, vol. 18, pp. 24983-93, Nov 22 2010. [58] B. D. Fornage, 'Achilles tendon: US examination,' Radiology, vol. 159, pp. 759-64, Jun 1986. [59] R. J. Hodgson, P. J. O'Connor, and A. J. Grainger, 'Tendon and ligament imaging,' Br J Radiol, vol. 85, pp. 1157-72, Aug 2012. [60] G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, et al., 'Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,' J Biomed Opt, vol. 18, p. 111417, Nov 1 2013. [61] J. Brum, M. Bernal, J. L. Gennisson, and M. Tanter, 'In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis,' Phys Med Biol, vol. 59, pp. 505-23, Feb 7 2014. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55136 | - |
dc.description.abstract | 肌腱攣縮為運動醫學中常見的傷害,發展非侵入性且高成效的治療方法為迫切需要的。一般而言,在臨床治療肌腱攣縮之主要目標為鬆弛並降低肌腱的彈性來恢復其活動力。因此,肌腱彈性係數為主要用來評估其功能性恢復和治療成效之主要參數。近年來,剪切波彈性影像已經廣被應用來定量組織彈性(楊氏係數)。在等向性的組織中,組織的楊氏係數可直接藉由量測剪切波的傳遞速度求得。然而,在肌腱此種非等向性的組織中,其楊氏係數和剪切波速度之關係仍然未知。為此,本論文中主要目標為: (1) 發展脈衝式高能超音波來主之治療方法來鬆弛攣縮的肌腱組織。(2) 探索利用剪切波彈性影像定量肌腱組織彈性之可行性用以提升診斷成效。(3) 結合剪切波彈性影像和脈衝式高能超音波來即時地觀察治療前後彈性係數的變化。在論文第一部分,我們以傳統超音波B-mode影像和分離拉伸測試法來確認脈衝式高能超音波的治療成效,結果顯示脈衝式高能超音波可以有效地降低肌腱彈性和改變超音波的斑塊訊號,且斑塊訊號變化趨勢可用來觀察脈衝式高能超音波的治療成效。在論文第二部分,為了提升診斷效率,我們研究了以剪切波彈性影像技術定量肌腱組織彈性之可行性,結果顯示由剪切波彈性影像所量測到的剪切模數和分離拉伸測試法所量測到的肌腱楊氏係數高度相關,因此,藉由定量量測肌腱的剪切模數即能直接反映其彈性的變化。此外,我們進一步探討剪切波彈性影像技術和傳統B-mode超音波影像對於診斷疾病的效率,結果顯示,正常和受損肌腱組織中,剪切模數的差異比例為29.5±7.5%,而在傳統B-mode影像中,斑塊訊號強度的差異比例只有5.6±0.6%。因此剪切波彈性影像技術與傳統超音波影像相比,對於分辨肌纖維受損的肌腱疾病,有更高的鑑別能力。最後,我們結合脈衝式高能超音波和剪切波彈性影像在治療和診斷的優勢,利用量測剪切波速度來觀察脈衝高能超音波操作在不同脈衝重複頻率、脈衝數目和脈衝作用時間對於治療肌腱攣縮之成效。實驗結果驗證,當脈衝高能超音波操作在適當的脈衝重複頻率和脈衝作用時間,能在體外和活體實驗中有效降低肌腱彈性且不產生熱破壞。總體而言,在此論文中,我們成功地建構出一個多功能的平台包含新穎的治療策略和定量診斷影像模式應用在肌腱疾病上。未來我們將致力於把目前的研究結果延伸至動物和臨床實驗。 | zh_TW |
dc.description.abstract | Noninvasive and effective therapeutic strategies are highly desirable for tendon contracture, a common disease in sports medicine. In general, the purpose of contracture treatment is to loosen the tendon stiffness. Thus, the stiffness factor is a major index for evaluation of functional recovery and treatment efficacy. Recently, shear wave elasticity imaging (SWEI) has emerged as a promising technique for tissue stiffness (i.e., Young’s modulus) quantification by measuring shear wave speed (SWS). In an isotropic medium, SWS is directly related to the Young’s modulus. However, in an anisotropic medium such as tendon, the relation between the Young’s modulus and the SWS remains unclear. To this end, it is therefore the goal of this thesis to (1) develop a new treatment strategy based on pulsed high intensity focused ultrasound (pulsed-HIFU) to loosen contracture tendon, (2) explore the feasibility of using SWEI to quantitatively determine the tendon stiffness for improved diagnosis, and (3) integrate SWEI with pulsed-HIFU to monitor tendon stiffness during therapy. The results in the first part of the thesis demonstrated that pulsed-HIFU can significantly change tendon stiffness, as indicated by the change of echogenicity in ultrasound B-mode images and verified by an isolated tensile testing machine (ITT). In the second part, we showed that the shear modulus in tendon estimated by SWEI is strongly related to the Young’s modulus measured by ITT. We further pointed out that SWEI is a more superior diagnostic tool than conventional B-mode ultrasound. The difference of the shear modulus between undamaged and damaged tendon is 29.5±7.5%, while that of the B-mode speckle SNR was only 5.6±0.6%. In final part of the thesis, the treatment efficacy of pulsed-HIFU operated with various acoustic parameters such as pulse repetition frequency (PRF), pulse cycles (PC) and exposure durations (ED) was investigated by SWEI. Both ex vivo and in vivo experiments indicated that the stiffness can be reduced effectively without inducing thermal effect, when PRF and PC were optimized. In summary, this thesis successfully constructed a platform consisting of a new treatment method and a quantitative diagnosis strategy for tendon diseases. Future works will focus on the application of the proposed platform to clinical studies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:48:33Z (GMT). No. of bitstreams: 1 ntu-104-D97945010-1.pdf: 4639283 bytes, checksum: 82833cdc7008f5ff0c7d11d9a5cb2833 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | ABSTRACT I
中文摘要 II CONTENTS III LIST OF FIGURES VI LIST OF TABLES XI CHAPTER 1. INTRODUCTION 1 1.1 TENDON DISEASES 1 1.2 TENDON STRUCTURE AND ITS FUNCTION 1 1.2.1 Structure 1 1.2.2 Function 2 1.2.3 Mechanism 2 1.3 CURRENT STRATEGIES IN THE IMAGING OF TENDON DISEASES 3 1.4 ELASTOGRAPHY 4 1.4.1 Static elastography 4 1.4.2 Dynamic elastography 4 1.5 TREATMENT STRATEGY 6 1.6 OUTLINE OF THIS THESIS 7 CHAPTER 2. IMAGING MONITORED LOOSENING OF DENSE FIBROUS TISSUES USING HIGH-INTENSITY PULSED ULTRASOUND 8 2.1 INTRODUCTION 8 2.2 EVALUATION OF THE LOOSENING EFFECT BY PULSED HIFU 8 2.2.1 Determination of parameter of pulsed HIFU 8 2.2.2 Temperature measurement 10 2.3 EXPERIMENTAL PROTOCOL 11 2.3.1 Experimental setup 11 2.3.2 B-mode analysis 12 2.3.3 Elasticity measurement 13 2.3.4 Histological examinations 14 2.4 RESULTS 15 2.4.1 B-mode analysis 15 2.4.2 Elasticity measurement 17 2.4.3 Histological examinations 19 2.5 DISCUSSION 21 2.6 SUMMARY 23 CHAPTER 3. SHEAR-WAVE IMAGING FOR EVALUATION OF TENDON DISEASES 24 3.1 INTRODUCTION 24 3.2 EXPERIMENTAL PROTOCOL 26 3.2.1 Sample preparation 26 3.2.2 Experimental setup 26 3.3 SHEAR WAVE GENERATION AND DETECTION 27 3.4 ECHOGENICITY ANALYSIS USING HFU B-MODE IMAGING 29 3.5 MEASURING YOUNG’S MODULUS BY ITT 30 3.6 MONITORING THE DAMAGE INDUCED BY COLLAGENASE USING SHG 32 3.7 RESULTS 32 3.7.1 SHG images obtained from normal and damaged tendons 32 3.7.2 Variation in shear modulus in different loading conditions 33 3.7.3 Variation in Young’s modulus in different loading conditions 34 3.7.4 Relationship between Young’s modulus and the shear modulus in various loading conditions 35 3.7.5 Speckle SNR analysis using HFU B-mode imaging 36 3.7.6 Comparisons of variation ratios 38 3.8 DISCUSSION 39 3.9 SUMMARY 41 CHAPTER 4. MONITORING OF PULSED-HIFU-MEDIATED LOOSENING OF TENDON USING SUPERSNOICS SHEAR IMAGING 42 4.1 INTRODUCTION 42 4.2 SAMPLE PREPARATION 42 4.3 EXPERIMENTAL SETUP 43 4.4 ESTIMATIONS OF SWS USING TOF ALGORITHM 44 4.5 TEMPERATURE MEASUREMENTS 46 4.6 EX VIVO EXPERIMENTAL RESULTS 46 4.6.1 SWS and temperature changes resulted from pulsed-HIFU insonations 46 4.6.2 SWS and temperature changes resulted from cw-HIFU insonations 48 4.7 IN VIVO EXPERIMENTAL RESULTS 49 4.8 DISCUSSION 50 4.9 SUMMARY 51 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 52 5.1 CONCLUSIONS 52 5.2 FUTURE WORKS 53 5.2.1 Explore the feasibility of using SSI combined with dispersion analysis to improve the accuracy of stiffness quantification on rabbit tendon in vivo 53 5.2.2 Guided wave propagating in parallel tendon fiber direction 53 5.2.3 Experimental protocol and setup 55 5.2.4 Analysis of shear wave dispersion 56 5.2.5 Preliminary results 57 5.2.6 Identify the mechanism of tendon loosening effects using pulsed-HIFU 59 5.2.7 Summary 60 REFERENCES 62 PUBLICATION LIST 68 | |
dc.language.iso | en | |
dc.title | 發展超音波功能性影像在肌腱疾病之應用 | zh_TW |
dc.title | Development of Functional Ultrasound for Tendon Diseases | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 沈哲州(Che-Chou Shen),宋孔彬(Kung-Bin Sung),郭柏齡(Po-Ling Kuo),鄭耿璽(Geng-Shi Jeng) | |
dc.subject.keyword | 肌腱攣縮,剪切波速度,楊氏係數,脈衝式高能超音波,剪切波彈性影像,分離拉伸測試, | zh_TW |
dc.subject.keyword | tendon contracture,shear wave speed (SWS),Young’s modulus,pulsed high intensity focused ultrasound (Pulsed-HIFU),shear wave elasticity imaging (SWEI),isolated tensile testing (ITT), | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-01-27 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。