請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55126完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅美芳(Meei-Fang Lou) | |
| dc.contributor.author | Yueh-Hsiu Lin | en |
| dc.contributor.author | 林悅修 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:48:11Z | - |
| dc.date.available | 2018-03-12 | |
| dc.date.copyright | 2015-03-12 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2015-01-28 | |
| dc.identifier.citation | 中文部分
王芳婷(2005)•心臟衰竭病患生活品質、自我照顧行為及社會支持(未發表的碩士論文)•臺北:國立陽明大學臨床護理學研究所。 行政院研究發展考核委員會•(2013)•歷年數位機會(落差)調查報告•取自行政院研究發展考核委員會查詢網址http://archive.rdec.gov.tw/ct.asp?xItem=4024389&CtNode=12062&mp=100。 行政院主計總處(2013)•歷年受僱就業者之每月工作收入•取自行政院主計總處查詢網址http://srh.dgbas.gov.tw/hysearch/cgi/redirect.exe?url=http://www.dgbas.gov.tw/public/data/dgbas04/bc4/mpwutility/102/mtable6.xls&group=AA&title=P%20%20 呂如分、徐建業、陳靜敏、紀玫如(2014)•接受居家遠距健康照護之高血壓個案服務成效及相關因素探討•長期照護雜誌,18(1),59-80。 汪素敏、顧乃平、林幸台、魏崢(1998)•心臟移植術後病人症狀困擾、社會支持與自我照顧行為相關之探討•護理研究,6(1),4-18。 吳美惠(1992)•在職成人的電腦態度、電腦成就及其相關因素之研究(未發表的碩士論文)•臺北:國立臺灣師範大學社會教育研究所•取自http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22080NTNU2205010%22.&searchmode=basic。 林淑霞、劉榮宏、殷偉賢、陳冠群、葉明陽、蔡勝國、陳俐君(2009)•民眾對遠距健康照護服務之認知與需求調查研究-以心臟病、高血壓及糖尿病為範疇•臺灣公共衛生雜誌,28(6),552-564。 林千雅(2001)•心臟衰竭病患希望、不確定感與社會支持之探討(未發表的碩士論文)•臺北:國立陽明大學臨床護理學研究所。 周春珍(2009)•參與遠距照護長者生活品質及其對科技使用接受度之研究(未發表的碩士論文)•臺北:國立臺北護理暨健康大學護理學研究所。 洪小涵、邱玉蟬(2011)•民眾溝通特質與策略對醫師滿意與信任的影響•臺灣公共衛生雜誌,30(6),582-593。 徐則彬(2013)•遠距照護即時溝通過程中溝通特質與照護成效關係(未發表的碩士論文)•臺北:國立臺灣大學護理學研究所。 陳婉籌(2011)•運用遠距照護系統對心臟衰竭病患主要照顧者負荷、角色勝任度及其家庭功能之影響(未發表的碩士論文)•臺北:國立國防醫學院護理學系•取自http://handle.ncl.edu.tw/11296/ndltd/49038919052851791825 陳秉儀(2010)•老年冠狀動脈遠距居家照護服務需求及相關因素之探討(未發表的碩士論文)•臺北:國立臺北護理暨健康大學護理學研究所。 郭玫怡(2005)•台中市獨居老人生活狀況之研究(未發表的碩士論文)•臺中:東海大學社會工作學系研究所。 翁淑緣(2000)•影響國中學生電腦學習意願之個人特性探討•教育與心理研究,23,147-172。 國民健康署人口與健康調查研究中心(2012,12月)•歷年數位機會(落差)調查報告:2012年報•取自http://www.bhp.doh.gov.tw/bhpnet/Portal/file/FormCenterFile/201303290939297391/%E5%9C%8B%E5%81%A5%E5%B1%802012%E5%B9%B4%E5%A0%B1_%E4%B8%AD%E6%96%87%E7%89%88.pdf。 許宏霖(2010)•影響臺灣民眾遠距健康照護服務使用意願之因素探討-以南部某醫學中心為例(未發表的碩士論文)•臺南:嘉南藥理科技大學醫療資訊管理研究所•取自http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22098CNUP5777029%22.&searchmose=basic。 黃旭男、張維容(2014)•病人對醫師與醫院信任、滿意與忠誠之關係•健康管理學刊,12(1),1-20。 曾旭民、鍾秉睿、王惠玄、荘玉如(2009)•影響境外工作者對遠距醫療接受度因素之探討-以上海地區台商為例•醫療資訊雜誌,18(4),13-28。 黃麗玲(2000)•社區獨居老人身體、心理及社會功能之探討(未發表的碩士論文) •高雄:高雄醫學大學護理學研究所。 楊惠如、呂桂雲、陳宇嘉、張永源(2006)•社區獨居老人健康狀況與長期照護需求研究•實證護理,2(3),229-240。 衛生福利部統計處(2014)•民國102年死因結果摘要表•取自衛生福利部統計處,102年死因統計,查詢網址http://www.mohw.gov.tw/cht/DOS/Statistic.aspx?f_list_no=312&fod_list_no=5012。 衛生福利部(2007)•遠距照護•取自http://telecare.com.tw/takecareservice.aspx。 劉通國(2003)•學習風格與電腦自我效能對非同步遠距學習成效及滿意度之研究(未發表的碩士論文)•高雄:國立高雄師範大學工業科技教育學系。 饒翊立(2013)•遠距照護系統使用意願探討(未發表的碩士論文)•臺中:中臺科技大學醫療暨健康產業管理系碩士班•取自http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22101CTC07743049%22.&searchmode=basic。 謝美慧、王秀紅(2011)•護病互為主體的陪伴概念與意涵•志為護理-慈濟護理雜誌,10(4),56-63。 戴玉慈、賴飛羆、陳恆順(2011)•預防性照護:慢性病遠距健康照護•臺灣醫學,15(2),142-150。 謝靜慧(2001)•國民中小學教師之電腦焦慮、電腦自我效能、電腦因應策略與電腦素養之相關研究(未發表的碩士論文)•高雄:國立中山大學教育研究所•取自http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22089NSYS5331007%22.&searchmode=basic。 英文部分 American Heart Association. (2013). Coronary artery disease - Coronary heart disease-2013 Update. American Heart Association. Retrieved August 19 2013, from http://www.heart.org/HEARTORG/Conditions/More/MyHeartandStrokeNews/Coronary-Artery-Disease---Coronary-Heart-Disease_UCM_436416_Article.jsp Agarwal, R., Anderson, C., Zarate, J., & Ward, C. (2013). If we offer it, will they accept? Factors affecting patient use intentions of personal health records and secure messaging. Journal of Medical Internet Research, 15(2), e43. doi: 10.2196/jmir.2243 Agrell, H., Dahlberg, S., & Jerant, A. F. (2000). Patients' perceptions regarding home telecare. Telemedicine Journal and e-Health, 6(4), 409-415. doi: 10.1089/15305620050503889 Albrecht, U. V., Von Jan, U., & Pramann, O. (2013). Standard reporting for medical apps. Studies in Health Technology and Informatics, 190, 201-203. Allen, L. A., Gheorghiade, M., Reid, K. J., Dunlay, S. M., Chan, P. S., Hauptman, P. J., . . . Spertus, J. A. (2011). Identifying patients hospitalized with heart failure at risk for unfavorable future quality of life. Circulation: Cardiovascular Quality and Outcomes, 4(4), 389-398. doi: 10.1161/circoutcomes.110.958009 Beckner, V., Howard, I., Vella, L., & Mohr, D. C. (2010). Telephone-administered psychotherapy for depression in MS patients: Moderating role of social support. Journal of Behavioral Medicine, 33(1), 47-59. doi: 10.1007/s10865-009-9235-2 Blasco, A., Carmona, M., Fernandez-Lozano, I., Salvador, C. H., Pascual, M., Sagredo, P. G., . . . Alonso-Pulpon, L. (2012). Evaluation of a telemedicine service for the secondary prevention of coronary artery disease. Journal of Cardiopulmonary Rehabilitation and Prevention, 32(1), 25-31. doi: 10.1097/HCR.0b013e3182343aa7 Chae, Y. M., Park, H. J., Cho, J. G., Hong, G. D., & Cheon, K. A. (2000). The reliability and acceptability of telemedicine for patients with schizophrenia in Korea. Journal of Telemedicine and Telecare, 6(2), 83-90. Chang, A. M., Mumma, B., Sease, K. L., Robey, J. L., Shofer, F. S., & Hollander, J. E. (2007). Gender bias in cardiovascular testing persists after adjustment for presenting characteristics and cardiac risk. Academic Emergency Medicine, 14(7), 599-605. doi: 10.1197/j.aem.2007.03.1355 Chu, A., & Mastel-Smith, B. (2010). The outcomes of anxiety, confidence, and self-efficacy with internet health information retrieval in older adults: A pilot study. Computers Informatics Nursing, 28(4), 222-228. doi: 10.1097/NCN.0b013e3181e1e271 Cimperman, M., Brencic, M. M., Trkman, P., & Stanonik-Mde, L. (2013). Older adults' perceptions of home telehealth services. Telemedicine and e-Health, 19(10), 786-790. doi: 10.1089/tmj.2012.0272 Cohen, S., & Syme, S. L. (1985). Issues in the study and application of social support. In S. Cohen & S. L. Syme(Eds.), Social support and health, pp.3-22. San Francisco, CA: Academic Press. Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. Management Information Systems Quarterly, 19(2), 189-211. doi: 10.2307/249688 Cortez, N. G., Cohen, I. G., & Kesselheim, A. S. (2014). FDA regulation of mobile health technologies. New England Journal of Medicine, 371(4), 372-379. doi: 10.1056/NEJMhle1403384 Daruwalla, Z. J., Wong, K. L., & Thambiah, J. (2014). The application of telemedicine in orthopedic surgery in Singapore: A pilot study on a secure, mobile telehealth application and messaging platform. Journal of Medical Internet Research mHealth and uHealth, 2(2), e28. doi: 10.2196/mhealth.3303 Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Management Information Systems Quarterly, 13(3), 319-340. doi: 10.2307/249008 Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi: 10.2307/2632151 Ellis, D., & Allaire, J. C. (1999). Modeling computer interest in older adults: The role of age, education, computer knowledge, and computer anxiety. Human Factors, 41(3), 345-355. Flynn, K. E., Pina, I. L., Whellan, D. J., Lin, L., Blumenthal, J. A., Ellis, S. J., . . . Weinfurt, K. P. (2009). Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. The Journal of the American Medical Association, 301(14), 1451-1459. doi: 10.1001/jama.2009.457 Ghashghaei, F. E., Sadeghi, M., Rabiei, K., Roohafza, H., & Sarrafzadegan, N. (2012). Gender differences in risk factors of obese patients after cardiac rehabilitation program. Iranian Journal of Nursing and Midwifery Research, 17(5), 381-385. Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Borden, W. B., . . . Turner, M. B. (2013). Heart disease and stroke statistics--2013 update: A report from the American Heart Association. Circulation, 127(1), e6-e245. doi: 10.1161/CIR.0b013e31828124ad Griebel, L., Sedlmayr, B., Prokosch, H. U., Criegee-Rieck, M., & Sedlmayr, M. (2013). Key factors for a successful implementation of personalized e-health services. Studies in Health Technology and Informatics, 192, 965. Halvorsen, S., & Risoe, C. (2009). Symptoms and diagnosis of coronary heart disease in women. Tidsskr Nor Laegeforen, 129(18), 1853-1857. doi: 10.4045/tidsskr.09.0115 Heidenreich, P. A., Trogdon, J. G., Khavjou, O. A., Butler, J., Dracup, K., Ezekowitz, M. D., . . . Woo, Y. J. (2011). Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation, 123(8), 933-944. doi: 10.1161/CIR.0b013e31820a55f5 Huang, J. C., & Lee, Y. C. (2013). Model construction for the intention to use telecare in patients with chronic diseases. International Journal of Telemedicine and Applications, 2013, 650238. doi: 10.1155/2013/650238 Huang, J. C., & Lin, S. P. (2009). Exploring the key factors in the choice of home telehealth by using the health belief model. Telemedicine and e-Health, 15(1), 87-92. doi: 10.1089/tmj.2008.0069 Hunt, S. A., Abraham, W. T., Chin, M. H., Feldman, A. M., Francis, G. S., Ganiats, T. G., . . . Yancy, C. W. (2009). 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the diagnosis and management of heart failure in adults. Circulation, 119(14), e391-479. doi: 10.1161/circulationaha.109.192065 Jeannot, J. G., Froehlich, F., Wietlisbach, V., Burnand, B., Terraz, O., & Vader, J. P. (2004). Patient use of the internet for health care information in Switzerland. Swiss Medical Weekly, 134(21-22), 307-312. doi: 2004/21/smw-10596 Jensen, L. A., & Moser, D. K. (2008). Gender differences in knowledge, attitudes, and beliefs about heart disease. Nursing Clinics of North America, 43(1), 77-104; vi-vii. doi: 10.1016/j.cnur.2007.10.005 Krum, H., Jelinek, M. V., Stewart, S., Sindone, A., & Atherton, J. J. (2011). 2011 update to National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand Guidelines for the prevention, detection and management of chronic heart failure in Australia, 2006. Medical Journal of Australia, 194(8), 405-409. Lippman, H. (2013). How apps are changing family medicine. The Journal of Family Practice, 62(7), 362-367. Morris, M. G., & Venkatesh, V. (2000). Age differences in technology adoption decisions: Implications for a changing work force. Personnel Psychology, 53(2), 375-403. doi: 10.1111/j.1744-6570.2000.tb00206.x Moser, D. K. (1994). Social support and cardiac recovery. Journal of Cardiovascular Nursing, 9(1), 27-36. Or, C. K., & Karsh, B. T. (2009). A systematic review of patient acceptance of consumer health information technology. Journal of the American Medical Informatics Association, 16(4), 550-560. doi: 10.1197/jamia.M2888 Orem, D. E., Taylor, S. G., & Renpenning, K. M. L. (2001). Nursing: Concepts of practice. St. Louis, MO: Mosby. Park, J. H., & Bae, S. H. (2011). A systematic review of psychological distress as a risk factor for recurrent cardiac events in patients with coronary artery disease. Journal of Korean Academy of Nursing, 41(5), 704-714. doi: 10.4040/jkan.2011.41.5.704 Polit, D. F., & Hungler, B. P. (1999). Nursing research: Principles and methods. Philadelphia, PA: Lippincott Williams & Wilkins. Purc-Stephenson, R. J., & Thrasher, C. (2012). Patient compliance with telephone triage recommendations: A meta-analytic review. Patient Education and Counseling, 87(2), 135-142. doi: 10.1016/j.pec.2011.08.019 Radhakrishnan, K., & Jacelon, C. (2012). Impact of telehealth on patient self-management of heart failure: A review of literature. The Journal of Cardiovascular Nursing, 27(1), 33-43. doi: 10.1097/JCN.0b013e318216a6e9 Rahimpour, M., Lovell, N. H., Celler, B. G., & McCormick, J. (2008). Patients' perceptions of a home telecare system. International Journal of Medical Informatics, 77(7), 486-498. doi: 10.1016/j.ijmedinf.2007.10.006 Ribu, L., Holmen, H., Torbjornsen, A., Wahl, A. K., Grottland, A., Smastuen, M. C., . . . Arsand, E. (2013). Low-intensity self-management intervention for persons with type 2 diabetes using a mobile phone-based diabetes diary, with and without health counseling and motivational interviewing: Protocol for a randomized controlled trial. Journal of Medical Internet Research, 2(2), e34. doi: 10.2196/resprot.2768 Rosenstock, I. M., Strecher, V. J., & Becker, M. H. (1988). Social learning theory and the Health Belief Model. Health Education Quarterly, 15(2), 175-183. Ryan, P. (2009). Integrated theory of health behavior change: Background and intervention development. Clinical Nurse Specialist, 23(3), 161-170. doi: 10.1097/NUR.0b013e3181a42373 Robert K., Heinssen, Jr., Carol R. G., & Knight, L. A. (1987). Assessing computer anxiety: Development and validation of the Computer Anxiety Rating Scale. Computers in Human Behavior, 3(1), 49-59. doi: http://dx.doi.org/10.1016/0747-5632(87)90010-0 Schreier, G., Eckmann, H., Hayn, D., Kreiner, K., Kastner, P., & Lovell, N. (2012). Web versus app: Compliance of patients in a telehealth diabetes management programme using two different technologies. Journal of Telemedicine and Telecare, 18(8), 476-480. doi: 10.1258/jtt.2012.GTH112 Sears, S. F., Woodrow, L., Cutitta, K., Ford, J., Shea, J. B., & Cahill, J. (2013). A patient's guide to living confidently with chronic heart failure. Circulation, 127(13), e525-e528. doi: 10.1161/circulationaha.112.000734 Shih, S. N., Gau, M. L., Tsai, J. C., Li, I. C., Liou, Y. M., & Shih, F. J. (2008). A health need satisfaction instrument for Taiwan's single-living older people with chronic disease in the community. Journal of Clinical Nursing, 17(5a), 67-77. doi: 10.1111/j.1365-2702.2007.02124.x Tseng, C. H. (2011). Clinical features of heart failure hospitalization in younger and elderly patients in Taiwan. European Journal of Clinical Investigation, 41(6), 597-604. doi: 10.1111/j.1365-2362.2010.02447.x Tsuji, H., Larson, M. G., Venditti, F. J., Jr., Manders, E. S., Evans, J. C., Feldman, C. L., & Levy, D. (1996). Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation, 94(11), 2850-2855. Wade, R., Cartwright, C., & Shaw, K. (2012). Factors relating to home telehealth acceptance and usage compliance. Journal of Risk Management and Healthcare Policy 5, 25-33. doi: 10.2147/rmhp.s30204 Waldmann, A., Katalinic, A., Schwaab, B., Richardt, G., Sheikhzadeh, A., & Raspe, H. (2008). The TeleGuard trial of additional telemedicine care in CAD patients. 2 Morbidity and mortality after 12 months. Journal of Telemedicine and Telecare, 14(1), 22-26. doi: 10.1258/jtt.2007.070512 Woodend, A. K., Sherrard, H., Fraser, M., Stuewe, L., Cheung, T., & Struthers, C. (2008). Telehome monitoring in patients with cardiac disease who are at high risk of readmission. Heart & Lung: The Journal of Acute and Critical Care, 37(1), 36-45. doi: 10.1016/j.hrtlng.2007.04.004 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55126 | - |
| dc.description.abstract | 背景:臺灣超過65歲的老年人口比率快速上升,已成為高度人口依賴的階段,慢性病的發生率及盛行率逐年趨升,其複雜的健康狀況讓就醫照護需求更加多變,國內外近年來對於心臟疾病病人提供遠距照護服務,以生理監測儀器作居家量測,以醫院為後盾將醫療資源串連提供更完善的照護銜接與健康管理,在住院率、急診返診率以及民眾疾病知識或健康行為的改變均獲得良好改善,但目前心臟疾病病人對於遠距照護服務參與率低,如何讓病人接受且願意使用,對於日後推動遠距照護服務是一項考驗。
目的:本研究旨在探討冠狀動脈疾病病人接受介入治療後選擇使用14天免費遠距照護服務之意願及其相關因素。 方法:本研究採橫斷性、相關性研究設計,以量性及半結構式質性問卷進行資料收集,資料收集時間為2014年1月至6月,以北部某醫學中心之冠狀動脈疾病住院病人為對象,研究工具包括基本屬性、疾病特性、使用科技產品相關經驗(包含三部分:1.遠距監測儀器;2.醫療機構特性;3.使用科技產品經驗)、使用電腦自我效能、電腦焦慮、社會支持及半結構式問卷。資料分析以SPSS 20.0統計軟體分析,統計方法包括描述性分析、獨立性t檢定、單因子變數分析、羅吉斯迴歸,質性訪談採內容分析法歸納結果,資料分析與描述以p<0.05為統計之判斷標準。 結果:本研究共140位冠狀動脈疾病病人參與,研究對象平均年齡為61.69歲,以「男性」、「大學以上」與「已婚」居多並以「與配偶同住」,個人月收入以「3萬元以下」為主。關於醫療機構特性在「住院時護理師的建議」、「對醫院提供服務的信任度高」、「遠距照護服務的電話關懷」、「遠距照護服務的個管師陪同門診就醫」及「整體醫療機構特性」於參加14天免費遠距照護服務組顯著較高。但兩組研究對象在使用電腦自我效能、電腦焦慮與社會支持無顯著差異。當研究對象使用14天免費遠距照護服務後對於「有關健康的APP」的使用頻率明顯提高、電腦焦慮程度下降,使用電腦的自我效能則無差異。由單變量二元羅吉斯迴歸分析得知年齡(OR = 1.03,95%C.I. =1.00 ~ 1.07,p<0.05)、居住情形(OR = 5.00,95%C.I. =1.04 ~ 24.03,p<0.05)、醫療機構特性(OR = 1.15,95%C.I. =1.06 ~ 1.24,p<0.001)為使用遠距照護服務之顯著變項,控制其他因素下研究對象的年齡每增加1歲同意使用的勝算比增加3%;與家屬同住者同意使用遠距照護服務是獨居者的5倍;醫療機構特性得分每增加1分,同意使用遠距照護服務的勝算比增加15%,由多變量二元羅吉斯迴歸得知,僅醫療機構特性為顯著預測因子(OR = 1.15,95%C.I. =1.07 ~ 1.25,p<0.001)。最後由半結構式問卷訪談歸納個案不使用遠距照護服務的因素最主要為疾病,再者為儀器、環境及費用等因素。 結論:本研究發現年齡、居住型態、醫療機構特性為個案使用遠距照護服務意願之考量因素,且醫療機構特性為唯一顯著預測因子,但不使用遠距照護服務的主要因素是疾病穩定性及儀器等面向,個案因主觀評估疾病的嚴重程度與儀器是否簡單且易操作而影響使用遠距照護服務意願,但醫療團隊之建議會促進個案使用意願,因此建議醫療團隊瞭解遠距服務內容後共同加入推廣遠距照護服務亦或將病人轉介至遠距照護中心,主動提供相關資訊給潛在需求的病人,協助個案發展對疾病照護認知及管理,此外參加遠距照護服務能藉由個案管理師的陪伴而提供適切的護理指導與關懷,並於返診時陪同就診,讓個案返家後有來自醫院的專業醫護照護與關懷,促使個案與家屬感到安心與滿意而增強使用意願,因此個案管理師應持續提供陪伴與就醫等即時回饋而增加使用意願;再者於推廣服務時實際儀器操作、心得分享與衛教單張等策略,能降低返家電腦焦慮的程度,提升使用電腦自我效能,以促進病人的使用遠距照護服務的意願。 | zh_TW |
| dc.description.abstract | Background: The percentage of Taiwan's population over the age 65 is rapidly increasing, which has been accompanied by rising incidence rates and prevalence of chronic diseases. These complex health problems have multiple care needs; thus health care systems have developed telemedicine services. Hospitals have provided telemedicine services for patients with coronary artery disease (CAD) after being discharged to monitor their physiological condition at home. This combination of technology and care connect hospital services and the patient's home environment. Hospital admission, emergency department (ED) visits, and return visit rates as well as changes in the public's knowledge of illnesses and healthy behavior have since improved, yet current acceptance of telemedicine services by patients with CAD is still low. Therefore, exploration of telemedicine acceptance and influential factors of this system has become an urgent and important issue.
Objectives: This study investigated the acceptance of 14-day, free telemedicine services by patients with CAD after coronary intervention, and evaluated telemedicine service acceptance as a predictor for usage compliance. Methods: A cross-sectional survey of patients with CAD after coronary intervention was conducted. Data collection lasted from January to June of 2014. A semi-structured questionnaire, including personal and illness factors, technology use experience (including home health telemonitoring equipment, organizational factors, technology use experience), computer self-efficacy, computer anxiety, and social support, was provided to CAD inpatients at a medical center in northern Taiwan. SPSS 20.0 software was used for data analysis, including descriptive analysis, independent t-tests, one-way ANOVA, and logistic regression. Qualitative interviews used content analysis to categorize results. Statistical significance was set at p<0.05. Results: 140 CAD patients were recruited in this study. The average patient age was 61.69 years old. The majority of patients were married, male college graduates who lived with their spouse and had a monthly income of under NT$30,000. The organizational factors 'nurse suggestions during hospital stays,' 'high confidence in services provided by the hospital,' 'care and concern during telemedicine services,' 'telemedicine case managers' escort to clinic visits,' and 'overall organizational factors ' were more significant in the group of patients who participated in the 14-day, free telemedicine service. However, there was no significant difference between the two groups in terms of computer self-efficancy, computer anxiety, and social support. Use of health-related APPs significantly increased and computer anxiety decreased for participants after the 14 days of telemedicine services. However, there was no change in computer self-efficacy. Univarite binary logistic regression found that age (OR = 1.03, 95% C.I. = 1.00-1.07, p<0.05), living with family (OR = 5.00, 95% C.I. = 1.04-24.03, p<0.05), and organizational factors (OR = 1.15, 95%C.I. = 1.06-1.24, p<0.001) were significantly associated with intent to use telemedicine services. Holding other variables constant showed that a one year increase in age correlated to a 3% increase in the odds ratio for use, patients who lived with family were five times more likely to use telemedicine than those who lived alone, and a one point increase in organizational factors correlated to a 15% increase in the odds ratio for use. Furthermore, multivariate binary logistic regression analysis revealed that organizational factors was the most important predictor (OR = 1.15, 95% C.I. = 1.07-1.25, p<0.001). Lastly, semi-structured questionnaires showed that among reasons contributing to refusal of telemedicine services, the most important were illness, followed by equipment, environment, and fees. Conclusion: This study found that age, living situation, and organizational factors were the key factors that influenced the use of telemedicine services and that organizational factors was the only significant predictor. However, major factors for refusal of telemedicine were disease stability and equipment. Patients' subjective evaluation of illness severity and ease of equipment use influenced their willingness to accept telemedicine services; however, suggestions from the medical team helped increase patient willingness. As such, it is suggested that medical teams collectively promote telemedicine and refer patients to telemedicine centers to provide them with more information on disease care and management. Accompaniment by case managers and provision of appropriate care guidance gave patients professional medical care and concern after discharge which increased feelings of safety and satisfaction as well as user intent. Therefore, case managers should continue to accompany patients in order to increase user willingness. During promotion of telemedicine services, equipment operation, sharing of experiences, and health education pamphlets can reduce computer anxiety and increase computer self-efficacy, thus improving patients' willingness to accept telemedicine services. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:48:11Z (GMT). No. of bitstreams: 1 ntu-103-R01426019-1.pdf: 2884758 bytes, checksum: e06bd02cca09762786f689210deacacc (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iv 目錄 vii 圖表目錄 ix 第壹章 前言 1 第一節 研究動機及重要性 1 第二節 研究目的 3 第貳章 文獻查證 4 第一節 冠狀動脈疾病 4 第二節 遠距照護服務 7 第三節 冠狀動脈疾病病人使用遠距照護服務之相關因素 11 第四節 研究架構 17 第參章 研究方法 18 第一節 研究設計 18 第二節 研究工具 20 第三節 研究工具信效度檢定 23 第四節 資料收集 25 第五節 資料分析 27 第六節 倫理考量 28 第肆章 研究結果 29 第一節 研究對象之基本屬性、疾病特性及各量表之得分分佈情形 31 第二節 基本屬性、疾病特性及各量表得分之差異與相關性 51 第三節 使用14天免費遠距照護服務個案之各量表得分前後測比較 62 第四節 使用遠距照護服務意願與各量表得分間之相關性 69 第五節 使用遠距照護服務的重要影響因素 72 第六節 不使用遠距照護服務的重要考量因素 75 第伍章 討論 82 第一節 使用遠距照護服務意願之預測因素 82 第二節 使用遠距照護服務前後之差異 86 第三節 不使用遠距照護服務之重要考量因素 89 第陸章 結論與建議 93 第一節 結論 93 第二節 研究限制 95 第三節 建議 96 參考文獻 99 附表 110 附表1:參加14天免費遠距照護服務後不續用組對選擇遠距照護服務的考量因素 110 附表2:不參加14天免費遠距照護服務組的個案對選擇遠距照護服務的考量因素 114 附表3:參加14天免費遠距照護服務後不續用組對遠距照護服務費用的考量 117 附表4:不參加14天免費遠距照護服務組對遠距照護服務費用的考量 119 附錄 121 附錄1:基本資料 121 附錄2:疾病治療特性 122 附錄3:使用科技產品相關經驗 124 附錄4:使用電腦自我效能量表 126 附錄5:電腦焦慮量表 127 附錄6:社會支持量表 128 附錄7:半結構式問卷 129 附錄8:研究工具專家效度名單 130 附錄9:「使用電腦自我效能量表」之使用同意書 131 附錄10:「電腦焦慮量表」之使用同意書 132 附錄11:「社會支持量表」之使用同意書 133 附錄12:研究倫理委員會審查通過函 134 | |
| dc.language.iso | zh-TW | |
| dc.subject | 冠狀動脈疾病 | zh_TW |
| dc.subject | 電腦焦慮 | zh_TW |
| dc.subject | 電腦自我效能 | zh_TW |
| dc.subject | 社會支持 | zh_TW |
| dc.subject | 遠距照護服務 | zh_TW |
| dc.subject | coronary artery disease (CAD) | en |
| dc.subject | telemedicine | en |
| dc.subject | social support | en |
| dc.subject | computer anxiety | en |
| dc.subject | computer self-efficacy | en |
| dc.title | 冠狀動脈疾病病人介入治療後使用遠距照護服務意願之相關因素 | zh_TW |
| dc.title | Acceptance of Telemedicine Service for Patients with Coronary Artery Disease after Coronary Intervention | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何奕倫(YI-LWUN HO),黃貴薰(Guey-Shiun Huang) | |
| dc.subject.keyword | 冠狀動脈疾病,電腦焦慮,電腦自我效能,社會支持,遠距照護服務, | zh_TW |
| dc.subject.keyword | coronary artery disease (CAD),computer anxiety,computer self-efficacy,social support,telemedicine, | en |
| dc.relation.page | 134 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 護理學研究所 | zh_TW |
| 顯示於系所單位: | 護理學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
