Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55123
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱子豪(Tzu-How Chu)
dc.contributor.authorChun-Hsiang Chanen
dc.contributor.author詹竣翔zh_TW
dc.date.accessioned2021-06-16T03:48:04Z-
dc.date.available2015-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-01-28
dc.identifier.citationAshtari Jafari, Mohammad. (2010). Statistical prediction of the next great earthquake around Tehran, Iran. Journal of Geodynamics, 49(1), 14-18. doi: 10.1016/j.jog.2009.07.002
Baag, C., & Lee, D. (1989). Absence of magnetic anomalies due to seepage‐induced “magnetoelectric effects” and implications for sulfide self‐potentials. GEOPHYSICS, 54(9), 1174-1179. doi: doi:10.1190/1.1442752
Bernardi, A., Fraser-Smith, A.C., McGill, P.R. , & Villard, Jr., O.G. . (1991). ULF magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Physics of the Earth and Planetary Interiors, 68, 45-63.
Bhattacharya, S., Sarkar, S., Gwal, A. K., & Parrot, M. (2009). Electric and magnetic field perturbations recorded by DEMETER satellite before seismic events of the 17th July 2006 M 7.7 earthquake in Indonesia. Journal of Asian Earth Sciences, 34(5), 634-644. doi: DOI 10.1016/j.jseaes.2008.08.010
Blaunstein, N., & Hayakawa, M. (2009). Short-term ionospheric precursors of earthquakes using vertical and oblique ionosondes. Physics and Chemistry of the Earth, Parts A/B/C, 34(6–7), 496-507. doi: http://dx.doi.org/10.1016/j. pce.2008.07.002
Borghi, A., Aoudia, A., Riva, R. E. M., & Barzaghi, R. (2009). GPS monitoring and earthquake prediction: A success story towards a useful integration. Tectonophysics, 465(1-4), 177-189. doi: DOI 10.1016/j.tecto.2008.11.022
Borisov, N., Chmyrev, V., & Rybachek, S. (2001). A new ionospheric mechanism of electromagnetic ELF precursors to earthquakes. Journal of Atmospheric and Solar-Terrestrial Physics, 63(1), 3-10. doi: Doi 10.1016/S1364-6826(00)00153-X
Chan, C.H., Chu, T.H., & Wu, J-H P. (2014). VLF Electromagnetic Signal Analysis in Seismic Epicenter Application. Paper presented at the Association of American Geographer 2014 Annual Meeting, Tampa, FL, U.S.A.
Chan, C.H., Chu, T.H., Wu, J-H P., Wang, R.Y., & Shiu, Y.S. (2014). Establishing VLF Electromagnetic Monitoring System for Earthquake Precursors Analysis and Application. Paper presented at the The 15th Cross-strait Symposium on Environment, Resource and Ecological Conservation, ZhangJiaJie, China.
Chen, L.G., & Wang, R.F. (2006). A Preliminary Survey of the Digital Earthquake Data Processing by a Filter with MATLAB. Journal of College of Disaster Prevention Techniques, 8, 62-65.
Chen, Z.Y., & Wang, W.X. (1997). Discussion of the correspondence effect about MDCB earthquake precursor supervising instrument. South China Journal of Seismology, 17, 36-41.
Chu, T.H., Wang, R.Y., Chan, C.H., & Shiu, Y.S. (2014). The Study on the Prediction of Earthquake Precursors in Taiwan by Using the Monitoring Systems of Low-Frequency Electromagnetic Wave. Paper presented at the The 9th Taipei International Digital Earth Symposium, Taipei, R.O.C.
Cicerone, R. D., Ebel, J. E., & Britton, J. (2009). A systematic compilation of earthquake precursors. Tectonophysics, 476(3-4), 371-396. doi: DOI 10.1016/j.tecto.2009.06.008
Contoyiannis, Y. F., Nomicos, C., Kopanas, J., Antonopoulos, G., Contoyianni, L., & Eftaxias, K. (2010). Critical features in electromagnetic anomalies detected prior to the L’Aquila earthquake. Physica A: Statistical Mechanics and its Applications, 389(3), 499-508. doi: http://dx.doi.org/10.1016/j.physa.2009.09.046
Doi, K. (2011). The operation and performance of Earthquake Early Warnings by the Japan Meteorological Agency. Soil Dynamics and Earthquake Engineering, 31(2), 119-126. doi: DOI 10.1016/j.soildyn.2010.06.009
Douglas, J., & Boore, D. M. (2011). High-frequency filtering of strong-motion records. Bulletin of Earthquake Engineering, 9(2), 395-409. doi: DOI 10.1007/s10518-010-9208-4
Fraser-Smith, A. C., Bernardi, A., McGill, P. R., Ladd, M. E., Helliwell, R. A., & Villard, O. G. (1990). Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophysical Research Letters, 17(9), 1465-1468. doi: 10.1029/GL017i009p01465
Fujiwara, H., Kamogawa, M., Ikeda, M., Liu, J. Y., Sakata, H., Chen, Y. I., Ohtsuki, Y. H. (2004). Atmospheric anomalies observed during earthquake occurrences. Geophysical Research Letters, 31(17), L17110. doi: 10.1029/2004GL019865
Gasparini, Paolo, Manfredi, Gaetano, & Zschau, Jochen. (2011). Earthquake early warning as a tool for improving society’s resilience and crisis response. Soil Dynamics and Earthquake Engineering, 31(2), 267-270. doi: http://dx.doi.org/10.1016/j.soildyn.2010.09.004
Harrison, R. G., Aplin, K. L., & Rycroft, M. J. (2010). Atmospheric electricity coupling between earthquake regions and the ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 72(5–6), 376-381. doi: http://dx.doi.org/1 0.1016/j.jastp.2009.12.004
Hayakawa, M. (2013). Possible Electromagnetic Effects on Abnormal Animal Behavior Before an Earthquake. Animals, 3(1), 19-32.
Hayakawa, M., Raulin, J. P., Kasahara, Y., Bertoni, F. C. P., Hobara, Y., & Guevara-Day, W. (2011). Ionospheric perturbations in possible association with the 2010 Haiti earthquake, as based on medium-distance subionospheric VLF propagation data. Natural Hazards and Earth System Sciences, 11, 513-518. doi: 10.5194/nhess-11-513-2011
Hoshiba, Mitsuyuki, Iwakiri, Kazuhiro, Hayashimoto, Naoki, Shimoyama, Toshihiro, Hirano, Kazuyuki, Yamada, Yasuyuki, Kikuta, Haruyuki. (2011). Outline of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0)-Earthquake Early Warning and observed seismic intensity. Earth, planets and space, 63(7), 547-551.
Hoshiba, M., & Ozaki, T. (2014). Earthquake Early Warning and Tsunami Warning of the Japan Meteorological Agency, and Their Performance in the 2011 off the Pacific Coast of Tohoku Earthquake ({M}_{{mathrm{w}}} 9.0). In F. Wenzel & J. Zschau (Eds.), Early Warning for Geological Disasters (pp. 1-28): Springer Berlin Heidelberg.
Hosseyn, F., & Parviz, A. (2013). Receiving, Filtering and Amplifying Earthquake Signals. International Journal of Emerging Technology and Advanced Engineering, 3(12), 649-656.
Hsiao, Nai-Chi, Wu, Yih-Min, Zhao, Li, Chen, Da-Yi, Huang, Wei-Ting, Kuo, Kuan-Hung, Leu, Peih-Lin. (2011). A new prototype system for earthquake early warning in Taiwan. Soil Dynamics and Earthquake Engineering, 31(2), 201-208. doi: http://dx.doi.org/10.1016/j.soildyn.2010.01.008
Jordan, T. H., Chen, Y. T., Gasparini, P., Madariaga, R., Main, I., Marzocchi, W., Zschau, J. (2011). Operational Earthquake Forecasting: State of Knowledge and Guidelines for Utilization. Annals of Geophysics, 54(4), 315-391. doi: Doi 10.4401/Ag-5350
Kagan, Yan, & Kagan. (1997). Are earthquakes predictable? Geophysical journal international, 131(3), 505-525.
Kagan, Y. Y. (2009). On the geometric complexity of earthquake focal zone and fault systems: A statistical study. Physics of the Earth and Planetary Interiors, 173(3-4), 254-268. doi: DOI 10.1016/j.pepi.2009.01.006
Kamigaichi, Osamu. (2004). JMA earthquake early warning. Journal of Japan Association for Earthquake Engineering, 4(3), 134-137.
Kawate, R., Molchanov, O. A., & Hayakawa, M. (1998). Ultra-low-frequency magnetic fields during the Guam earthquake of 8 August 1993 and their interpretation. Physics of the Earth and Planetary Interiors, 105(3-4), 229-238. doi: Doi 10.1016/S0031-9201(97)00094-0
Korepanov, V., Hayakawa, M., Yampolski, Y., & Lizunov, G. (2009). AGW as a seismo-ionospheric coupling responsible agent. Physics and Chemistry of the Earth, 34(6-7), 485-495. doi: DOI 10.1016/j.pce.2008.07.014
Kossobokov, V., & Shebalin, P. (2003). Earthquake Prediction. In V. Keilis-Borok & A. Soloviev (Eds.), Nonlinear Dynamics of the Lithosphere and Earthquake Prediction (pp. 141-207): Springer Berlin Heidelberg.
Kulchitsky, Anton V., Ando, Yoshiaki, & Hayakawa, Masashi. (2004). Numerical analysis on the propagation of ULF/ELF signals in the lithosphere with highly conductive layers. Physics and Chemistry of the Earth, Parts A/B/C, 29(4–9), 495-500. doi: http://dx.doi.org/10.1016/j.pce.2003.10.003
Larkina, V. I., Migulin, V. V., Molchanov, O. A., Kharkov, I. P., Inchin, A. S., & Schvetcova, V. B. (1989). Some Statistical Results on Very Low-Frequency Radiowave Emissions in the Upper Ionosphere over Earthquake Zones. Physics of the Earth and Planetary Interiors, 57(1-2), 100-109. doi: Doi 10.1016/0031-9201(89)90219-7
Lavallee, D., & Archuleta, R. J. (2003). Stochastic modeling of slip spatial complexities for the 1979 Imperial Valley, California, earthquake. Geophysical Research Letters, 30(5), 1245. doi: 10.1029/2002gl015839
Lighton, J. R., & Duncan, F. D. (2005). Shaken, not stirred: a serendipitous study of ants and earthquakes. J Exp Biol, 208(Pt 16), 3103-3107. doi: 10.1242/jeb.01735
Lindberg, R.G., Hayden, P.S., & Durward, D. (1981). Can animals predict earthquakes? : a search for correlations between changes in activity patterns of two fossorial rodents and subsequent seismic events. [Denver]: U.S. Geological Survey.
Liu, J. Y. (2004). Ionospheric foF2 and TEC anomalous days associated with M≥ 5.0 earthquakes in Taiwan during 1997–1999. Terrestrial, Atmospheric and Oceanic Sciences, 15(3), 371.
Liu, J. Y., Chen, Y. I., Chuo, Y. J., & Chen, C. S. (2006). A statistical investigation of preearthquake ionospheric anomaly. Journal of Geophysical Research: Space Physics, 111(A5), A05304. doi: 10.1029/2005JA011333
Liu, J. Y., Chen, Y. I., Chuo, Y. J., & Tsai, H. F. (2001). Variations of ionospheric total electron content during the Chi-Chi Earthquake. Geophysical Research Letters, 28(7), 1383-1386. doi: 10.1029/2000GL012511
Liu, J. Y., Chen, Y. I., Pulinets, S. A., Tsai, Y. B., & Chuo, Y. J. (2000). Seismo-ionospheric signatures prior to M≥6.0 Taiwan earthquakes. Geophysical Research Letters, 27(19), 3113-3116. doi: 10.1029/2000gl011395
Liu, Jann Yen, Chuo, YJ, Shan, SJ, Tsai, YB, Chen, YI, Pulinets, SA, & Yu, SB. (2004). Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Paper presented at the Annales Geophysicae.
Ma, Kuo-Fong, Mori, Jim, Lee, Shiann-Jong, & Yu, S. B. (2001). Spatial and Temporal Distribution of Slip for the 1999 Chi-Chi, Taiwan, Earthquake. Bulletin of the Seismological Society of America, 91(5), 1069-1087. doi: 10.1785/0120000728
Mark, W. D. (1970). Spectral analysis of the convolution and filtering of non-stationary stochastic processes. Journal of Sound and Vibration, 11(1), 19-63. doi: http://dx.doi.org/10.1016/S0022-460X(70)80106-7
Milsom, John. (2007). Field geophysics (Vol. 25): John Wiley and Sons.
Nakamura, Yutaka, & Saita, Jun. (2007). UrEDAS, the Earthquake Warning System: Today and Tomorrow. In P. Gasparini, G. Manfredi & J. Zschau (Eds.), Earthquake Early Warning Systems (pp. 249-281): Springer Berlin Heidelberg.
Nakamura, Yutaka, Saita, Jun, & Sato, Tsutomu. (2011). On an earthquake early warning system (EEW) and its applications. Soil Dynamics and Earthquake Engineering, 31(2), 127-136. doi: http://dx.doi.org/10.1016/j.soildyn.2010.04.0 12
Peresan, A., Kossobokov, V., Romashkova, L., & Panza, G. F. (2005). Intermediate-term middle-range earthquake predictions in Italy: a review. Earth-Science Reviews, 69(1–2), 97-132. doi: http://dx.doi.org/10.1016/j.earscirev.2004.07.005
Perfettini, H., & Avouac, J. P. (2004). Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. Journal of Geophysical Research-Solid Earth, 109(B2), B02304. doi: Artn B02304
Doi 10.1029/2003jb002488
Press, William H, Teukolsky, Saul A, Vetterling, William T, & Flannery, Brian P. (1992). Numerical recipes in C: the art of scientific computing, 1992. Cite en, 538-545.
S., Horiuchi, H., Negishi, K., Abe, A., Kamimura, & Y., Fujinawa (Cartographer). (2005). An Automatic Processing System for Broadcasting Earthquake Alarms.
Sabetta, F., & Pugliese, A. (1996). Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bulletin of the Seismological Society of America, 86(2), 337-352.
Satriano, Claudio, Wu, Yih-Min, Zollo, Aldo, & Kanamori, Hiroo. (2011). Earthquake early warning: Concepts, methods and physical grounds. Soil Dynamics and Earthquake Engineering, 31(2), 106-118. doi: http://dx.doi.org/10.1016/j.soildyn.2010.07.007
Schekotov, A. Y., Molchanov, O. A., & Hayakawa, M. (2006). A study of atmospheric influence from earthquake statistics. Physics and Chemistry of the Earth, 31(4-9), 341-345. doi: DOI 10.1016/j.pce.2006.02.002
Scoville, J., Heraud, J., & Freund, F. (2014). Pre-earthquake magnetic pulses. arXiv preprint arXiv:1405.4482.
Singh, B., Hayakawa, M., Mishra, P. K., Singh, R. P., & Lakshmi, D. R. (2003). VLF electromagnetic noise bursts observed in a borehole and their relation with low-latitude hiss. Journal of Atmospheric and Solar-Terrestrial Physics, 65(3), 269-276. doi: 10.1016/S1364-6826(02)00290-0
Song, J., Sun, M., & Song, F. (2007). A Brief Analysis of MDCB Electromagnetic Wave Instrument's Application in Impending Earthquake Predictions. Journal of Institute of Disaster-Prevention Science and Technology, 9, 89-92.
Thomas, J. N., Love, J. J., & Johnston, M. J. S. (2009). On the reported magnetic precursor of the 1989 Loma Prieta earthquake. Physics of the Earth and Planetary Interiors, 173(3-4), 207-215. doi: DOI 10.1016/j.pepi.2008.11.014
Tronin, A. A., Biagi, P. F., Molchanov, O. A., Khatkevich, Y. M., & Gordeev, E. I. (2004). Temperature variations related to earthquakes from simultaneous observation at the ground stations and by satellites in Kamchatka area. Physics and Chemistry of the Earth, 29(4-9), 501-506. doi: DOI 10.1016/j.pce.2003.09.024
Tronin, A. A., Hayakawa, M., & Molchanov, O. A. (2002). Thermal IR satellite data application for earthquake research in Japan and China. Journal of Geodynamics, 33(4-5), 519-534. doi: Pii S0264-3707(02)00013-3
Doi 10.1016/S0264-3707(02)00013-3
Uyeda, S., Nagao, T., & Kamogawa, M. (2009). Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics, 470(3-4), 205-213. doi: DOI 10.1016/j.tecto.2008.07.019
Varotsos, P., Sarlis, N., Eftaxias, K., Lazaridou, M., Bogris, N., Makris, J., Kapiris, P. (1999). Prediction of the 6.6 Grevena-Kozani Earthquake of May 13, 1995. Physics and Chemistry of the Earth Part a-Solid Earth and Geodesy, 24(2), 115-121. doi: Doi 10.1016/S1464-1895(99)00006-X
Varotsos, P., Sarlis, N., Skordas, E., & Lazaridou, M. (2006). Additional evidence on some relationship between Seismic Electric Signals (SES) and earthquake focal mechanism. Tectonophysics, 412(3–4), 279-288. doi: http://dx.doi.org/10.10 16/j.tec to.200 5.10.037
Wang, W.X., & Yang, W.Y. (2002). Preliminary Probe into Calculating the Magnitude of FutureEarthquakes Simulated by Model MDCB-5 Instruments for Monitoring Impending Earthquake Data [J]. Recent Developments In World Seismology, 4, 001.
Wang, W.X., & Yang, W.Y. (2006). How to predict earthquake around station and worldwide in seven days (1 ed.). China: Shanxi People's Publishing House.
Wenxiang, Wang. (1996). Correlection between Preearthquake Electromagnetic Anomalous Amplitude and Epicantral Distance. South China Journal of Seismology, 16, 16.
Wenxiang, Wang, & Wuyang, Yang. (2002). Preliminary Probe into Calculating the Magnitude of FutureEarthquakes Simulated by Model MDCB-5 Instruments for Monitoring Impending Earthquake Data. Recent Developments In World Seismology, 4, 6-11.
Wu, Q.G., Tian, X.B., Zhang, N.L., Li, W.P., & Zeng, R.S. (2003). Reciever Function Estimated by Wiener Filtering. Earthquake Research in China, 19, 41-47.
Wyss, Max. (1997). Cannot Earthquakes Be Predicted? Science, 278(5337), 487-490. doi: 10.1126/science.278.5337.487
Yoshida, S., & Ogawa, T. (2004). Electromagnetic emissions from dry and wet granite associated with acoustic emissions. Journal of Geophysical Research: Solid Earth, 109(B9), B09204. doi: 10.1029/2004JB003092
Yu, Hong-bo, & Pan, Zhen-yu. (2012). The Premary Study of Hualien 6.7 Earthquake's Anomaly Characteristics by MDCB Electromagnetic Radiation Precursor Instrument. Journal of Disaster Prevention and Reduction, 28, 26.
Zhang, Keliang, & Ma, Jin. (2014). Superconducting Gravimeters Detect Gravity Fluctuations Induced by Mw 5.7 Earthquake along South Pacific Rise Few Hours before the 2011 M_w 9.0 Tohoku-Oki Earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 25(4), 471-481. doi: 10.3319/tao.2014.02.24.01(t)
Zhang, Xuemin, & Shen, Xuhui. (2011). Electromagnetic Anomalies around The Wenchuan Earthquake and Their Relationship with Earthquake Preparation. International Journal of Geophysics, 2011, 1-8. doi: 10.1155/2011/904132
Zubaidah, T., Kanata, B., Ramadhani, C., Elektro, J. T., & Irmawati, B. (2013, 25-28 June 2013). Comprehensive geomagnetic signal processing for sucessful earthquake prediction. Paper presented at the QiR (Quality in Research), 2013 International Conference on.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55123-
dc.description.abstract歷年來台灣曾多次遭受地震所帶來的災害,像芮氏規模7.3的1999年的921大地震造成2,415死亡及11,305受傷,進而造成土壤液化引發山崩及土流等災害,然而目前在地震預測及地震預警的工作仍有許多困難需要克服,相較於其他天然災害而言,地震預測的困難度較高,卻是急需克服的災害種類。
在學術上,目前常用地震預報的方法有電磁波訊號異常、Demeter微型衛星、動物集體行為異常現象、水氡異常以及水溫異常等,雖然監測的方法很多,然而在較少應用於實際層面之上。然而,不論是何種監測手法,目前大多數的文獻皆是做案例分析,且皆為事後分析地震的前兆特徵,進而歸納並推論地震來臨前可能的前兆特徵或是前兆訊號及頻率,在推估未來的部分較少著墨。
本研究利用現在已有進行預報的MDCB超低頻電磁波監測儀進行訊號分析工作,由於在時域空間的判釋較為困難且雜訊較多以至於難以辨別。因此本研究利用快速傅立葉轉換將資料由時域空間轉為頻率空間,並結合卷積及低通濾波器將雜訊濾除。在頻率空間的分析主要結合特徵分群的前兆訊號分析及歷史震央空間分析資料進行空間機率環域交匯分析震源深度機率分析。除此之外,利用前兆訊號數值與歷史地震資訊進行回歸分析,欲推估未來地震規模及震中距相關性,最後歸納前兆訊號特徵來推估未來地震可能發生時間。
根據以上所述的空間機率環域交匯分析、震源深度機率分析、地震規模及震中距迴歸分析及地震發生時間歸納分析進行地震前兆分析探究,希望以此分析系統增加現今地震前兆分析及地震預測的準確度,以減少災害所帶來的人才損失。
zh_TW
dc.description.abstractThroughout worldwide, earthquakes have deprived lots of life and property. However, earthquakes cannot be predicted precisely in terms of the epicenter, time, seismic scale, and depth with various means.
Most of errors were caused by misleading signal processing. The goal of this study provide a better signal processing method to depict the potential zone of seismic epicenter. In order to realize the significant signal and frequency, this study utilizes Fast Fourier Transform (FFT) to analyze Ultra Low Frequency (ULF) signals and define a warning line for dividing normal and abnormal signals. In this study, an epicenter location can be inferred by intersection of at least three abnormal angles from different stations. In addition, epicenter estimation analysis imports probability buffer concept in spatial cross analysis, moreover, this concept also applies in depth estimation. Break time estimation concludes both lots of papers information and abnormal signal pattern, so this study define that break time of earthquake is one week after abnormal signal appearance. For magnitude regression, this study utilizes three different parameter, MAEQ, MMEQ and IAEQ, to regress the correlation with Richter magnitude scale.
Up to day, this study has successfully found significant signal of earthquake precursors and also calculated the potential zone of seismic epicenter, break time, depth potential and magnitude beforehand. In conclusion, this research provides a new method for epicenter prediction by analyzing ULF electromagnetic signals.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:48:04Z (GMT). No. of bitstreams: 1
ntu-104-R01228005-1.pdf: 16740257 bytes, checksum: 9c44e8e832a3c0f76086f68f70f19a2b (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents1. Introduction 1
1-1 Preface 1
1-2 The Motivation 2
1-3 The Target 3
1-4 The Study Framework 4
1-5 The Study Approach 5
2. Literature Review 7
2-1 Earthquake Prediction 7
2-1-1 Earthquake Prediction Definition 7
2-1-2 Electromagnetic Wave Monitoring System 10
2-2 Traditional MDCB VLF Electromagnetic Monitoring System 13
2-2-1 Theory of MDCB 13
2-2-2 Spatial Cross Analysis 19
2-2-3 Break Time Estimation 21
2-2-4 Seismic Magnitude Estimation 22
2-2-5 Present Stage of MDCB 24
2-3 Signal Processing 27
3. Methodology 29
3-1Study Area 29
3-2 Study Limitation 31
3-2-1 Signal Monitoring Limitation 31
3-2-2 Station Factor 31
3-2-3 Seismic VLF-EM Emitting Factor 32
3-2-4 Geological Distribution Factor 32
3-3 Study Procedure 33
3-4 Signal Preprocessing 34
3-4-1 Fast Fourier Transfer 35
3-4-2 Noise Filtration 36
3-4-3 Significant Frequency Division Definition 41
3-4-4 Abnormal Signal Definition 42
3-5 Epicenter Spatial Analysis 44
3-5-1 Spatial Cross Analysis 44
3-5-2 Buffer Zone Analysis 44
3-5-3 Potential Probability Analysis 45
3-6 Break Time Estimation 46
3-7 Magnitude Estimation 47
3-7-1 Normalization 48
3-7-2 Crust Energy Calibration 48
3-7-3 Depth Probability Analysis 50
4. Results and Discussions 54
4-1 Data Collection 54
4-2 Signal Processing and Noise Filtration 55
4-2-1 Fast Fourier Transfer Results 55
4-2-2 Noise Filtration Results 56
4-2-3 Significant Frequency Division Results 59
4-2-4 Abnormal Signal Results 61
4-3 Case Classification 63
4-3-1 Case1 Non Abnormal Direction One Week Preceding EQ 64
4-3-2 Case2 Several Abnormal Directions One Week Preceding EQ 65
4-4 Break Time Estimation Results 80
4-5 Magnitude Calibration 82
4-5-1 Crust Energy Calibration Results 82
4-5-2 Trend Regression of Four Magnitude Parameters Analysis 94
and Discussions
4-5-3 Depth Probability Analysis and Discussions 103
4-6 Summary 105
4-6-1 Spatial Epicenter Analysis 105
4-6-2 Break Time Estimation 105
4-6-3 Magnitude Estimation 106
4-6-4 Depth Estimation 106
5. Conclusion and Future Study 107
5-1 Conclusion 107
5-2 Future Study 109
Reference 110
Appendix A Direction from Hypocenter to Station 118
Appendix B Significant Frequency Division (EQ001052161) 120
Appendix C Code of fftconv 126
Appendix D Code of plotFigureAWC 128
Appendix E Code of meanAllEQ 130
Appendix F Code of meanMaxEQ 132
Appendix G Code of integralAreaEQ 133
Appendix H Code of normalData 135
Appendix I Code of Least Square Regression 136
Appendix J Code of Principal Component Analysis Regression 138
Appendix K Regression Plot of LM and PCA 140
Abbreviation 176
dc.language.isoen
dc.title應用超低頻電磁波遙測技術於地震前兆分析—以台灣為例zh_TW
dc.titleApplying Ultra Low Frequency Remote Sensing Techniques in the Earthquake Precursor Analysis —Using Taiwan as an Exampleen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.coadvisor吳俊輝(Jiun-Huei Proty Wu)
dc.contributor.oralexamcommittee溫在弘(Tzai-Hung Wen)
dc.subject.keyword快速傅立葉轉換,超低頻電磁波監測系統,地震前兆分析,zh_TW
dc.subject.keywordFast Fourier Transform (FFT),Ultra Low Frequency Monitoring System (ULF MS),Earthquake Precursor Analysis,en
dc.relation.page176
dc.rights.note有償授權
dc.date.accepted2015-01-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
16.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved