Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55115
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊申語
dc.contributor.authorWei-Chun Linen
dc.contributor.author林暐淳zh_TW
dc.date.accessioned2021-06-16T03:47:46Z-
dc.date.available2015-02-25
dc.date.copyright2015-02-25
dc.date.issued2014
dc.date.submitted2015-01-28
dc.identifier.citation[1] M. T. Gale, 'Replication techniques for diffractive optical elements,' Microelectronic Engineering, vol. 34, pp. 321-339, 1997.
[2] H. Schift, 'Nanoimprint lithography: an old story in modern times? A review,' Journal of Vacuum Science & Technology B, vol. 26, pp. 458-480, 2008.
[3] M. Y. Theeradetch Detchprohm, Shigekazu Sano, Ryo Nakamura, Shingo Mochiduki, Tetsuya Nakamura, Hiroshi Amano and Isamu Akasaki, 'Heteroepitaxial Lateral Overgrowth of GaN on Periodically Grooved Substrates: A New Approach for Growing Low-Dislocation-Density GaN Single Crystals,' Japanese Journal of Applied Physics, vol. 40, p. L16, 2001.
[4] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, et al., 'High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy,' physica status solidi (a), vol. 188, pp. 121-125, 2001.
[5] H. Becker and C. Gaertner, 'Polymer based micro-reactors,' Reviews in Molecular Biotechnology, vol. 82, pp. 89-99, 2001.
[6] M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, et al., 'Step and flash imprint lithography: a new approach to high-resolution patterning,' in Microlithography'99, 1999, pp. 379-389.
[7] P. Dannberg, R. Bierbaum, L. Erdmann, and A. H. Braeuer, 'Wafer scale integration of micro-optic and optoelectronic elements by polymer UV reaction molding,' in Optoelectronics' 99-Integrated Optoelectronic Devices, 1999, pp. 244-251.
[8] M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, 'Fabrication of nanostructures using a UV-based imprint technique,' Microelectronic Engineering, vol. 53, pp. 233-236, 2000.
[9] H. Lee and G.-Y. Jung, 'UV Curing Nanoimprint Lithography for Uniform Layers and Minimized Residual Layers,' Japanese Journal of Applied Physics, vol. 43, pp. 8369-8373, 2004.
[10] H. Lee and G.-Y. Jung, 'Wafer to wafer nano-imprinting lithography with monomer based thermally curable resin,' Microelectronic Engineering, vol. 77, pp. 168-174, 2005.
[11] H. Tan, A. Gilbertson, and S. Y. Chou, 'Roller nanoimprint lithography,' Journal of Vacuum Science & Technology B, vol. 16, pp. 3926-3928, 1998.
[12] C. Chang, S. Yang, and J. Sheh, 'A roller embossing process for rapid fabrication of microlens arrays on glass substrates,' Microsystem technologies, vol. 12, pp. 754-759, 2006.
[13] C.-Y. Chang, S.-Y. Yang, and M.-H. Chu, 'Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process,' Microelectronic engineering, vol. 84, pp. 355-361, 2007.
[14] S. Ahn, J. Cha, H. Myung, S.-m. Kim, and S. Kang, 'Continuous ultraviolet roll nanoimprinting process for replicating large-scale nano-and micropatterns,' Applied physics letters, vol. 89, p. 213101, 2006.
[15] 張哲豪, '流體微熱壓製程開發研究,' 國立台灣大學博士論文, 民國93年6月.
[16] S.-Y. Yang, F.-S. Cheng, S.-W. Xu, P.-H. Huang, and T.-C. Huang, 'Fabrication of microlens arrays using UV micro-stamping with soft roller and gas-pressurized platform,' Microelectronic engineering, vol. 85, pp. 603-609, 2008.
[17] 吳景棠, '氣囊輪紫外光樹脂滾壓製程技術之研發及應用,' 國立台灣大學博士論文, 民國99年7月.
[18] S. Nakamura, T. Mukai, and M. Senoh, 'Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,' Applied Physics Letters, vol. 64, pp. 1687-1689, 1994.
[19] E. F. Schubert and J. K. Kim, 'Solid-state light sources getting smart,' Science, vol. 308, pp. 1274-1278, 2005.
[20] T. Gessmann and E. Schubert, 'High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,' Journal of applied physics, vol. 95, pp. 2203-2216, 2004.
[21] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, et al., 'Status and future of high-power light-emitting diodes for solid-state lighting,' Journal of Display Technology, vol. 3, pp. 160-175, 2007.
[22] H. Jhih-Kai, L. Da-Wei, S. Min-Hsiung, L. Kang-Yuan, C. Jyun-Rong, H. Hung-Weng, et al., 'Investigation and Comparison of the GaN-Based Light-Emitting Diodes Grown on High Aspect Ratio Nano-Cone and General Micro-Cone Patterned Sapphire Substrate,' Journal of Display Technology, vol. 9, pp. 947-952, 2013.
[23] H. Gao, H. Tan, W. Zhang, K. Morton, and S. Y. Chou, 'Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field,' Nano letters, vol. 6, pp. 2438-2441, 2006.
[24] L. A. Eldada, S. An, H.-S. Lee, S.-G. Park, B.-H. O, S.-G. Lee, et al., 'Characterization and optimization of residual layer thickness during UV imprint process for singlemode waveguide fabrication,' Proceedings of SPIE, vol. 7219, pp. 72190R-72190R-8, 2009.
[25] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, 'Imprint of sub‐25 nm vias and trenches in polymers,' Applied physics letters, vol. 67, pp. 3114-3116, 1995.
[26] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, 'Nanoimprint lithography,' Journal of Vacuum Science & Technology B, vol. 14, pp. 4129-4133, 1996.
[27] G. M. Whitesides and B. Grzybowski, 'Self-assembly at all scales,' Science, vol. 295, pp. 2418-2421, 2002.
[28] A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, and W. Misiolek, 'Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes,' Journal of membrane science, vol. 319, pp. 192-198, 2008.
[29] S. Y. Chou, C. Keimel, and J. Gu, 'Ultrafast and direct imprint of nanostructures in silicon,' Nature, vol. 417, pp. 835-837, 2002.
[30] K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, 'Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (> 50: 1) silicon pillar arrays by nanoimprint and etching,' Nanotechnology, vol. 19, p. 345301, 2008.
[31] H. Becker and U. Heim, 'Hot embossing as a method for the fabrication of polymer high aspect ratio structures,' Sensors and Actuators A: Physical, vol. 83, pp. 130-135, 2000.
[32] N. Ong, Y. Koh, and Y. Q. Fu, 'Microlens array produced using hot embossing process,' Microelectronic Engineering, vol. 60, pp. 365-379, 2002.
[33] L. Lin, C.-J. Chiu, W. Bache, and M. Heckele, 'Microfabrication using silicon mold inserts and hot embossing,' in Micro Machine and Human Science, 1996., Proceedings of the Seventh International Symposium, 1996, pp. 67-71.
[34] H. Lee and G.-Y. Jung, 'Full wafer scale near zero residual nano-imprinting lithography using UV curable monomer solution,' Microelectronic Engineering, vol. 77, pp. 42-47, 2005.
[35] G. Shao, J. Wu, Z. Cai, and W. Wang, 'Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique,' Sensors and Actuators A: Physical, vol. 178, pp. 230-236, 2012.
[36] E. Mele, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, 'Polymer to polymer to polymer pattern transfer: Multiple molding for 100nm scale lithography,' Journal of Vacuum Science & Technology B, vol. 24, pp. 807-812, 2006.
[37] I. D. Block, L. L. Chan, and B. T. Cunningham, 'Large-area submicron replica molding of porous low-< i> k</i> dielectric films and application to photonic crystal biosensor fabrication,' Microelectronic engineering, vol. 84, pp. 603-608, 2007.
[38] B. Farshchian, A. Amirsadeghi, S. M. Hurst, J. Wu, J. Lee, and S. Park, 'Soft UV-nanoimprint lithography on non-planar surfaces,' Microelectronic Engineering, vol. 88, pp. 3287-3292, 2011.
[39] H. Shinohara, H. Goto, T. Kasahara, and J. Mizuno, 'Fabrication of a Polymer High-Aspect-Ratio Pillar Array Using UV Imprinting,' Micromachines, vol. 4, pp. 157-167, 2013.
[40] T. S. Kustandi, W. W. Loh, H. Gao, and H. Y. Low, 'Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography,' ACS nano, vol. 4, pp. 2561-2568, 2010.
[41] C. Moormann, N. Koo, J. Kim, U. Plachetka, F. Schlachter, and C. Nowak, 'Liquid transfer nanoimprint replication on non-flat surfaces for optical applications,' Microelectronic Engineering, vol. 100, pp. 28-32, 2012.
[42] N. Koo, J. W. Kim, M. Otto, C. Moormann, and H. Kurz, 'Liquid transfer imprint lithography: A new route to residual layer thickness control,' Journal of Vacuum Science & Technology B, vol. 29, p. 06FC12, 2011.
[43] J. W. Kim, J. Bolten, C. Moormann, and H. Kurz, 'Realization of ultra-thin HSQ resist layer for high resolution electron beam lithography using liquid splitting process,' Microelectronic Engineering, vol. 123, pp. 62-64, 2014.
[44] J. Taniguchi and M. Aratani, 'Fabrication of a seamless roll mold by direct writing with an electron beam on a rotating cylindrical substrate,' Journal of Vacuum Science & Technology B, vol. 27, pp. 2841-2845, 2009.
[45] H. Maruyama, N. Unno, and J. Taniguchi, 'Fabrication of roll mold using electron-beam direct writing and metal lift-off process,' Microelectronic Engineering, vol. 97, pp. 113-116, 2012.
[46] J. Uh, J. S. Lee, Y. H. Kim, J. T. Choi, M. G. Joo, and C. S. Lim, 'Laser engraving of micro-patterns on roll surfaces,' ISIJ international, vol. 42, pp. 1266-1272, 2002.
[47] H.-H. Park, H. Lim, S. Lee, and J. Lee, 'Fabrication of an adhesion-free transparent roll stamp for large area patterning using ultraviolet-type roller nanoimprint lithography,' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 30, p. 06FB11, 2012.
[48] H. Lim, K.-b. Choi, G. Kim, S. Lee, H. Park, J. Ryu, et al., 'Roll-to-roll nanoimprint lithography for patterning on a large-area substrate roll,' Microelectronic Engineering, vol. 123, pp. 18-22, 2014.
[49] J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, et al., 'Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,' Applied Physics Letters, vol. 101, p. 223102, 2012.
[50] S. Park, K. Choi, G. Kim, and J. Lee, 'Nanoscale patterning with the double-layered soft cylindrical stamps by means of UV-nanoimprint lithography,' Microelectronic Engineering, vol. 86, pp. 604-607, 2009.
[51] S. H. Ahn and L. J. Guo, 'Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step toward High-Throughput Application of Continuous Nanoimprinting,' ACS Nano, vol. 3, pp. 2304-2310, 2009.
[52] S. H. Ahn and L. J. Guo, 'High-Speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,' Advanced Materials, vol. 20, pp. 2044-2049, 2008.
[53] 莊岱融, 'PDMS環膜結合氣囊滾輪複製UV樹脂微奈米結構製程的之研發及應用,' 國立台灣大學碩士論文, 民國100年6月.
[54] 李昀珩, '環形PDMS軟模結合氣囊滾輪複製UV樹脂連續陽極氧化鋁奈米結構製程研發,' 國立台灣大學碩士論文, 民國101年6月.
[55] H. Lim, G. Kim, K.-B. Choi, M. Jeong, J. Ryu, and J. Lee, 'Nanoimprint lithography with a soft roller and focused UV light for flexible substrates,' Microelectronic Engineering, vol. 98, pp. 279-283, 2012.
[56] L. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, 'Flow behaviour of thin polymer films used for hot embossing lithography,' Microelectronic Engineering, vol. 54, pp. 229-245, 2000.
[57] S.-m. Seo, T.-i. Kim, and H. H. Lee, 'Simple fabrication of nanostructure by continuous rigiflex imprinting,' Microelectronic engineering, vol. 84, pp. 567-572, 2007.
[58] J. J. Dumond and H. Y. Low, 'Recent developments and design challenges in continuous roller micro-and nanoimprinting,' Journal of Vacuum Science & Technology B, vol. 30, p. 010801, 2012.
[59] K. L. Johnson, Contact mechanics: Cambridge university press, 1987.
[60] J. Lee, H.-H. Park, K.-B. Choi, G. Kim, and H. Lim, 'Fabrication of hybrid structures using UV roll-typed liquid transfer imprint lithography for large areas,' Microelectronic Engineering, vol. 127, pp. 72-76, 2014.
[61] S. H. Ahn and L. J. Guo, 'Dynamic nanoinscribing for continuous and seamless metal and polymer nanogratings,' Nano letters, vol. 9, pp. 4392-4397, 2009.
[62] J. G. Ok, H. J. Park, M. K. Kwak, C. A. Pina‐Hernandez, S. H. Ahn, and L. J. Guo, 'Continuous Patterning of Nanogratings by Nanochannel‐Guided Lithography on Liquid Resists,' Advanced Materials, vol. 23, pp. 4444-4448, 2011.
[63] J. G. Ok, S. H. Ahn, M. K. Kwak, and L. J. Guo, 'Continuous and high-throughput nanopatterning methodologies based on mechanical deformation,' Journal of Materials Chemistry C, vol. 1, p. 7681, 2013.
[64] J. J. Dumond, K. A. Mahabadi, Y. S. Yee, C. Tan, J. Y. Fuh, H. P. Lee, et al., 'High resolution UV roll-to-roll nanoimprinting of resin moulds and subsequent replication via thermal nanoimprint lithography,' Nanotechnology, vol. 23, p. 485310, 2012.
[65] C. Huh, K.-S. Lee, E.-J. Kang, and S.-J. Park, 'Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,' Journal of Applied Physics, vol. 93, pp. 9383-9385, 2003.
[66] N. P. Kobayashi, J. T. Kobayashi, X. Zhang, P. D. Dapkus, and D. H. Rich, 'Epitaxial lateral overgrowth of GaN over AlO x surface formed on Si substrate,' Applied physics letters, vol. 74, pp. 2836-2838, 1999.
[67] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, et al., 'Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,' Photonics Technology Letters, IEEE, vol. 18, pp. 1152-1154, 2006.
[68] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, et al., 'Fabrication of Pyramidal Patterned Sapphire Substrates for High-Efficiency InGaN-Based Light Emitting Diodes,' Journal of The Electrochemical Society, vol. 153, p. G765, 2006.
[69] D. Wuu, W. Wang, K. Wen, S. Huang, S. Lin, S. Huang, et al., 'Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,' Applied physics letters, vol. 89, p. 161105, 2006.
[70] L. Jae-Hoon, D.-Y. Lee, O. Bang-Won, and L. Jung-Hee, 'Comparison of InGaN-Based LEDs Grown on Conventional Sapphire and Cone-Shape-Patterned Sapphire Substrate,' Electron Devices, IEEE Transactions on, vol. 57, pp. 157-163, 2010.
[71] C.-C. Kao, Y.-K. Su, C.-L. Lin, and J.-J. Chen, 'The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates,' Applied Physics Letters, vol. 97, p. 023111, 2010.
[72] H. Huang, C. Lin, J. Huang, K. Lee, C. Lin, C. Yu, et al., 'Investigation of GaN-based light emitting diodes with nano-hole patterned sapphire substrate (NHPSS) by nano-imprint lithography,' Materials Science and Engineering: B, vol. 164, pp. 76-79, 2009.
[73] H. Huang, C. Lin, K. Lee, C. Yu, J. Huang, B. Lee, et al., 'Enhanced light output power of GaN-based vertical-injection light-emitting diodes with a 12-fold photonic quasi-crystal by nano-imprint lithography,' Semiconductor Science and Technology, vol. 24, p. 085008, 2009.
[74] C.-H. Chiu, P.-M. Tu, C.-C. Lin, D.-W. Lin, Z.-Y. Li, K.-L. Chuang, et al., 'Highly efficient and bright LEDs overgrown on GaN nanopillar substrates,' Selected Topics in Quantum Electronics, IEEE Journal of, vol. 17, pp. 971-978, 2011.
[75] H. Shinohara, S. Fujiwara, T. Tashiro, H. Kitahara, and H. Goto, 'Formation of Patterned Sapphire Substrate using UV Imprint Processes,' Journal of photopolymer science and technology, vol. 26, pp. 113-117, 2013.
[76] H. Yi-Ta and L. Yung-Chun, 'A Soft PDMS/Metal-Film Photo-Mask for Large-Area Contact Photolithography at Sub-Micrometer Scale With Application on Patterned Sapphire Substrates,' Microelectromechanical Systems, Journal of, vol. 23, pp. 719-726, 2014.
[77] Y. Lee and Y. Hsieh, 'A PDMS/metal-film photo-mask for large-area contact photolithograpy at sub-micrometr scale,' in Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on, 2013, pp. 1970-1973.
[78] Y.-C. Lee, S.-C. Yeh, Y.-Y. Chou, P.-J. Tsai, J.-W. Pan, H.-M. Chou, et al., 'High-efficiency InGaN-based LEDs grown on patterned sapphire substrates using nanoimprinting technology,' Microelectronic Engineering, vol. 105, pp. 86-90, 2013.
[79] J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, 'Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,' Applied Physics Letters, vol. 70, pp. 2658-2660, 1997.
[80] C. Con and B. Cui, 'Effect of mold treatment by solvent on PDMS molding into nanoholes,' Nanoscale research letters, vol. 8, pp. 1-6, 2013.
[81] C.-J. Shih, C.-H. Yeh, C.-S. Lin, and Y.-N. Pan, 'Development and characterization of a combinative technique for improving the polishing performance of diamond microarray dresser,' Diamond and Related Materials, vol. 29, pp. 69-78, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55115-
dc.description.abstract高功率藍光GaN基 LED搭配黃色螢光粉發出白光之裝置,已經廣泛被使用於戶外照明及LCD背光模組,並快速朝室內照明發展。先前研究指出在藍寶石基板上製作微米甚至奈米級週期性陣列,有助於GaN磊晶及光線散射,能夠大幅提升LED發光效率,故現行LED多生長於圖案化藍寶石基板(Patterned Sapphire Substrate, PSS)上。藍寶石硬度極高加工不易,欲製作微米級圖案化基板,通常使用曝光顯影或微奈米壓印製作高深寬比光阻遮罩,再進行ICP-RIE於藍寶石上蝕刻出尖錐狀結構。由於藍寶石基板本身以多層磊晶方式製作,其表面常有彎曲或部分不平整現象,使得以曝光顯影方式製作,尤其於大尺寸基板時備受挑戰。反之,以軟性模具壓印藍寶石基板製作所需遮罩之製程,因其低成本及高適用性得到廣泛關注。
本研究提出以滾輪式UV微奈米壓印技術製作上述光阻遮罩,期許能以滾輪連續快速壓印、低成本、高複製率之優勢,將現行批量式壓印之圖案化藍寶石製程持續向前推進。研究分成三個主要部分:一為滾輪模具製作;二為滾輪式UV壓印;三為反轉式UV滾輪壓印。
第一部分滾輪模具製作將矽晶圓上平面微柱陣列光阻,經電鍍、熱壓印成型、微澆注等製程後,成功以高複製率製作具整齊微米凹洞之PDMS軟滾輪,其中詳細探討熱壓印參數與現象,並以富士感壓軟片針對軟滾輪物理特性進行分析;第二部分以此軟滾輪為模具、量產化之曝光顯影用光阻作為膠體,於藍寶石基板上進行滾輪式UV壓印製作所需微柱光阻遮罩。經過系統化探討光源設計、平台移速、施加壓力等參數後,成功以1.25mm/s滾壓速度,連續於兩吋藍寶石基板上成型微柱陣列。以雷射共軛焦顯微鏡觀察,最佳成型區域結構高度2.01μm,相對於滾輪模具,結構複製率達95.2%。惟基板上成型結構高度並不均勻,呈現順著壓印方向由高至低分布現象,且SEM斷面結果顯示殘留層厚度稍厚,亦針對此兩項缺陷提出相關成因及改良方法。第三部份針對上述製程之成型不均及殘留層厚度等問題提出改良製程:以反轉式UV滾輪壓印技術結合滾輪式液態膠體轉印技術(Roll-typed liquid transfer imprint lithography, R-LTIL),製作圖案化藍寶石基板所需微柱陣列光阻遮罩。找到最佳化參數後,成功以1.68mm/s滾壓速度成型,以SEM及雷射共軛焦顯微鏡觀察,發現整面兩吋基板均具有高均勻性之微米柱狀陣列。其平均結構高度2.07μm、圓柱直徑1.69μm、週期3μm,相較於母模結構高度複製率達88.8%、相較於PC環型子模結構複製率達98.1%,結合R-LTIL技術也成功使殘留層厚度顯著下降。
本研究成功開發兩套滾輪式UV微奈米壓印製程應用於製作圖案化藍寶石基板,證實自製PDMS軟滾輪結合UV壓印技術能連續於藍寶石基板上製作高深寬比微柱光阻陣列。將目前曝光顯影及平面式壓印等批量式生產,提升至連續式滾輪生產,於未來圖案化藍寶石基板朝快速大量製造、大面積晶圓量產等發展上,相當具有潛力。
zh_TW
dc.description.abstractWhite LEDs have been widely used for light source and backlight in LCDs. It has been reported that micro-cone-pattern on sapphire substrates can improve GaN crystalline quality and the light scattering to enhance the output power of GaN-based LEDs. Therefore, LEDs are commonly grown on patterned sapphire substrates(PSS). To fabricate PSS, conventional photolithography and imprinting lithography are used to form high aspect ratio pillar array, which is served as the mask of subsequent ICP-RIE. Because a multi-layered sapphire substrate for LED is often warped, the imprinting methods with soft mold are attracted attention for their low cost and suitability.
In this study, two continuous UV roller-type approaches to fabricate micro-pillar array on sapphire substrate have been developed. We expect that by using roller-imprinting, PSS can be fabricated with lower cost and higher throughput. There are three main topics are researched and discussed: fabrication of a soft roller mold, roller-type UV imprint and roller-type reverse imprint.
To begin with the fabrication of the roller mold, by electroplating and hot embossing, we can replicate the pattern from flat resist master to a flexible circular mold with high fidelity. Then a roller with PSS cavity made of PDMS is fabricated by casting from the circular mold.The roller is integrally molded with simple process, high fidelity and low-cost.
The second, with the conformal contact of the soft roller, we successfully form micro-pillar array on sapphire substrates by roller-type UV-imprinting at high feeding speed 1.25mm/s. The height of pattern in terms of applied pressure, feeding velocity and initial photoresist thickness were investigated. In the best condition, the average height can reach 2.01μm and 95.2% fidelity.
Lastly, to enhance the uniformity of pattern and reduce the residual layer thickness (RLT), we develop another roller-type reverse imprinting process by the same soft roller mold. The pattern is formed on almost whole the 2-inch sapphire substrate at 1.68mm/s feeding speed with high uniformity. The height, top diameter and period are 2.07μm, 1.69μm and 3μm, respectively.
In this study, two processes have been successfully developed to form micro-pillar array for the PSS mask by UV roller-type imprinting. These roller-type methods can be easily implemented and fabricate PSSs at high feeding speed. Therefore, they have a great potential in fabricating larger size PSS with low cost and high throughput in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:47:46Z (GMT). No. of bitstreams: 1
ntu-103-R01522720-1.pdf: 11548060 bytes, checksum: e01a164d98d3dd6ce863c18a247623d8 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 X
表目錄 XVI
第 1 章 導論 1
1.1 微奈米結構製造與應用 1
1.2 微奈米壓印技術之演進 2
1.2.1 微熱壓成型技術 2
1.2.2 UV微奈米壓印成型技術 2
1.2.3 滾輪壓印成型技術 4
1.2.4 氣體輔助壓印成型技術 4
1.3 發光二極體 5
1.4 圖案化藍寶石基板 7
1.5 研究目標 8
1.6 論文架構 10
第 2 章 文獻回顧 18
2.1 微熱壓成型技術 18
2.2 UV奈米壓印成型技術 19
2.3 滾輪式UV奈米壓印成型技術 21
2.3.1 剛性滾輪模具製作 22
2.3.2 軟性滾輪模具製作 23
2.3.3 滾輪式UV壓印製程探討 25
2.5 圖案化藍寶石基板原理及製程 27
2.5.1 圖案化藍寶石基板發展及原理 27
2.5.2 圖案化藍寶石基板製程 29
2.6 文獻回顧總結與研究創新 31
第 3 章 實驗流程與設備 53
3.1 實驗流程 53
3.2 軟滾輪製作 54
3.2.1 PDMS材料簡介 54
3.2.2 翻製PDMS軟滾輪 55
3.3 滾壓式UV微奈米壓印製程 56
3.3.1 藍寶石基板及光阻 56
3.3.2 機台設計 57
3.3.3 製程與參數設計 58
3.4 量測設備 59
3.4.1 富士感壓軟片 59
3.4.2 紫外光能量計 59
3.4.3 場發射電子顯微鏡 60
3.4.4 雷射共軛焦顯微鏡 60
第 4 章 具PSS結構之PDMS軟滾輪製作 71
4.1 實驗目的 71
4.2 PDMS軟滾輪製程與參數探討 71
4.2.1 實驗流程 71
4.2.2 母模製作 72
4.2.3 電鍍翻製鎳模具 72
4.2.4 氣體輔助壓印翻製可撓性PC模具 73
4.2.5 PDMS翻製軟滾輪 75
4.3 PDMS軟滾輪製作結果與性質探討 76
4.3.1富士感壓軟片作用原理 76
4.3.2 PDMS軟滾輪之接觸長度與壓力均勻性 76
4.4 本章結論 77
第 5 章 滾輪式UV壓印製作圖案化藍寶石基板 94
5.1 實驗目的 94
5.2實驗流程與設計 94
5.2.1 實驗流程 94
5.2.2 膠體選擇與UV光源設計 95
5.2.3 參數設計 97
5.3 結果與討論 97
5.3.1 旋塗速度對微結構成型性之影響 97
5.3.2 施加壓力及平台移動速度對微結構成型性之影響 98
5.3.3 實驗結果探討 99
5.4 本章結論 100
第 6 章 反轉式UV滾輪壓印製作圖案化藍寶石基板 114
6.1 實驗目的 114
6.2實驗流程與設計 115
6.2.1 實驗流程 115
6.2.2 參數設計 115
6.3 結果與討論 115
6.3.1 環境溫度對於成型性之影響 115
6.3.2 反轉式滾輪壓印成型操作窗 116
6.4 本章結論 117
第 7 章 結論及未來展望 127
7.1 研究總結 127
7.2 未來展望 128
7.2.1 製程改良 128
7.2.2 其他結構、奈米結構及大面積 129
參考文獻 132
dc.language.isozh-TW
dc.subject微奈米壓印zh_TW
dc.subject滾輪式微奈米壓印zh_TW
dc.subject圖案化藍寶石基板zh_TW
dc.subject熱壓成形zh_TW
dc.subject反轉式壓印zh_TW
dc.subjectpatterned sapphire substrateen
dc.subjectnanoimprint lithographyen
dc.subjectreversal imprinting lithographyen
dc.subjecthot embossingen
dc.subjectroller-type micro/nanoimprint lithographyen
dc.title滾輪式UV微奈米壓印技術應用於連續製作圖案化藍寶石基板zh_TW
dc.titleUV Roller-type Micro/Nanoimprint Lithography to Fabricate Patterned Sapphire Substrateen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee沈永康,林清富,張復瑜
dc.subject.keyword圖案化藍寶石基板,微奈米壓印,反轉式壓印,滾輪式微奈米壓印,熱壓成形,zh_TW
dc.subject.keywordpatterned sapphire substrate,nanoimprint lithography,reversal imprinting lithography,roller-type micro/nanoimprint lithography,hot embossing,en
dc.relation.page139
dc.rights.note有償授權
dc.date.accepted2015-01-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
11.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved