請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55112完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉仁沛 | |
| dc.contributor.author | Chieh Chiang | en |
| dc.contributor.author | 姜杰 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:47:40Z | - |
| dc.date.available | 2017-03-13 | |
| dc.date.copyright | 2015-03-13 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-28 | |
| dc.identifier.citation | Barndorff-Nielsen OE, Cox DR. (1989) Asymptotic technique for use in statistics, London: Chapman & Hall, 118-119.
Cappelleri JC, Ting N. (2003) A modified large-sample approach to approximate interval estimation for a particular intraclass correlation coefficient. Statistics in Medicine. 22:1861-1877. Chervoneva I, Hyslop T, Hauck WW. (2007) Amultivariate test for population bioequivalence. Statistics in Medicine. 26:1208-1223. Chiu ST, Tsai PY, Liu JP. (2010) Statistical evaluation of non-profile analyses for the in vitro bioequivalence. Journal of Chemometrics. 24: 617-625. Chow S C, Shao J, Wang H. (2002) Individual bioequivalence testing under 2×3 designs. Statistics in Medicine 2002; 21:629-648. Chow SC, and Liu JP. (2008) Design and Analysis of Bioavailability and Bioequivalence Studies, 3th Ed. , CRC/ Chapman and Hall, Taylor and France, New York. Chow SC, Liu JP (2010) Design and Analysis of Bioavailability and Bioequivalence Studies, 3th Ed. CRC / Chapman and Hall, Taylor and France, New York Clinical Laboratory Standard Institute (CLSI) EP5-A2. (2004) Evaluation of Precision Performance of Quantitative Measurement Methods; Approved Guideline, Second Edition. Wayne, PA. Conner JK, Hartl DL. (2004) A Primer of Ecological Genetics, Sinauer Associates. Futuyma DJ, Keese MC, Scheffer SJ (1993) Genetic constraints and the phylogeny of insect-plant associations: Responses of Ophraella communa (Coleoptera: Chrysomelidae) to host plants of its congeners. Evolution, 47:888-905. Graybill FA, Wang CM. (1980) Confidence Intervals on Nonnegative Linear Combinations of Variances. Journal of the American Statistical Association, 75, 869-873. Hernandcz RP, Burdick RK. (1993) Confidence intervals on the total variance in an unbiased two-fold nested design. Biometrics J, 35:515-522. Howe WG. (1974) Approximate Confidence Limits on the Mean of X + Y Where X and Y Are Two Tabled Independent Random Variables. Journal of the American Statistical Association, 69, 789-794. Hyslop T, Hsuan F, Holder DJ. (2000) A small sample confidence interval approach to assess individual bioequivalence. Statistics in Medicine, 19:2885-2897. International Conference on Harmonization. (1995) Tripartite Guideline Q2A: Text on Validation of Analytical Procedures, A-2. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm073381.pdf [July 21, 2009] ISO 5725-2. (1994) Accuracy (Trueness and Precision) of Measurement Methods and Results – Part 2: Basic Method for the Determination of Repeatability and Reproducibility of A Standard Measurement Method. Geneva, Switzerland: International Standardization Organization, 6-20. Khuri, A. I., Mathew, T., Sinha, B. K. (1998). Statistical Tests for Mixed Linear Models. New York: Wiley. Krouwer JS. (2002) Setting performance goals and evaluating total analytical error for diagnostic assays. Clinical Chemistry, 48:919-927. Lee YH, Shao J, Chow SC. (2004) Modified large-sample confidence intervals for linear combinations of variance components: extension, theory, and application. J. Am. Stat. Assoc; 99, 467-478 Liu JP, Lu LT, Liao CT. (2009) Statistical Inference for the Within-Device Precision of Quantitative Measurements in Assay Validation, Journal of Biopharmaceutical Statistics, 19:5, 763-778 Lu LT (2008) Statistical Inference for Functions of Variance Components under Two-Way Crossed or Nested Random-Effects Models with Applications to Heritability and Reproducibility of Assay Validation. Doctoral Disseration. National Taiwan University. Patterson SD, Jones B. (2012) Viewpoint: observations on scaled average bioequivalence, Pharmaceutical Statistics, 11:1, 1-7. Serfling RJ. (1980) Approximation Theorems of Mathematical Statistics, Wiley. The European Agency for the Evaluation of Medicinal Products. (EMEA) (2001) Note for Guidance on the Investigation on Bioavailability and Bioequivalence. London, U.K. Ting N, Burdick RK, Graybill FA, Jeyaratnam S, Lu TFC. (1990) Confidence Intervals on Linear Combinations of Variance Components That Are Unrestricted in Sign. Journal of Statistical Computation and Simulation, 35, 135-143. US Food and Drug Administration. (2001) Guidance for Industry on statistical approaches to establishing bioequivalence. Center for Drug Evaluation and Research, Food and Drug Administration, Rockville, Maryland. US Food and Drug Administration. (2003a) Second Draft Guidance on Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD. US Food and Drug Administration. (2003b) Statistical Information from the June 1999 Draft Guidance and Statistical Information for In Vitro Bioequivalence Data Posted on August 18, 1999, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD. US Food and Drug Administration. (2007) Guidance on Pharmacogenetic Tests and Genetic Tests for Heritable Markers. Rockville, MD. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm077862.htm [January 24, 2014] Westgard JO, Burnett RW. (1990) Precision requirements for cost-effective operation of analytical processes. Clin. Chem. 36:1626-1632. World Health Organization (WHO) (2005) World Health Organization Draft Revision on Multisource (Generic) Pharmaceutical Products: guidelines on Registration Requirements to Establish Interchangeability, Geneva, Switzerland. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55112 | - |
| dc.description.abstract | Statistical criteria for evaluation of precision or variation often involve functions of the second moments of the normal distribution. Under the two-stage nested random-effects model, heritability is defined as the ratio of genetic variance to the total variance. Under replicated crossover designs, the criteria for individual bioequivalence (IBE) proposed by the guidance of the US Food and Drug Administration (FDA) contain the squared mean difference, variance of treatment-by-subject interaction, and the difference in within-subject variances between the generic and innovative products. On the other hand, the criterion for evaluation of the within precision for in-vitro diagnostic devices (IVD) is the sum of the variance components due to day, run, and replicates. The criterion for the in-vitro population bioequivalence (PBE) proposed by the draft guidance of the US FDA consists of the squared mean difference, the sum of the differences in variance components due to batch, sample, and life-stage. These criteria can be reformulated as linear combinations of variance components under the logarithmic transformation. The one-sided confidence limits for the linearized criteria derived by the modified large sample (MLS) method have been proposed as the test statistics for the inference in different applications. However, due to complexity of the power function, the literature for the sample size determination for the inference based on the second moments is scarce. We proved that the distribution of the one-sided confidence bound of the linearized criterion is asymptotically normal. Hence the asymptotic power can be derived for sample size determination with different applications to within-device precision, heritability, IBE and in-vitro PBE. Simulation studies were conducted to investigate the impact of magnitudes of means differences and variance components on sample sizes. In addition, empirical powers obtained from simulation studies are compared with the asymptotic powers to examine whether the sample sizes determined by our proposed methods can provide sufficient power. The proposed methods are illustrated with real data for practical applications. Discussion, final remarks and future research are also presented. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:47:40Z (GMT). No. of bitstreams: 1 ntu-104-D98621201-1.pdf: 4821055 bytes, checksum: 8661cdd153686f3cd940898c139cb81d (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | CONTENTS.......................................................................................................................I
LIST OF TABLES...........................................................................................................IV LIST OF FIGURES....................................................................................................VII 中文摘要.......................................................................................................................IX ENGLISH ABSTRACT....................................................................................................X CHAPTER 1 INTRODUCTION.................................................................................. 1 CHAPTER 2 PRELIMINARY………………………….............................................14 2.1 REVIEW OF MODIFIED LARGE SAMPLE (MLS) METHOD........................14 2.2 THE PROPOSED SAMPLE SIZE DETERMINATION BASED ON MLS INTERVAL ESTIMATION..............................................................................17 2.3 COMPARISON WITH EXACT TESTS...............................................................22 2.3.1 CHI-SQUARE TEST......................................................................................23 2.3.2 F TEST...........................................................................................................26 CHAPTER 3 TESTING FOR WITHIN-DEVICE PRECISION..............................33 3.1 TWO-STAGE NESTED RANDOM-EFFECTS MODEL...............................33 3.2 THE PROPOSED SAMPLE SIZE DETERMINATIONS....................................37 3.2.1 METHOD 1: MINIMUM TOTAL SAMPLE SIZE.......................................40 3.2.2 METHOD 2: MINIMUM TOTAL COST......................................................42 3.2.3 METHOD 3: FIXED RATIOS AMONG SAMPLE SIZES…………….......42 3.3 EXAMPLE............................................................................................................43 3.4 SIMULATION STUDIES.....................................................................................46 CHAPTER 4 TESTING FOR HERITABILITY........................................................58 4.1 INTERVAL TESTING UNDER THE NESTED HALF-SIBLING DESIGN......58 4.2 THE PROPOSED SAMPLE SIZE DETERMINATIONS....................................62 4.2.1 METHOD 1: MINIMUM TOTAL SAMPLE SIZE.......................................65 4.2.2 METHOD 2: MINIMUM TOTAL COST......................................................66 4.2.3 METHOD 3: FIXED RATIOS BETWEEN SAMPLE SIZES……………..67 4.3 EXAMPLE..........................................................................................................67 4.5 SIMULATION STUDIES....................................................................................69 CHAPTER 5 TESTING FOR INDIVIDUAL BIOEQUIVALENCE........................77 5.1 DESIGN AND INTERVAL ESTIMATION..........................................................77 5.1.1 UNDER 2×4 CROSSOVER DESIGN...........................................................80 5.1.2 UNDER 2×3 CROSSOVER DESIGN...........................................................83 5.1.3 UNDER 2×3 EXTRA-REFERENCE DESIGN..........................................85 5.2 THE CURRENT METHODS FOR SAMPLE SIZE DETERMINATION.......88 5.3 THE PROPOSED METHOD................................................................................90 5.3.1 UNDER 2×4 CROSSOVER DESIGN...........................................................90 5.3.2 UNDER 2×3 CROSSOVER DESIGN...........................................................95 5.3.3 UNDER 2×3 EXTRA-REFERENCE DESIGN.............................................99 5.4 EXAMPLE..........................................................................................................102 5.5 SIMULATION STUDIES...................................................................................105 CHAPTER 6 TESTING FOR IN-VITRO BIOEQUIVALENCE...........................127 6.1 DESIGN AND INTERVAL ESTIMATION........................................................127 6.2 THE PROPOSED SAMPLE SIZE DETERMINATION....................................131 6.2.1THE US FDA SUGGESTED SETTING.......................................................136 6.2.2 METHOD1: MINIMUM TOTAL SAMPLE SIZE.....................….............138 6.2.3 METHOD2: MINIMUM TOTAL COST.....................…............................139 6.2.4 METHOD 3: FIXED RATIOS BETWEEN SAMPLE SIZES…………….139 6.2.5 CONSTRAINTS AMONG THE PARAMETER COMPONENTS WHEN SAMPLE SIZES ARE GIVEN……………………………………………140 6.3 EXAMPLE.....................….................................................................................142 6.4 SIMULATION STUDIES.....................…..........................................................144 CHAPTER 7 DISCUSSION AND CONCLUSION.....................….........................169 REFERENCES..…….………………………….……................................................182 APPENDIX I NOTATIONS AND ABBREVIATIONS………………………..….....189 APPENDIX II SAS MACROS FOR DETERMINING THE SAMPLE SIZES OF WITHIN-DEVICE PRECISION..…….………………………….…….......................191 APPENDIX III SAS MACRO FOR DETERMINING THE SAMPLE SIZES OF HERITABILITY ASSESSMENT..…….………………………….……......................193 APPENDIX IV SAS MACRO FOR DETERMINING THE SAMPLE SIZES OF INDIVIDUAL BIOEQUALENCE INFERENCE..…….…………………………......196 APPENDIX V SAS MACRO FOR DETERMINING THE SAMPLE SIZES OF IN-VITRO BIOEQUALENCE INFERENCE..…….………………………….….…..199 APPENDIX VI PUBLICATION IN PHARMACEUTICAL STATISTICS ON 20 APRIL 2011…………………………………...………………………………………203 APPENDIX VII PUBLICATION IN JOURNAL OF CHEMOMETRICS ON 13 FEBRURARY 2014…………………………...…….………………………….……..210 APPENDIX VIII PUBLICATION IN PLOS ONE ON 13 OCTOBER 2014…….…220 | |
| dc.language.iso | en | |
| dc.subject | 精密度 | zh_TW |
| dc.subject | 樣本數計算 | zh_TW |
| dc.subject | 檢定力 | zh_TW |
| dc.subject | 修正大樣本法 | zh_TW |
| dc.subject | 試管內族群生體相等性檢定 | zh_TW |
| dc.subject | 個體生體相等性 | zh_TW |
| dc.subject | 遺傳率 | zh_TW |
| dc.subject | Heritability | en |
| dc.subject | Sample size | en |
| dc.subject | Within-device precision | en |
| dc.subject | Power | en |
| dc.subject | Modified large-sample method | en |
| dc.subject | In-vitro population bioequivalence | en |
| dc.subject | Individual bioequivalence | en |
| dc.title | 修正大樣本法於精密度檢測、遺傳率檢定、生體相等性檢定樣本數決定之研究 | zh_TW |
| dc.title | A Study on Sample Size Determination for Evaluating Within-Device Precision, Heritability, and Bioequivalence Based on Modified Large-Sample Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 蕭金福 | |
| dc.contributor.oralexamcommittee | 沈明來,廖振鐸,季瑋珠,蔡政安,林志榮 | |
| dc.subject.keyword | 精密度,遺傳率,個體生體相等性,試管內族群生體相等性檢定,修正大樣本法,檢定力,樣本數計算, | zh_TW |
| dc.subject.keyword | Within-device precision,Heritability,Individual bioequivalence,In-vitro population bioequivalence,Modified large-sample method,Power,Sample size, | en |
| dc.relation.page | 246 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
