Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55111
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃敏銓
dc.contributor.authorChih-Hsing Chouen
dc.contributor.author周志行zh_TW
dc.date.accessioned2021-06-16T03:47:38Z-
dc.date.available2015-03-12
dc.date.copyright2015-03-12
dc.date.issued2015
dc.date.submitted2015-01-28
dc.identifier.citationChapter 5. References
1. Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D. Global cancer statistics. CA: a cancer journal for clinicians. 2011; 61(2):69-90.
2. Parkin DM, Bray F, Ferlay J and Pisani P. Global cancer statistics, 2002. CA: a cancer journal for clinicians. 2005; 55(2):74-108.
3. Siegel R, Ma J, Zou Z and Jemal A. Cancer statistics, 2014. CA: a cancer journal for clinicians. 2014; 64(1):9-29.
4. Daniel CW and Smith GH. The mammary gland: a model for development. Journal of mammary gland biology and neoplasia. 1999; 4(1):3-8.
5. Kalluri R and Zeisberg M. Fibroblasts in cancer. Nature reviews Cancer. 2006; 6(5):392-401.
6. Ohtsubo K and Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006; 126(5):855-867.
7. Moremen KW, Tiemeyer M and Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012; 13(7):448-462.
8. Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proceedings of the National Academy of Sciences of the United States of America. 2002; 99(16):10231-10233.
9. Brockhausen I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO reports. 2006; 7(6):599-604.
10. Park JH, Nishidate T, Kijima K, Ohashi T, Takegawa K, Fujikane T, Hirata K, Nakamura Y and Katagiri T. Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis. Cancer research. 2010; 70(7):2759-2769.
11. Park JH, Katagiri T, Chung S, Kijima K and Nakamura Y. Polypeptide N-acetylgalactosaminyltransferase 6 disrupts mammary acinar morphogenesis through O-glycosylation of fibronectin. Neoplasia. 2011; 13(4):320-326.
12. Gill DJ, Tham KM, Chia J, Wang SC, Steentoft C, Clausen H, Bard-Chapeau EA and Bard FA. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proceedings of the National Academy of Sciences of the United States of America. 2013; 110(34):E3152-3161.
13. Gill DJ, Clausen H and Bard F. Location, location, location: new insights into O-GalNAc protein glycosylation. Trends in cell biology. 2011; 21(3):149-158.
14. Picco G, Julien S, Brockhausen I, Beatson R, Antonopoulos A, Haslam S, Mandel U, Dell A, Pinder S, Taylor-Papadimitriou J and Burchell J. Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology. 2010; 20(10):1241-1250.
15. Sewell R, Backstrom M, Dalziel M, Gschmeissner S, Karlsson H, Noll T, Gatgens J, Clausen H, Hansson GC, Burchell J and Taylor-Papadimitriou J. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. The Journal of biological chemistry. 2006; 281(6):3586-3594.
16. Fu J, Wei B, Wen T, Johansson ME, Liu X, Bradford E, Thomsson KA, McGee S, Mansour L, Tong M, McDaniel JM, Sferra TJ, Turner JR, Chen H, Hansson GC, Braun J, et al. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. The Journal of clinical investigation. 2011; 121(4):1657-1666.
17. Kudo T, Sato T, Hagiwara K, Kozuma Y, Yamaguchi T, Ikehara Y, Hamada M, Matsumoto K, Ema M, Murata S, Ohkohchi N, Narimatsu H and Takahashi S. C1galt1-deficient mice exhibit thrombocytopenia due to abnormal terminal differentiation of megakaryocytes. Blood. 2013; 122(9):1649-1657.
18. Alexander WS, Viney EM, Zhang JG, Metcalf D, Kauppi M, Hyland CD, Carpinelli MR, Stevenson W, Croker BA, Hilton AA, Ellis S, Selan C, Nandurkar HH, Goodnow CC, Kile BT, Nicola NA, et al. Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(44):16442-16447.
19. Wu YM, Liu CH, Huang MJ, Lai HS, Lee PH, Hu RH and Huang MC. C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. Cancer research. 2013; 73(17):5580-5590.
20. Hung JS, Huang J, Lin YC, Huang MJ, Lee PH, Lai HS, Liang JT and Huang MC. C1GALT1 overexpression promotes the invasive behavior of colon cancer cells through modifying O-glycosylation of FGFR2. Oncotarget. 2014; 5(8):2096-2106.
21. Cazet A, Julien S, Bobowski M, Burchell J and Delannoy P. Tumour-associated carbohydrate antigens in breast cancer. Breast cancer research : BCR. 2010; 12(3):204.
22. Patil SA, Bshara W, Morrison C, Chandrasekaran EV, Matta KL and Neelamegham S. Overexpression of alpha2,3sialyl T-antigen in breast cancer determined by miniaturized glycosyltransferase assays and confirmed using tissue microarray immunohistochemical analysis. Glycoconjugate journal. 2014; 31(6-7):509-521.
23. Schindlbeck C, Jeschke U, Schulze S, Karsten U, Janni W, Rack B, Sommer H and Friese K. Characterisation of disseminated tumor cells in the bone marrow of breast cancer patients by the Thomsen-Friedenreich tumor antigen. Histochemistry and cell biology. 2005; 123(6):631-637.
24. Whitehouse C, Burchell J, Gschmeissner S, Brockhausen I, Lloyd KO and Taylor-Papadimitriou J. A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans-Golgi apparatus inhibits the development of core-2-based O-glycans. The Journal of cell biology. 1997; 137(6):1229-1241.
25. Brockhausen I, Yang JM, Burchell J, Whitehouse C and Taylor-Papadimitriou J. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. European journal of biochemistry / FEBS. 1995; 233(2):607-617.
26. Mungul A, Cooper L, Brockhausen I, Ryder K, Mandel U, Clausen H, Rughetti A, Miles DW, Taylor-Papadimitriou J and Burchell JM. Sialylated core 1 based O-linked glycans enhance the growth rate of mammary carcinoma cells in MUC1 transgenic mice. International journal of oncology. 2004; 25(4):937-943.
27. Yu LG, Andrews N, Zhao Q, McKean D, Williams JF, Connor LJ, Gerasimenko OV, Hilkens J, Hirabayashi J, Kasai K and Rhodes JM. Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. The Journal of biological chemistry. 2007; 282(1):773-781.
28. Madsen CB, Lavrsen K, Steentoft C, Vester-Christensen MB, Clausen H, Wandall HH and Pedersen AE. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing. PloS one. 2013; 8(9):e72413.
29. Kufe DW. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene. 2013; 32(9):1073-1081.
30. Nath S and Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends in molecular medicine. 2014; 20(6):332-342.
31. Storr SJ, Royle L, Chapman CJ, Hamid UM, Robertson JF, Murray A, Dwek RA and Rudd PM. The O-linked glycosylation of secretory/shed MUC1 from an advanced breast cancer patient's serum. Glycobiology. 2008; 18(6):456-462.
32. Zhang L, Gallup M, Zlock L, Chen YT, Finkbeiner WE and McNamara NA. Pivotal role of MUC1 glycosylation by cigarette smoke in modulating disruption of airway adherens junctions in vitro. The Journal of pathology. 2014; 234(1):60-73.
33. Altschuler Y, Kinlough CL, Poland PA, Bruns JB, Apodaca G, Weisz OA and Hughey RP. Clathrin-mediated endocytosis of MUC1 is modulated by its glycosylation state. Molecular biology of the cell. 2000; 11(3):819-831.
34. Ju T, Xia B, Aryal RP, Wang W, Wang Y, Ding X, Mi R, He M and Cummings RD. A novel fluorescent assay for T-synthase activity. Glycobiology. 2011; 21(3):352-362.
35. Ju T and Cummings RD. A fluorescence-based assay for Core 1 beta3galactosyltransferase (T-synthase) activity. Methods in molecular biology (Clifton, NJ). 2013; 1022:15-28.
36. Ramsby M and Makowski G. Differential detergent fractionation of eukaryotic cells. Cold Spring Harbor protocols. 2011; 2011(3):prot5592.
37. Kaur S, Kumar S, Momi N, Sasson AR and Batra SK. Mucins in pancreatic cancer and its microenvironment. Nature reviews Gastroenterology & hepatology. 2013; 10(10):607-620.
38. Razawi H, Kinlough CL, Staubach S, Poland PA, Rbaibi Y, Weisz OA, Hughey RP and Hanisch FG. Evidence for core 2 to core 1 O-glycan remodeling during the recycling of MUC1. Glycobiology. 2013; 23(8):935-945.
39. Marth JD and Grewal PK. Mammalian glycosylation in immunity. Nature reviews Immunology. 2008; 8(11):874-887.
40. Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B, Sproviero D, Picco G, Gillett C, Papp SL, Schaffer L, Tutt A, Taylor-Papadimitriou J, Pinder SE and Burchell JM. Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer research. 2011; 71(24):7683-7693.
41. Solatycka A, Owczarek T, Piller F, Piller V, Pula B, Wojciech L, Podhorska-Okolow M, Dziegiel P and Ugorski M. MUC1 in human and murine mammary carcinoma cells decreases the expression of core 2 beta1,6-N-acetylglucosaminyltransferase and beta-galactoside alpha2,3-sialyltransferase. Glycobiology. 2012; 22(8):1042-1054.
42. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q and Szallasi Z. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast cancer research and treatment. 2010; 123(3):725-731.
43. Mukhopadhyay P, Chakraborty S, Ponnusamy MP, Lakshmanan I, Jain M and Batra SK. Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochimica et biophysica acta. 2011; 1815(2):224-240.
44. Wang ZQ, Bachvarova M, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A and Bachvarov D. Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation. Oncotarget. 2014; 5(2):544-560.
45. Lillehoj EP, Han F and Kim KC. Mutagenesis of a Gly-Ser cleavage site in MUC1 inhibits ectodomain shedding. Biochemical and biophysical research communications. 2003; 307(3):743-749.
46. Julian J, Dharmaraj N and Carson DD. MUC1 is a substrate for gamma-secretase. Journal of cellular biochemistry. 2009; 108(4):802-815.
47. Boskovski MT, Yuan S, Pedersen NB, Goth CK, Makova S, Clausen H, Brueckner M and Khokha MK. The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality. Nature. 2013; 504(7480):456-459.
48. Kufe DW. Mucins in cancer: function, prognosis and therapy. Nature reviews Cancer. 2009; 9(12):874-885.
49. Alam M, Ahmad R, Rajabi H, Kharbanda A and Kufe D. MUC1-C oncoprotein activates ERK-->C/EBPbeta signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. The Journal of biological chemistry. 2013; 288(43):30892-30903.
50. Blixt O, Bueti D, Burford B, Allen D, Julien S, Hollingsworth M, Gammerman A, Fentiman I, Taylor-Papadimitriou J and Burchell JM. Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis. Breast cancer research : BCR. 2011; 13(2):R25.
51. Burford B, Gentry-Maharaj A, Graham R, Allen D, Pedersen JW, Nudelman AS, Blixt O, Fourkala EO, Bueti D, Dawnay A, Ford J, Desai R, David L, Trinder P, Acres B, Schwientek T, et al. Autoantibodies to MUC1 glycopeptides cannot be used as a screening assay for early detection of breast, ovarian, lung or pancreatic cancer. British journal of cancer. 2013; 108(10):2045-2055.
52. Astronomo RD and Burton DR. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nature reviews Drug discovery. 2010; 9(4):308-324.
53. Lakshminarayanan V, Thompson P, Wolfert MA, Buskas T, Bradley JM, Pathangey LB, Madsen CS, Cohen PA, Gendler SJ and Boons GJ. Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109(1):261-266.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55111-
dc.description.abstract根據世界衛生組織公佈乳癌佔全球女性癌症發生率與死亡率皆排名第一位。異常的醣化修飾常見於許多癌症發展過程中。Core 1 β1,3-galactosyltransferase (C1GALT1)為為黏液型醣化作用過程中唯一可以形成Core 1 structure (Gal-GalNAc-Ser/The)的醣化酵素,並且在許多腫瘤形成的過程中被發現C1GALT1有大量表現。從許多公開的RNA Microarray資料庫中我們發現C1GALT1 mRNA在乳癌腫瘤中表現增加,並且顯示高表現C1GALT1的病人其10年存活率相較低表現的病人差。此外,我們利用乳癌Tissue Microarray觀察C1GALT1蛋白質表現量也顯示C1GALT1在乳癌腫瘤組織中有大量表現,並且其表現量與病人的病理因子Grade與Stage成正相關。從in vitro與in vivo實驗證實C1GALT1可以促進乳癌細胞的惡性行為之特性,例如:細胞遷移、侵襲、癌幹細胞特性以及生長;同樣地抑制C1GALT1表現則會降低其惡性行為。此外,C1GALT1可以調控MUC1-N上的醣化結構,並且透過影響其下游MUC1-C/β-catenin/ERK訊號路徑,來調控乳癌細胞生長。本篇研究指出C1GALT1在乳癌腫瘤形成過程中扮演重要角色,未來在真對乳癌治療研究上提供一個具潛力的方向。zh_TW
dc.description.abstractCore 1 β1,3-galactosyltransferase (C1GALT1) is an exclusive enzyme in humans that catalyzes the biosynthesis of core 1 O-glycan structure, Gal-GalNAc-O-Ser/Thr, whose expression is commonly up-regulated during tumorigenesis. Aberrant glycosylation is frequently observed in cancers. Breast cancer is the most frequently diagnosed malignancy in women and the first leading cause of cancer-related death worldwide. However, little is known about the function of C1GALT1 in breast cancer. Breast cancer is the most frequently diagnosed malignancy in women and the first leading cause of cancer-related death worldwide. This study aims to establish the correlation between C1GALT1 expression and breast cancer clinicopathological features and the roles of C1GALT1 in breast cancer malignant phenotypes. Public databases and our data show that C1GALT1 mRNA and protein are frequently up-regulated in breast cancer; and increased C1GALT1 expression correlates with higher histological grade and advanced tumor stage. Overexpression of C1GALT1 enhanced breast cancer cell growth, migration, and invasion in vitro and tumor growth in vivo. Conversely, C1GALT1 knockdown suppressed these malignant phenotypes. Furthermore, C1GALT1 modulated O-glycan structures on Mucin (MUC) 1 and promoted MUC1-C/β-catenin signaling in breast cancer cells. These findings suggest that C1GALT1 enhances breast cancer malignant progression by promoting MUC1-C/β-catenin signaling pathway.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:47:38Z (GMT). No. of bitstreams: 1
ntu-104-D00446004-1.pdf: 3260453 bytes, checksum: a28ae8f1b383366daa5ee198abb0c971 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsTable of Content
口試委員會審定書…………………………………………………………………....... i
致謝…………………………………………………………………………………...... ii
中文摘要…………………………………………………………...…………………. iii
Abstract…………………………………………..…………………………………… iv
Chapter 1. Introduction………..…………………………………………………………1
Chapter 2. Material and methods…….………..…………………………………………7
2.1 Immunohistochemistry………………………………………………………7
2.2 Cell lines and cell culture…………………………………………………...7
2.3 Transfection…………......…………………………………………………….8
2.4 T synthase activity assay………………………………………………….......9
2.5 Transwell migration and invasion assay……………………………...……..10
2.6 Sphere formation assay………………………………………………………10
2.7 Trypan blue exclusion assay..………………………………………………..10
2.8 MTT assay…………………………………………………………………...11
2.9 In vivo xenograft tumor growth model………………………………….…...11
2.10 Flow cytometry………………………………………………………………12
2.11 Western blot analysis and lectin pull-down assay.…...………….…………..12
2.12 Immunofluorescence microscopy…………………………………………..13
2.13 Quantitative (Q) RT-PCR analysis……………………………….……...…..14
2.14 Cell fractionation……….....…………………..……………………………..14
2.15 Statistical analysis…………………………………………………………15
Chapter 3. Results………...………….…………………………………………………16
3.1 C1GALT1 mRNA and protein are up-regulated in breast cancer………………………………………………………………………..16
3.2 High C1GALT1 expression correlates with breast cancer higher histological
grade and advanced tumor stage….....………………………………………...16
3.3 C1GALT1 regulates O-glycan structures on surfaces of breast cancer cells....17
3.4 C1GALT1 regulates malignant behaviors of breast cancer cells......................18
3.5 C1GALT1 regulates breast cancer tumor growth in vivo……………………20
3.6 C1GALT1 regulates O-glycosylation of proteins in breast cancer cells…….21
3.7 C1GALT1 regulates O-glycan structures on MUC1……………………….…22
3.8 C1GALT1 regulates MUC1-N shedding into condition medium and MUC1-C
translocation into the nucleus……………………………………………….23
3.9 C1GALT1 regulates MUC1-C/β-catenin signalling pathway………………...24
3.10 C1GALT1 promotes cell growth through MUC1-C pathway……………….25
Chapter 4. Discussion………………………………………………………………..…27
Chapter 5. References………….…………………………………….…………………32

Figures and Table
Figure 1. C1GALT1 mRNA is frequently up-regulated in ductal carcinoma and basal-like breast cancer………………………………….....………………..38
Figure 2. C1GALT1 mRNA expression is correlated with breast cancer poor survival..……………………………………………………………………..39
Figure 3. C1GALT1 is frequently overexpressed in breast tumor tissues and correlates with histological grade and stage ………………………...…………………40
Figure 4. C1GALT1 is differentially expressed in multiple breast cancer cell lines……………………………………………………………..………….41
Figure 5. C1GALT1 regulates O-glycan structures on surfaces of breast cancer cells…..……………………………………………………………………...42
Figure 6. T synthase activity assay in breast cancer cells……………............………...43
Figure 7. C1GALT1 modulates breast cancer cell migration and invasion….................………………………………………………………..44
Figure 8. C1GALT1 modulates cancer stemness properties in breast cancer cells……………………………………….…………………………………45
Figure 9. C1GALT1 modulates breast cancer cell growth…………….………………46
Figure 10. Knockdown of C1GALT1 confirms suppression of T47D cell growth in vitro…………………………………………………………………………47
Figure 11. C1GALT1 promotes breast tumor growth in vivo………………………...48
Figure 12.C1GALT1 enhances breast cancer cell proliferation and O-glycans changes
in xenograft tumors………………………………………………………….49
Figure 13.C1GALT1 regulates O-glycosylation of proteins in breast cancer cells….…50
Figure 14.Knockdown of C1GALT1 modifies O-glycans on MUC1-N in MDA-MB-231 and SKBR3 breast cancer cells………………………..……51
Figure 15.C1GALT1 regulates MUC1-N shedding in breast cancer cells…………….52
Figure 16.C1GALT1 regulates MUC1-C/β-catein/ERK signaling pathway in breast
cancer cells…………………………………………………………………..53
Figure 17.C1GALT1 promotes cell growth through MUC1-C pathway………………54




Table
Table 1. C1GALT1 expression level correlates with clinicopathological
characteristics……….……………………………………………………….55
dc.language.isoen
dc.subject乳癌zh_TW
dc.subject黏液型醣化蛋白?zh_TW
dc.subjectBreast canceren
dc.subjectC1GALT1en
dc.subjectMUC1en
dc.title"Core 1 β1,3 galactosyltransferase (C1GALT1 )影響乳癌細胞惡性行為之研究"zh_TW
dc.titleThe role of Core 1 β1,3 galactosyltransferase (C1GALT1) in breast cancer cell malignant behaviorsen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee李明學,賴逸儒,劉雅雯,陳啟豪
dc.subject.keyword乳癌,黏液型醣化蛋白?,zh_TW
dc.subject.keywordBreast cancer,C1GALT1,MUC1,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2015-01-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
Appears in Collections:解剖學暨細胞生物學科所

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
3.18 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved