請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55107完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周瑞仁(Jui-Jen Chou) | |
| dc.contributor.author | Che-Nan Kuo | en |
| dc.contributor.author | 郭哲男 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:47:29Z | - |
| dc.date.available | 2020-01-30 | |
| dc.date.copyright | 2015-01-30 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-28 | |
| dc.identifier.citation | Bruzzone, L. and G. Quaglia. 2012. “Review article: locomotion systems for ground mobile robots in unstructured environments.” Mechanical Sciences. 3: 49-62.
Campbell, D. and M. Buehler. 2003. “Stair descent in the simple hexapod 'RHex'.” IEEE International Conference on Robotics and Automation, pp. 1380-1385. Taipei, Taiwan. Chen, S. C., K. J. Huang, C. H. Li and P. C. Lin. 2011. “Trajectory Planning for Stair Climbing in the Leg-wheel Hybrid Mobile Robot Quattroped.” IEEE International Conference on Robotics and Automation, pp. 1229-1234. Shanghai, China. Dalvand, M. M., and M. M. Moghadam. 2006. “Stair Climber Smart Mobile Robot (MSRox).” Autonomous Robots. 20(1): 3-14. Eich, M., F. Grimminger and F. Kirchner. 2009. “Proprioceptive control of a hybrid legged-wheeled robot.” IEEE International Conference on Robotics and Biomimetics, pp. 774-779. Bangkok, Thailand. Herbert, S. D., A. Drenner, and N. Papanikolopoulos. 2008. “Loper: A Quadruped-Hybrid Stair Climbing Robot.” IEEE International Conference on Robotics and Automation, pp. 799-804. Pasadena, CA, USA. Hong, D.W. and D. Laney. 2006. “Preliminary Design and Kinematic Analysis of a Mobility Platform with Two Actuated Spoke Wheels.” US-Korea Conference on Science, Technology and Entrepreneurship, Mechanical Engineering & Robotics Symposium, Teaneck, New Jersey, USA. Chou, J.J. and L.S. Yang. 2013. “Innovative design of a claw-wheel transformable robot.” IEEE International Conference on Robotics and Automation (ICRA), pp. 1337-1342. Karlsruhe, Germany Kim, Y. S., G. P. Jung, H. Kim, K. J. Cho, and C. N. Chu. 2014. “Wheel Transformer: A Wheel-Leg Hybrid Robot With Passive Transformable Wheels.” IEEE Transactions on Robotics. 30(6):1487-1498. Lindemann, R. A., D. B. Bickler, B. D. Harrington, G. M. Ortiz and C. J. Voothees. 2006. “Mars Exploration Rover Mobility Development” IEEE Robotics & Automation Magazine 13(2): 19-26 Liu, Y. and G. Liu. 2009. “Track--Stair Interaction Analysis and Online Tipover Prediction for a Self-Reconfigurable Tracked Mobile Robot Climbing Stairs.” IEEE/ASME Transactions on Mechatronics. 14(5):1083-4435 Michaud, F., D. Letourneau, M. Arsenault, Y. Bergeron, R. Cardrin, F. Gagono, M. A. Legault, M. Millette, J. F. Pare, M. C. Tremblay, P. Lepage, Y. Morin, J. Bisson, and S. Caron. 2005. “Multi-modal locomotion robotic platform using leg-track-wheel articulations.“ Autonomous Robots. 18(2): 137–156. Moore, E. Z., D. Campbell, F. Grimminger and M. Buehler. 2002.” Reliable stair climbing in the simple hexapod 'RHex'.” IEEE International Conference on Robotics and Automation, pp. 2222-2227. Washington, DC, USA. Morrey, J. M., B. Lambrecht, A. D. Horchler, R. E. Ritzmann, and R. D. Quinn. 2003. “Highly Mobile and Robust Small Quadruped Robots.” IEEE International Conference on Intelligent Robots and Systems. pp. 82-87. Las Vegas, USA. Quinn, R. D., J. T. Offi, D. A. Kingsley, and R. E. Ritzmann. 2002. “Improved Mobility Through Abstracted Biological Principles.” International Conference on Intelligent Robots and Systems, pp. 2652-2657. Lausanne, Switzerland. Saranli, U., M. Buehler, and D. E. Koditschek. 2001. “RHex: A Simple and Highly Mobile Hexapod Robot.” International Journal of Robotics Research. 20(7): 616-631. Sato, T., S. Sakaino, E. Ohashi, K. and Ohnishi K. 2011. “Walking Trajectory Planning on Stairs Using Virtual Slope for Biped Robots.” IEEE Transactions on Industrial Electronics. 58(4): 1385-1396 Shen, S. Y., C. H. Li, C. C. Cheng, J.C. Lu, S. F. Wang, and P.C. Lin. 2009. “Design of a Leg-Wheel Hybrid Mobile Platform.” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4682-4687. St. Louis, USA. Tadakuma, K., R. Tadakuma, A. Maruyama, E. Rohmer, K. Nagatani, K. Yoshida, A. Ming, S. Makoto, M. Higashimori, and M. Kaneko. 2009. “Armadillo-Inspired Wheel-Leg Retractable Module.” IEEE International Conference on Robotics and Biomimetics, pp. 610-615. Guilin, China. Vukobratović, M. and B. Borovac, 2004. “ZERO-MOMENT POINT — THIRTY FIVE YEARS OF ITS LIFE.” International Journal of Humanoid Robotics. 1(1):157-173 Wilcox, B., T. Litwin, J. Biesiadecki, J. Matthews, M. Heverly, J. Morrison, J. Townsend, N. Ahmad, A. Sirota, and B. Cooper. 2007. “ATHLETE: A Cargo Handing and Manipulation Robot for the Moon.” Journal of Field Robotics. 24(5): 421-434. Yuan, J. and S. Hirose. 2004. “Research on Leg-Wheel Hybrid Stair-Climbing robot, Zero Carrier.” IEEE International Conference on Robotics and Biomimetics, pp. 654 – 659. Shenyang, China. 楊力行 2013. 輪式及爪式可變結構載具之研發. 碩士論文, 台灣大學生物產業機電工程學系。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55107 | - |
| dc.description.abstract | 本論文旨在研發輪爪機器人穩定爬階的方法,分別從硬體與控制的角度去設計輪爪機器人系統。硬體方面包含機構設計與機電系統,機構設計以前一代輪爪機器人Clawheel II為基礎進行改善,保留能變形輪爪切換的概念,並加入新式的輪爪設計,輪爪結構比前一代更強壯,並且具有緩衝功能,增加機器人階梯地形的適應力。機器人的機電系統則增加多重感測器信號回授與馬達同步控制器,讓機器人能感知自身狀態並做出調整,增強機器人系統爬階時的強韌性。控制方面則分析機器人與階梯幾何關係以及輪爪馬達的扭力需求,並推導出一理想的爬階初始位置,在此爬階位置可以讓機器人前、後輪爪扭力輸出較為均勻,並且具有最大的平衡穩定度。爬階控制方法將機器人爬階分為前進過程與上爬過程,前進過程確保機器人回到理想爬階初始位置,上爬過程基於零力矩點 (Zero Moment Point) 概念來設定機器人參數保持動態平衡,整套方法除了使用軟體模擬來快速測試各種參數,讓輪爪機器人實現穩定爬階的功能;同時進行實體測試,在前進過程實驗中,攀爬高度為15cm深度為29cm的階梯,能成功進行輪爪相位的修正,上爬一階花費時間約11秒,包含上升過程約3秒,修正輪爪相位花費時約8秒。上爬過程實驗攀爬高度為20cm深度為25cm之階梯,能夠穩定上爬,上爬過程約8秒,輪爪轉速為每秒13度。此外,此理論與假設亦可適用於其他的輪足類機器人之爬階運動,因此這一爬階控制方法是一可廣泛應用或持續延伸的通用方法。 | zh_TW |
| dc.description.abstract | This research aims to develop an approach that permits a claw-wheel robot to climb stairs steadily through designing hardware and control strategy. The hardware include the mechanism design and mechatronic system. In order to improve prior generations of the claw-wheel robot, the mechanism design of the Clawheel III retains the claw-wheel transformable concept of the Clawheel II but implements new claw-wheels to improve the structure of the former wheel and provide an impact cushion so as to enhance terrain adaptability of the robot. With further implementation of sensors feedback and motor synchronization controller, the robot can automatically adjust its posture, and thus improve stability when climbing stairs. Moreover, we derive an ideal initial position of stair climbing, in which the robot can have more even torque distribution between the front motors and the rear motors and have the most robust stability by analyzing geometric relations between the robot and stairs and evaluating the required motor torque. In control strategy, the stair climbing process is separated into proceeding and ascending process. In the advancing process, the robot is expected to return to the ideal initial position of stair climbing. In ascending process, the robot will maintain an equilibrium for dynamic stability based on the concept of ZMP (Zero Moment Point). Furthermore, this control strategy is set in simulation to instantaneously test various parameters, and the experiments are conducted subsequently. In the experiments of the advancing process, the robot can successfully correct the bilateral phase difference of claw-wheels while climbing up a stair with 15cm rise height and 29cm depth, and it takes 11 sec/stair in average that includes 3 sec in the ascending process and 8 sec in correcting phase difference. In the experiments of ascending process, the robot can steadily climb up a stair with 20cm height and 25cm depth in 8 sec while each wheel rotates at 13 deg/sec. In addition, this theory and hypothesis also apply to the climbing movement of other wheel-legged robots. As a result, this stair climbing control strategy is a general approach which can be widely applied or persistently extended. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:47:29Z (GMT). No. of bitstreams: 1 ntu-104-R01631022-1.pdf: 2608115 bytes, checksum: 325a1032f87dd1cf39f73b8c3387c1d2 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv 目錄Table of Contents vi 圖目錄List of Figures viii 表目錄List of Tables x 符號表 xi Chapter 1 緒論 Introduction 1 Chapter 2 文獻探討 Literature Review 2 2.1 爬階輪足混合型機器人 2 2.2 機器人之爬階控制 11 Chapter 3 材料與方法 Materials and Methods 13 3.1 輪爪機器人機構設計 13 3.1.1 變形轉換 14 3.1.2 機體設計 17 3.1.3 輪爪設計 19 3.2 機電系統設計 21 3.2.1 主控制器與通訊系統 22 3.2.2 姿態感測系統 24 3.2.3 馬達控制系統 26 3.3 機器人與階梯的分析及動力需求 30 3.3.1 輪爪與階梯幾何關係 30 3.3.2 馬達扭力需求分析 32 3.3.3 爬階的理想位置 36 3.4 爬階流程與控制 40 3.4.1 前進過程修正位置 41 3.4.2 上升過程與ZMP動態平衡 44 3.4.3 機器人運動模型 49 3.4.4 轉動角函數的設計 51 Chapter 4 結果與討論 Results and Discussion 53 4.1 理論驗證 53 4.2 爬階模擬 55 4.3 爬階實驗 58 4.3.1 前進過程修正輪爪相位實驗 58 4.3.2 上爬過程實驗 60 Chapter 5 結論與建議 Conclusion and Suggestions 62 References 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 零力矩點 | zh_TW |
| dc.subject | 可變形機器人 | zh_TW |
| dc.subject | 階梯攀爬 | zh_TW |
| dc.subject | 混合式 | zh_TW |
| dc.subject | 移動機器人 | zh_TW |
| dc.subject | Hybrid | en |
| dc.subject | Transformable robot | en |
| dc.subject | Stair climbing | en |
| dc.subject | Mobile robot | en |
| dc.subject | Zero Moment Point | en |
| dc.title | 應用ZMP於輪爪機器人之穩定爬階 | zh_TW |
| dc.title | Stabilization and Control for Stair-Climbing of a Claw Wheel Robot Based on ZMP | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 艾群(Chyung Ay),黃緒哲(Shiuh-Jer Huang),顏炳郎(Ping-Lang Yen) | |
| dc.subject.keyword | 零力矩點,可變形機器人,階梯攀爬,混合式,移動機器人, | zh_TW |
| dc.subject.keyword | Zero Moment Point,Transformable robot,Stair climbing,Hybrid,Mobile robot, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
